Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049713

RESUMO

PLK1 is a protein kinase that regulates mitosis and is both an important oncology drug target and a potential antitarget of drugs for the DNA damage response pathway or anti-infective host kinases. To expand the range of live cell NanoBRET target engagement assays to include PLK1, we developed an energy transfer probe based on the anilino-tetrahydropteridine chemotype found in several selective PLK inhibitors. Probe 11 was used to configure NanoBRET target engagement assays for PLK1, PLK2, and PLK3 and measure the potency of several known PLK inhibitors. In-cell target engagement for PLK1 was in good agreement with the reported cellular potency for the inhibition of cell proliferation. Probe 11 enabled the investigation of the promiscuity of adavosertib, which had been described as a dual PLK1/WEE1 inhibitor in biochemical assays. Live cell target engagement analysis of adavosertib via NanoBRET demonstrated PLK activity at micromolar concentrations but only selective engagement of WEE1 at clinically relevant doses.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases , Proliferação de Células , Mitose , Inibidores de Proteínas Quinases/farmacologia
2.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36865333

RESUMO

PLK1 is a protein kinase that regulates mitosis and is both an important oncology drug target and a potential anti target of drugs for the DNA damage response pathway or anti-infective host kinases. To expand the range of live cell NanoBRET target engagement assays to include PLK1 we developed an energy transfer probe based on the anilino-tetrahydropteridine chemotype found in several selective PLK inhibitors. Probe 11 was used to configure NanoBRET target engagement assays for PLK1, PLK2, and PLK3 and measure the potency of several known PLK inhibitors. In cell target engagement for PLK1 was in good agreement with the reported cellular potency for inhibition of cell proliferation. Probe 11 enabled investigation of the promiscuity of adavosertib, which had been described as a dual PLK1/WEE1 inhibitor in biochemical assays. Live cell target engagement analysis of adavosertib by NanoBRET demonstrated PLK activity at micromolar concentrations but only selective engagement of WEE1 at clinically relevant doses.

3.
Biochemistry ; 48(21): 4488-96, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19284778

RESUMO

BACE-1 (beta-site amyloid precursor protein cleaving enzyme), a prominent target in Alzheimer's disease drug discovery efforts, was surveyed using Tethering technology to discover small molecule fragment ligands that bind to the enzyme active site. Screens of a library of >15000 thiol-containing fragments versus a panel of BACE-1 active site cysteine mutants under redox-controlled conditions revealed several novel amine-containing fragments that could be selectively captured by subsets of the tethering sites. For one such hit class, defined by a central aminobenzylpiperidine (ABP) moiety, X-ray crystal structures of BACE mutant-disulfide conjugates revealed that the fragment bound by engaging both catalytic aspartates with hydrogen bonds. The affinities of ABP fragments were improved by structure-guided chemistry, first for conjugation as thiol-containing fragments and then for stand-alone, noncovalent inhibition of wild-type (WT) BACE-1 activity. Crystallography confirmed that the inhibitors bound in exactly the same mode as the disulfide-conjugated fragments that were originally selected from the screen. The ABP ligands represent a new type of nonpeptidic BACE-1 inhibitor motif that has not been described in the aspartyl protease literature and may serve as a starting point for the development of BACE-1-directed Alzheimer's disease therapeutics.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Biocatálise , Domínio Catalítico , Cisteína , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Mutação , Peptídeos/química , Piperidinas/química , Piperidinas/metabolismo , Relação Estrutura-Atividade
4.
J Biomol Screen ; 13(8): 755-65, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18753690

RESUMO

A major focus in the current discovery of drugs targeting nuclear receptors (NRs) is identifying drugs with reduced side effects by improving selectivity, not only from other receptors but also by selective modulation of the NR of interest. Cellular assays not only provide valuable information on functional activity, potency, and selectivity but also are ideally suited for differentiating partial agonists and antagonists. The ability to partially activate a receptor is believed to be closely tied to the ability to selectively modulate the NR, resulting in expression of a subset of the normally regulated genes. To this end, the authors have built a complete panel of cell-based steroid hormone receptor assays for the androgen receptor, estrogen receptor alpha, estrogen receptor beta, glucocorticoid receptor, mineralocorticoid receptor, and progesterone receptor by stably engineering a Gal4 DNA-binding domain/nuclear receptor ligand-binding domain fusion protein into an upstream activation sequence beta-lactamase reporter cell line. Each assay was validated with known agonists and antagonists for correct pharmacology and high-throughput compatibility. To demonstrate the utility of these assays, the authors profiled 35 pharmacologically relevant compounds in a dose-response format against the panel in both agonist and antagonist modes. The results demonstrated that selective estrogen receptor modulators can be identified and differentiated, as well as mixed and partial agonists and antagonists easily detected in the appropriate assays. Importantly, a comparison of the chimeric assays with full-length reporter gene assay data from the literature shows a good degree of correlation in terms of selectivity and pharmacology of important ligands. Taken together, these steroid hormone receptor assays provide good selectivity, sensitivity, and appropriate pharmacology for high-throughput screening and selectivity profiling of modulators of steroid hormone receptors.


Assuntos
Bioensaio/métodos , Hormônios/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/química , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Genes Reporter , Humanos , Ligantes , Receptores Androgênicos/química , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/química , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Receptores de Progesterona/química , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes
5.
Assay Drug Dev Technol ; 6(3): 351-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18593376

RESUMO

In this article we describe the validation of a beta-lactamase reporter assay for high-throughput interrogation of the mitogen-activated protein kinase (MAPK) signaling pathway initiated by multiple receptors. Activation of cell surface receptors, such as epidermal growth factor receptor (EGFR) and cMET, upon ligand binding, leads to the activation of the downstream MAPK signaling pathway and transcription factor, activator protein 1 (AP1), which then induce the expression of genes that are important for cell growth and proliferation. Our MAPK pathway reporter cell line, AP1-bla ME-180, expresses multiple endogenous cell surface receptors. We demonstrate that this reporter assay can be used to monitor the MAPK pathway initiated by cell surface receptors, including EGFR, cMET, and tumor necrosis factor receptor. Our results from Stealth (Invitrogen Corp., Carlsbad, CA) RNA interference and small molecule inhibitor studies suggest that activation of individual kinases of the MAPK pathway is regulated in a ligand-specific manner. The AP1-bla ME-180 reporter cell line can therefore be used to screen for compounds with desired selectivity profiles.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Receptores de Superfície Celular/fisiologia , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/farmacologia , Feminino , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Indóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Proteínas Proto-Oncogênicas/farmacologia , Quinazolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA