Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958664

RESUMO

Retinal inflammation is a central feature of ocular neovascular diseases such as diabetic retinopathy and retinopathy of prematurity, but the contribution of neutrophils to this process is not fully understood. We studied oxygen-induced retinopathy (OIR) which develops in two phases, featuring hyperoxia-induced retinal vaso-obliteration in phase I, followed by retinal neovascularization in phase II. As neutrophils are acute responders to tissue damage, we evaluated whether neutrophil depletion with an anti-Ly6G mAb administered in phase I OIR influenced retinal inflammation and vascular injury. Neutrophils were measured in blood and spleen via flow cytometry, and myeloperoxidase, an indicator of neutrophil activity, was evaluated in the retina using Western blotting. Retinal vasculopathy was assessed by quantitating vaso-obliteration, neovascularization, vascular leakage, and VEGF levels. The inflammatory factors, TNF, MCP-1, and ICAM-1 were measured in retina. In the OIR controls, neutrophils were increased in the blood and spleen in phase I but not phase II OIR. In OIR, the anti-Ly6G mAb reduced neutrophils in the blood and spleen, and myeloperoxidase, inflammation, and vasculopathy in the retina. Our findings revealed that the early rise in neutrophils in OIR primes the retina for an inflammatory and angiogenic response that promotes severe damage to the retinal vasculature.


Assuntos
Neovascularização Retiniana , Retinopatia da Prematuridade , Animais , Camundongos , Oxigênio/efeitos adversos , Neutrófilos , Peroxidase , Retinopatia da Prematuridade/induzido quimicamente , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais Recém-Nascidos , Retina , Neovascularização Patológica , Inflamação , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Arterioscler Thromb Vasc Biol ; 43(4): 522-536, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36794587

RESUMO

BACKGROUND: CD4+ (cluster of differentation) and CD8+ T cells are increased in the ocular fluids of patients with neovascular retinopathy, yet their role in the disease process is unknown. METHODS: We describe how CD8+ T cells migrate into the retina and contribute to pathological angiogenesis by releasing cytokines and cytotoxic factors. RESULTS: In oxygen-induced retinopathy, flow cytometry revealed the numbers of CD4+ and CD8+ T cells were increased in blood, lymphoid organs, and retina throughout the development of neovascular retinopathy. Interestingly, the depletion of CD8+ T cells but not CD4+ T cells reduced retinal neovascularization and vascular leakage. Using reporter mice expressing gfp (green fluorescence protein) in CD8+ T cells, these cells were localized near neovascular tufts in the retina, confirming that CD8+ T cells contribute to the disease. Furthermore, the adoptive transfer of CD8+ T cells deficient in TNF (tumor necrosis factor), IFNγ (interferon gamma), Prf (perforin), or GzmA/B (granzymes A/B) into immunocompetent Rag1-/- mice revealed that CD8+ T cells mediate retinal vascular disease via these factors, with TNF influencing all aspects of vascular pathology. The pathway by which CD8+ T cells migrate into the retina was identified as CXCR3 (C-X-C motif chemokine receptor 3) with the CXCR3 blockade reducing the number of CD8+ T cells within the retina and retinal vascular disease. CONCLUSIONS: We discovered that CXCR3 is central to the migration of CD8+ T cells into the retina as the CXCR3 blockade reduced the number of CD8+ T cells within the retina and vasculopathy. This research identified an unappreciated role for CD8+ T cells in retinal inflammation and vascular disease. Reducing CD8+ T cells via their inflammatory and recruitment pathways is a potential treatment for neovascular retinopathies.


Assuntos
Doenças Retinianas , Doenças Vasculares , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Neovascularização Patológica , Retina/metabolismo , Doenças Retinianas/metabolismo , Interferon gama/metabolismo , Doenças Vasculares/patologia , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768656

RESUMO

Vision loss in diabetic retinopathy features damage to the blood-retinal barrier and neovascularization, with hypertension and the renin-angiotensin system (RAS) having causal roles. We evaluated if finerenone, a non-steroidal mineralocorticoid receptor (MR) antagonist, reduced vascular pathology and inflammation in diabetic and neovascular retinopathy. Diabetic and hypertensive transgenic (mRen-2)27 rats overexpressing the RAS received the MR antagonist finerenone (10 mg/kg/day, oral gavage) or the angiotensin-converting enzyme inhibitor perindopril (10 mg/kg/day, drinking water) for 12 weeks. As retinal neovascularization does not develop in diabetic rodents, finerenone (5 mg/kg/day, i.p.) was evaluated in murine oxygen-induced retinopathy (OIR). Retinal vasculopathy was assessed by measuring gliosis, vascular leakage, neovascularization, and VEGF. Inflammation was investigated by quantitating retinal microglia/macrophages, pro-inflammatory mediators, and anti-inflammatory regulatory T-cells (Tregs). In diabetes, both treatments reduced systolic blood pressure, gliosis, vascular leakage, and microglial/macrophage density, but only finerenone lowered VEGF, ICAM-1, and IL-1ß. In OIR, finerenone reduced neovascularization, vascular leakage, and microglial density, and increased Tregs in the blood, spleen, and retina. Our findings, in the context of the FIDELIO-DKD and FIGARO-DKD trials reporting the benefits of finerenone on renal and cardiovascular outcomes in diabetic kidney disease, indicate the potential of finerenone as an effective oral treatment for diabetic retinopathy.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Retinopatia Diabética , Lesões do Sistema Vascular , Ratos , Animais , Camundongos , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/complicações , Roedores , Gliose/complicações , Fator A de Crescimento do Endotélio Vascular , Linfócitos T Reguladores , Naftiridinas/farmacologia , Nefropatias Diabéticas/etiologia , Neovascularização Patológica/complicações , Inflamação/complicações , Diabetes Mellitus Tipo 2/complicações
4.
Am J Pathol ; 190(9): 1801-1812, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526165

RESUMO

Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are two debilitating disorders that develop in preterm infants exposed to supplemental oxygen to prevent respiratory failure. Both can lead to lifelong disabilities, such as chronic obstructive pulmonary disease and vision loss. Due to the lack of a standard experimental model of coincident disease, the underlying associations between BPD and ROP are not well characterized. To address this gap, we used the robust mouse model of oxygen-induced retinopathy exposing C57BL/6 mice to 75% oxygen from postnatal day 7 to 12. The cardinal features of ROP were replicated by this strategy, and the lungs of the same mice were simultaneously examined for evidence of BPD-like lung injury, investigating both the short- and long-term effects of early-life supplemental oxygen exposure. At postnatal days 12 and 18, mild lung disease was evident by histopathologic analysis together with the expected vasculopathy in the inner retina. At later time points, the lung lesion had progressed to severe airspace enlargement and alveolar simplification, with concurrent thinning in the outer layer of the retina. In addition, critical angiogenic oxidative stress and inflammatory factors reported to be dysregulated in ROP were similarly impaired in the lungs. These data shed new light on the interconnectedness of these two neonatal disorders, holding potential for the discovery of novel targets to treat BPD and ROP.


Assuntos
Displasia Broncopulmonar/etiologia , Modelos Animais de Doenças , Oxigenoterapia/efeitos adversos , Oxigênio/toxicidade , Retinopatia da Prematuridade/etiologia , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Inflamação/etiologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Retinopatia da Prematuridade/patologia
5.
Invest Ophthalmol Vis Sci ; 59(2): 815-825, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29411009

RESUMO

Purpose: Oxidative stress is a causal factor in the development of diabetic retinopathy; however, clinically relevant strategies to treat the disease by augmenting antioxidant defense mechanisms have not been fully explored. We hypothesized that boosting nuclear factor erythroid-2-related factor 2 (Nrf2) antioxidant capacity with the novel Nrf2 activator dh404, would protect the retina in diabetes including vision-threatening breakdown of the blood-retinal barrier (BRB) and associated damage to macroglial Müller cells. Methods: Sprague-Dawley rats were randomized to become diabetic or nondiabetic and administered dh404 by gavage for 10 weeks. Complementary in vitro studies were performed in cultured Müller cells exposed to hyperglycemia. Results: In diabetes, dh404 prevented vascular leakage into the retina and vitreous cavity as well as upregulation of the vascular permeability and angiogenic factors, VEGF, and angiopoietin-2, and inflammatory mediators, including TNF-α and IL-6. Müller cells, which maintain BRB integrity and become gliotic in diabetes with increased immunolabeling for glial fibrillary acidic protein, were protected by dh404. In diabetes, dh404 bolstered the antioxidant capacity of the retina with an increase in hemeoxygenase-1, nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NADH/NADPH) quinine oxidoreductase-1, and Nrf2. Further, dh404 attenuated the diabetes-induced increase in oxidative stress as measured by dihydroethidium and 8-oxo-2'-deoxyguanosine (8-OHdG) immunolabeling as well as NADPH oxidase isoform expression. Studies in Müller cells supported these findings with dh404 attenuating the hyