Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 293(38): 14707-14722, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30093403

RESUMO

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein occasionally involved in cell death that primarily regulates mitochondrial energy metabolism under normal cellular conditions. AIF catalyzes the oxidation of NADH in vitro, yet the significance of this redox activity in cells remains unclear. Here, we show that through its enzymatic activity AIF is a critical factor for oxidative stress-induced activation of the mitogen-activated protein kinases JNK1 (c-Jun N-terminal kinase), p38, and ERK (extracellular signal-regulated kinase). AIF-dependent JNK1 signaling culminates in the cadherin switch, and genetic reversal of this switch leads to apoptosis when AIF is suppressed. Notably, this widespread ability of AIF to promote JNK signaling can be uncoupled from its more limited role in respiratory chain stabilization. Thus, AIF is a transmitter of extra-mitochondrial signaling cues with important implications for human development and disease.


Assuntos
Antígenos CD/metabolismo , Fator de Indução de Apoptose/fisiologia , Caderinas/metabolismo , Transporte de Elétrons , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Apoptose , Catálise , Linhagem Celular , Metabolismo Energético , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Oxidantes/metabolismo , Oxirredução , Estresse Oxidativo , Fosforilação , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Oncotarget ; 9(12): 10457-10469, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535819

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers due to a late diagnosis and poor response to available treatments. There is a need to identify complementary treatment strategies that will enhance the efficacy and reduce the toxicity of currently used therapeutic approaches. We investigated the ability of a known ROS inducer, piperlongumine (PL), to complement the modest anti-cancer effects of the approved chemotherapeutic agent gemcitabine (GEM) in PDAC cells in vitro and in vivo. PDAC cells treated with PL + GEM showed reduced cell viability, clonogenic survival, and growth on Matrigel compared to control and individually-treated cells. Nude mice bearing orthotopically implanted MIA PaCa-2 cells treated with both PL (5 mg/kg) and GEM (25 mg/kg) had significantly lower tumor weight and volume compared to control and single agent-treated mice. RNA sequencing (RNA-Seq) revealed that PL + GEM resulted in significant changes in p53-responsive genes that play a role in cell death, cell cycle, oxidative stress, and DNA repair pathways. Cell culture assays confirmed PL + GEM results in elevated ROS levels, arrests the cell cycle in the G0/G1 phase, and induces PDAC cell death. We propose a mechanism for the complementary anti-tumor effects of PL and GEM in PDAC cells through elevation of ROS and transcription of cell cycle arrest and cell death-associated genes. Collectively, our results suggest that PL has potential to be combined with GEM to more effectively treat PDAC.

3.
Colloids Surf B Biointerfaces ; 163: 225-235, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29304437

RESUMO

Often cancer relapses after an initial response to chemotherapy because of the tumor's heterogeneity and the presence of progenitor stem cells, which can renew. To overcome drug resistance, metastasis, and relapse in cancer, a promising approach is the inhibition of cancer stemness. In this study, the expression of the neuropilin-1 receptor in both pancreatic and prostate cancer stem cells was identified and targeted with a stimuli-responsive, polymeric nanocarrier to deliver a stemness inhibitor (napabucasin) to cancer stem cells. Reduction-sensitive amphiphilic block copolymers PEG1900-S-S-PLA6000 and the N3-PEG1900-PLA6000 were synthesized. The tumor penetrating iRGD peptide-hexynoic acid conjugate was linked to the N3-PEG1900-PLA6000 polymer via a Cu2+ catalyzed "Click" reaction. Subsequently, this peptide-polymer conjugate was incorporated into polymersomes for tumor targeting and tissue penetration. We prepared polymersomes containing 85% PEG1900-S-S-PLA6000, 10% iRGD-polymer conjugate, and 5% DPPE-lissamine rhodamine dye. The iRGD targeted polymersomes encapsulating the cancer stemness inhibitor napabucasin were internalized in both prostate and pancreatic cancer stem cells. The napabucasin encapsulated polymersomes significantly (p < .05) reduced the viability of both prostate and pancreatic cancer stem cells and decreased the stemness protein expression notch-1 and nanog compared to the control and vesicles without any drug. The napabucasin encapsulated polymersome formulations have the potential to lead to a new direction in prostate and pancreatic cancer therapy by penetrating deeply into the tumors, releasing the encapsulated stemness inhibitor, and killing cancer stem cells.


Assuntos
Benzofuranos/farmacologia , Endocitose/efeitos dos fármacos , Naftoquinonas/farmacologia , Células-Tronco Neoplásicas/patologia , Oligopeptídeos/química , Polímeros/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reação de Cicloadição , Citometria de Fluxo , Humanos , Hidrodinâmica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neuropilina-1/metabolismo , Polímeros/síntese química
4.
BMC Cancer ; 16: 286, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27108222

RESUMO

BACKGROUND: Apoptosis-inducing factor (AIF), named for its involvement in cell death pathways, is a mitochondrial protein that regulates metabolic homeostasis. In addition to supporting the survival of healthy cells, AIF also plays a contributory role to the development of cancer through its enzymatic activity, and we have previously shown that AIF preferentially supports advanced-stage prostate cancer cells. Here we further evaluated the role of AIF in tumorigenesis by exploring its function in pancreatic cancer, a disease setting that most often presents at an advanced stage by the time of diagnosis. METHODS: A bioinformatics approach was first employed to investigate AIF mRNA transcript levels in pancreatic tumor specimens vs. normal tissues. AIF-deficient pancreatic cancer cell lines were then established via lentiviral infection. Immunoblot analysis was used to determine relative protein quantities within cells. Cell viability was measured by flow cytometry; in vitro and Matrigel™ growth/survival using Coulter™ counting and phase contrast microscopy; and glucose consumption in the absence and presence of Matrigel™ using spectrophotometric methods. RESULTS: Archival gene expression data revealed a modest elevation of AIF transcript levels in subsets of pancreatic tumor specimens, suggesting a possible role in disease progression. AIF expression was then suppressed in a panel of five pancreatic cancer cell lines that display diverse metabolic phenotypes. AIF ablation selectively crippled the growth of cells in vitro in a manner that directly correlated with the loss of mitochondrial respiratory chain subunits and altered glucose metabolism, and these effects were exacerbated in the presence of Matrigel™ substrate. This suggests a critical metabolic role for AIF to pancreatic tumorigenesis, while the spectrum of sensitivities to AIF ablation depends on basal cellular metabolic phenotypes. CONCLUSIONS: Altogether these data indicate that AIF supports the growth and survival of metabolically defined pancreatic cancer cells and that this metabolic function may derive from a novel mechanism so far undocumented in other cancer types.


Assuntos
Fator de Indução de Apoptose/genética , Carcinogênese/genética , Neoplasias Pancreáticas/genética , Apoptose/genética , Fator de Indução de Apoptose/antagonistas & inibidores , Fator de Indução de Apoptose/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , RNA Mensageiro/biossíntese , Transdução de Sinais/genética
5.
6.
Virology ; 456-457: 205-19, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24889240

RESUMO

Adenovirus inundates the productively infected cell with linear, double-stranded DNA and an abundance of single-stranded DNA. The cellular response to this stimulus is antagonized by the adenoviral E1B and E4 early genes. A mutant group C adenovirus that fails to express the E1B-55K and E4orf3 genes is unable to suppress the DNA-damage response. Cells infected with this double-mutant virus display significant morphological heterogeneity at late times of infection and frequently contain fragmented nuclei. Nuclear fragmentation was due to the translocation of apoptosis inducing factor (AIF) from the mitochondria into the nucleus. The release of AIF was dependent on active poly(ADP-ribose) polymerase-1 (PARP-1), which appeared to be activated by viral DNA replication. Nuclear fragmentation did not occur in AIF-deficient cells or in cells treated with a PARP-1 inhibitor. The E1B-55K or E4orf3 proteins independently prevented nuclear fragmentation subsequent to PARP-1 activation, possibly by altering the intracellular distribution of PAR-modified proteins.


Assuntos
Proteínas E1B de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Fator de Indução de Apoptose/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Proteínas Oncogênicas/metabolismo , Replicação Viral , Animais , Linhagem Celular , DNA Viral/metabolismo , Humanos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo
7.
J Biol Chem ; 287(52): 43862-75, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23118229

RESUMO

Apoptosis-inducing factor (AIF) promotes cell death yet also controls mitochondrial homeostasis and energy metabolism. It is unclear how these activities are coordinated, and the impact of AIF upon human disease, in particular cancer, is not well documented. In this study we have explored the contribution of AIF to the progression of prostate cancer. Analysis of archival gene expression data demonstrated that AIF transcript levels are elevated in human prostate cancer, and we found that AIF protein is increased in prostate tumors. Suppression of AIF expression in the prostate cancer cell lines LNCaP, DU145, and PC3 demonstrated that AIF does not contribute to cell toxicity via a variety of chemical death triggers, and growth under nutrient-rich conditions is largely unaffected by AIF ablation. However, under growth stress conditions, AIF depletion from DU145 and PC3 cell lines led to significant reductions in cell survival and growth that were not observed in LNCaP cells. Moreover AIF-deficient PC3 cells exhibited substantial reduction of tumorigenic growth in vivo. This reduced survival correlated with decreased expression of mitochondrial complex I protein subunits and concomitant changes in glucose metabolism. Finally, restoration of AIF-deficient PC3 cells with AIF variants demonstrated that the enzymatic activity of AIF is required for aggressive growth. Overall these studies show that AIF is an important factor for advanced prostate cancer cells and that through control of energy metabolism and redox balance, the enzymatic activity of AIF is critical for this support.


Assuntos
Fator de Indução de Apoptose/biossíntese , Metabolismo Energético , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/enzimologia , Fator de Indução de Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Glucose/genética , Glucose/metabolismo , Humanos , Masculino , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Oxirredução , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transcrição Gênica/genética
8.
J Biol Chem ; 284(21): 14029-39, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19286655

RESUMO

Mismatch repair (MMR) proteins participate in cytotoxicity induced by certain DNA damage-inducing agents, including cisplatin (cis-diamminedichloroplatinum(II), CDDP), a cancer chemotherapeutic drug utilized clinically to treat a variety of malignancies. MMR proteins have been demonstrated to bind to CDDP-DNA adducts and initiate MMR protein-dependent cell death in cells treated with CDDP; however, the molecular events underlying this death remain unclear. As MMR proteins have been suggested to be important in clinical responses to CDDP, a clear understanding of MMR protein-dependent, CDDP-induced cell death is critical. In this report, we demonstrate MMR protein-dependent relocalization of cytochrome c to the cytoplasm and cleavage of caspase-9, caspase-3, and poly(ADP-ribose) polymerase upon treatment of cells with CDDP. Chemical inhibition of caspases specifically attenuates CDDP/MMR protein-dependent cytotoxicity, suggesting that a caspase-dependent signaling mechanism is required for the execution of this cell death. p53 protein levels were up-regulated independently of MMR protein status, suggesting that p53 is not a mediator of MMR-dependent, CDDP-induced death. This work is the first indication of a required signaling mechanism in CDDP-induced, MMR protein-dependent cytotoxicity, which can be uncoupled from other CDDP response pathways, and defines a critical contribution of MMR proteins to the control of cell death.


Assuntos
Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/deficiência , Proteína 2 Homóloga a MutS/deficiência , Transdução de Sinais/efeitos dos fármacos , Inibidores de Caspase , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Concentração Inibidora 50 , Proteína 2 Homóloga a MutS/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Proteases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
Breast Cancer Res Treat ; 107(2): 235-42, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17453341

RESUMO

Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase polycomb group (PcG) protein, which has been implicated in the process of cellular differentiation and cancer progression for both breast and prostate cancer. Although transcriptional repression by histone modification appears to contribute to the process of cellular differentiation, it is unclear what mediates the specificity of PcG proteins. Since EZH2 requires a binding partner for its histone methyltransferase activity, we surmised that evaluating interacting proteins might shed light on how the activity of EZH2 is regulated. Here we describe the identification of a novel binding partner of EZH2, the repressor of estrogen receptor activity (REA). REA functions as a transcriptional corepressor of the estrogen receptor and can potentiate the effect of anti-estrogens. REA expression levels have also previously been associated with the degree of differentiation of human breast cancers. We show here that EZH2 can also mediate the repression of estrogen-dependent transcription, and that moreover, the ability of both REA and EZH2 to repress estrogen-dependent transcription are mutually dependent. These data suggest that EZH2 may be recruited to specific target genes by its interaction with the estrogen receptor corepressor REA. The identification of a novel interaction between EZH2 and REA, two transcription factors that have been linked to breast cancer carcinogenesis, may lead to further insights into the process of deregulated gene expression in breast cancer.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Receptores de Estrogênio/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Diferenciação Celular , Linhagem Celular Tumoral , Progressão da Doença , Elementos Facilitadores Genéticos , Proteína Potenciadora do Homólogo 2 de Zeste , Estradiol/metabolismo , Estrogênios/metabolismo , Humanos , Microscopia de Fluorescência/métodos , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Proibitinas , Interferência de RNA , Proteínas Repressoras/metabolismo , Transdução de Sinais , Transcrição Gênica
10.
J Biol Chem ; 280(23): 22222-32, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15799966

RESUMO

MURR1 is a multifunctional protein that inhibits nuclear factor kappaB (NF-kappaB), a transcription factor with pleiotropic functions affecting innate and adaptive immunity, apoptosis, cell cycle regulation, and oncogenesis. Here we report the discovery of a new family of proteins with homology to MURR1. These proteins form multimeric complexes and were identified in a biochemical screen for MURR1-associated factors. The family is defined by the presence of a conserved and unique motif termed the COMM (copper metabolism gene MURR1) domain, which functions as an interface for protein-protein interactions. Like MURR1, several of these factors also associate with and inhibit NF-kappaB. The proteins designated as COMMD or COMM domain containing 1-10 are extensively conserved in multicellular eukaryotic organisms and define a novel family of structural and functional homologs of MURR1. The prototype of this family, MURR1/COMMD1, suppresses NF-kappaB not by affecting nuclear translocation or binding of NF-kappaB to cognate motifs; rather, it functions in the nucleus by affecting the association of NF-kappaB with chromatin.


Assuntos
Proteínas/fisiologia , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Apoptose , Proteínas de Transporte , Ciclo Celular , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Glutationa Transferase/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Luciferases/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Dados de Sequência Molecular , NF-kappa B/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo , Transfecção
11.
J Biol Chem ; 280(12): 11059-66, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15653686

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor alpha family of cytokines that preferentially induces apoptosis in transformed cells, making it a promising cancer therapy. However, many neoplasms are resistant to TRAIL-induced apoptosis by mechanisms that are poorly understood. We demonstrate that the expression of the small heat shock protein alpha B-crystallin (but not other heat shock proteins or apoptosis-regulating proteins) correlates with TRAIL resistance in a panel of human cancer cell lines. Stable expression of wild-type alpha B-crystallin, but not a pseudophosphorylation mutant impaired in its assembly and chaperone function, protects cancer cells from TRAIL-induced caspase-3 activation and apoptosis in vitro. Furthermore, selective inhibition of alpha B-crystallin expression by RNA interference sensitizes cancer cells to TRAIL. In addition, wild-type alpha B-crystallin promotes xenograft tumor growth and inhibits TRAIL-induced apoptosis in vivo in nude mice, whereas a pseudophosphorylation alpha B-crystallin mutant impaired in its anti-apoptotic function inhibits xenograft tumor growth. Collectively, these findings indicate that alpha B-crystallin is a novel regulator of TRAIL-induced apoptosis and tumor growth. Moreover, these results demonstrate that targeted inhibition of alpha B-crystallin promotes TRAIL-induced apoptosis, thereby suggesting a novel strategy to overcome TRAIL resistance in cancer.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores de Caspase , Glicoproteínas de Membrana/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Cadeia B de alfa-Cristalina/fisiologia , Proteínas Reguladoras de Apoptose , Neoplasias da Mama/patologia , Caspase 3 , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Interferência de RNA , Ligante Indutor de Apoptose Relacionado a TNF
12.
J Biol Chem ; 279(49): 51091-9, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15371430

RESUMO

Inhibitor of apoptosis (IAP) proteins are involved in the suppression of apoptosis, signal transduction, cell cycle control and gene regulation. Here we describe the cloning and characterization of viral IAP-associated factor (VIAF), a highly conserved, ubiquitously expressed phosphoprotein with limited homology to members of the phosducin family that associates with baculovirus Op-IAP. VIAF bound Op-IAP both in vitro and in intact cells, with each protein displaying a predominantly cytoplasmic localization. VIAF lacks a consensus IAP binding motif, and overexpression of VIAF failed to prevent Op-IAP from protecting human cells from a variety of apoptotic stimuli, suggesting that VIAF does not function as an IAP antagonist. VIAF was unable to directly inhibit caspase activation in vitro and a reduction of VIAF protein levels by RNA interference led to a decrease in Bax-mediated caspase activation, suggesting that VIAF functions to co-regulate the apoptotic cascade. Finally, VIAF is a substrate for ubiquitination mediated by Op-IAP. Thus, VIAF is a novel IAP-interacting factor that functions in caspase activation during apoptosis.


Assuntos
Proteínas de Transporte/fisiologia , Caspases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Apoptose , Proteínas Reguladoras de Apoptose , Baculoviridae/genética , Sequência de Bases , Northern Blotting , Morte Celular , Linhagem Celular , Clonagem Molecular , Citoplasma/metabolismo , DNA Complementar/metabolismo , Ativação Enzimática , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Inibidoras de Apoptose , Microscopia Confocal , Microscopia de Fluorescência , Dados de Sequência Molecular , Níquel/química , Fases de Leitura Aberta , Fosfoproteínas/química , Filogenia , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Frações Subcelulares , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo , Proteínas Virais/genética , Proteína X Associada a bcl-2
13.
Mol Cell Biol ; 24(16): 7003-14, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15282301

RESUMO

X-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of cell death that functions by suppressing caspases 3, 7, and 9. Here we describe the establishment of Jurkat-derived cell lines stably overexpressing either full-length XIAP or a truncation mutant of XIAP that can only inhibit caspase 9. Characterization of these cell lines revealed that following CD95 activation full-length XIAP supported both short- and long-term survival as well as proliferative capacity, in contrast to the truncation mutant but similar to Bcl-x(L). Full-length XIAP was also able to inhibit CD95-mediated caspase 3 processing and activation, the mitochondrial release of cytochrome c and Smac/DIABLO, and the loss of mitochondrial membrane potential, whereas the XIAP truncation mutant failed to prevent any of these cell death events. Finally, suppression of XIAP levels by RNA interference sensitized Bcl-x(L)-overexpressing cells to death receptor-induced apoptosis. These data demonstrate for the first time that full-length XIAP inhibits caspase activation required for mitochondrial amplification of death receptor signals and that, by acting upstream of mitochondrial activation, XIAP supports the long-term proliferative capacity of cells following CD95 stimulation.


Assuntos
Apoptose/fisiologia , Inibidores Enzimáticos/metabolismo , Proteínas/metabolismo , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/metabolismo , Caspase 3 , Caspase 8 , Caspase 9 , Inibidores de Caspase , Caspases/metabolismo , Sobrevivência Celular , Citocromos c/metabolismo , Ativação Enzimática , Etoposídeo/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células Jurkat , Potenciais da Membrana/fisiologia , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Proteínas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Proteína bcl-X , Receptor fas/metabolismo
14.
EMBO J ; 23(1): 244-54, 2004 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-14685266

RESUMO

XIAP is a potent suppressor of apoptosis that directly inhibits specific members of the caspase family of cysteine proteases. Here we demonstrate a novel role for XIAP in the control of intracellular copper levels. XIAP was found to interact with MURR1, a factor recently implicated in copper homeostasis. XIAP binds to MURR1 in a manner that is distinct from that utilized by XIAP to bind caspases, and consistent with this, MURR1 did not affect the antiapoptotic properties of XIAP. However, cells and tissues derived from Xiap-deficient mice were found to contain reduced copper levels, while suppression of MURR1 resulted in increased intracellular copper in cultured cells. Consistent with these opposing effects, XIAP was observed to negatively regulate MURR1 protein levels by the formation of K48 polyubiquitin chains on MURR1 that promote its degradation. These findings represent the first described phenotypic alteration in Xiap-deficient mice and demonstrate that XIAP can function through MURR1 to regulate copper homeostasis.


Assuntos
Cobre/metabolismo , Homeostase , Rim/citologia , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Anticorpos Monoclonais/metabolismo , Western Blotting , Proteínas de Transporte , Caspases/análise , Linhagem Celular , Sobrevivência Celular , Corantes Fluorescentes , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Proteínas Luminescentes , Microscopia Confocal , Modelos Biológicos , Mutação Puntual , Testes de Precipitina , Biossíntese de Proteínas , Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X
15.
J Biol Chem ; 279(3): 2077-84, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14581472

RESUMO

Survivin is a member of the Inhibitor of Apoptosis gene family that has been implicated in cell division and suppression of apoptosis. Here, we show that preferential ablation of the nuclear pool of survivin by RNA interference produces a mitotic arrest followed by re-entry into the cell cycle and polyploidy. Survivin ablation causes multiple centrosomal defects, aberrant multipolar spindle formation, and chromatin missegregation, and these phenotypes are exacerbated by loss of the cell cycle regulator, p21(Waf1/Cip1) in p21(-/-) cells. The mitotic checkpoint activated by loss of survivin is mediated by induction of p53 and associated with increased expression of its downstream target, p21(Waf1/Cip1). Accordingly, p53(-/-) cells exhibit reduced mitotic arrest and enhanced polyploidy upon survivin ablation as compared with their p53(+/+) counterparts. Partial reduction of the cytosolic pool of survivin by RNA interference sensitizes cells to ultraviolet B-mediated apoptosis and results in enhanced caspase-9 proteolytic cleavage, whereas complete ablation of cytosolic survivin causes loss of mitochondrial membrane potential and spontaneous apoptosis. These data demonstrate that survivin has separable checkpoint functions at multiple phases of mitosis and in the control of mitochondrial-dependent apoptosis.


Assuntos
Apoptose , Proteínas Associadas aos Microtúbulos/fisiologia , Mitocôndrias/fisiologia , Mitose , Proteína Supressora de Tumor p53/fisiologia , Células HeLa , Humanos , Proteínas Inibidoras de Apoptose , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias , Poliploidia , Interferência de RNA , Survivina
16.
Exp Cell Res ; 282(2): 121-31, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12531698

RESUMO

To investigate the intrinsic activities of the epidermal growth factor receptor and the role of its kinase domain in these functions within a cellular environment lacking endogenous ErbB protein expression, wild-type EGF receptor (WT-EGFR) and two kinase-impaired mutants, D813A and K721R, were expressed in 32D murine hematopoietic cells, a line which is normally dependent on interleukin 3 (IL3) for growth and survival. Addition of EGF in the absence of IL3 stimulates receptor autophosphorylation and, in the presence of serum, mitosis in cells expressing WT-EGFR, but not in cells expressing D813A or K721R. Unexpectedly, cells expressing WT-EGFR or K721R exhibited IL3-independent survival in the presence of fetal bovine serum; parental 32D cells and cells expressing D813A did not survive, apparently undergoing apoptosis in the absence of IL3, whether or not serum was present. Addition of EGF did not prevent the apoptosis of WT-EGFR or K721R cells in serum-free medium. Activation of Akt was not necessary to mediate the prosurvival activity of EGF receptor expression. These results suggest that the EGF receptor can mediate the prevention of apoptosis independently of both receptor-ligand binding and receptor kinase activity, and this activity is disrupted by the D813A mutation.


Assuntos
Receptores ErbB/fisiologia , Células-Tronco Hematopoéticas/citologia , Proteínas Serina-Treonina Quinases , Animais , Apoptose , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/química , Receptores ErbB/genética , Células-Tronco Hematopoéticas/química , Interleucina-3/farmacologia , Ligantes , Camundongos , Mitose/efeitos dos fármacos , Mutação , Fosforilação , Fosfotransferases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt
17.
J Recept Signal Transduct Res ; 22(1-4): 357-71, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12503627

RESUMO

We have developed a system for extending stopped-flow analysis to the kinetics of ligand capture and release by cell surface receptors in living cells. While most mammalian cell lines cannot survive the shear forces associated with turbulent, stopped-flow mixing, we determined that 32D cells, murine hematopoietic precursor cells, can survive rapid mixing, even at the high flow rates necessary to achieve dwell times as short as 10 msec. In addition, 32D cells do not express any member of the ErbB family of receptors, providing a null background for studying this receptor family. We have established a series of stable, monoclonal 32D-derived cell lines that express the epidermal growth factor (EGF) receptor, ErbB2, or a combination of both at different ratios. Using these cell lines and a homogeneous fluorescent derivative of H22Y-mEGF modified with fluorescein at the amino terminus (F-EGF), we have measured association and dissociation of F-EGF with its receptor. Association was measured by following the time-dependent changes in fluorescence anisotropy after rapidly mixing cells at various cell densities with F-EGF at 1-15nM. Dissociation was measured both by chase experiments in which unlabeled EGF was mixed with cells pre-equilibrated with F-EGF or by dilution of cells equilibrated with F-EGF. Comparison of these dissociation experiments demonstrated that little or no ligand-induced dissociation occurs in the chase dissociation experiments. For each cell line, data from a series of association experiments and dilution dissociation experiments were subjected to global analysis using a two independent receptor-class model. Our analysis is consistent with the presence of two distinct receptor populations, even in cells bearing only the EGF receptor. Increasing the relative expression of ErbB2 leads to an increase in the fraction of high affinity class receptors observed, without altering the total number of EGF binding sites.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Polarização de Fluorescência/métodos , Espectrometria de Fluorescência/métodos , Anisotropia , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Células-Tronco Hematopoéticas/metabolismo , Humanos , Ligantes , Ligação Proteica , Receptor ErbB-2/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes , Estresse Mecânico , Transfecção
18.
Biochemistry ; 41(1): 8-14, 2002 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-11771997

RESUMO

We have extended the use of stopped-flow mixing and fluorescence anisotropy detection to investigate in real-time the effects of ErbB2 coexpression on the kinetic interactions of epidermal growth factor (EGF) with the EGF receptor. Using stable 32D-derived cell lines expressing both the EGF receptor and ErbB2, and fluorescein-labeled H22Y murine EGF (F-EGF), a series of association and dissociation experiments were performed in which the kinetic interaction of F-EGF with cells was monitored by observing time-dependent changes in fluorescence anisotropy following rapid mixing. Data were collected at various concentrations of F-EGF and multiple cell densities, using cells that express similar levels of the EGF receptor but different levels of ErbB2, and then analyzed by fitting to a two independent receptor-class model using global analysis techniques. The recovered kinetic parameters indicated that the coexpression of ErbB2 had relatively modest effects on recovered rate constants and calculated K(d) values, but a significant effect on the fraction of receptors associated with the high-affinity receptor class. This effect on the fraction of high-affinity receptors depended on the relative expression of ErbB2, as higher ErbB2 expression levels correlated with a larger fraction of high-affinity receptors. Further, the increase in the fraction of high-affinity receptors due to the presence of ErbB2 occurred without any change in the total number of EGF binding sites per cell. Thus, we have identified modulation of the relative populations of high- and low-affinity classes of EGF receptors as a consequence of coexpression of ErbB2 with the EGF receptor.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Genes erbB-2/fisiologia , Animais , Anisotropia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Fator de Crescimento Epidérmico/química , Fluorescência , Cinética , Ligantes , Camundongos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Transfecção , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA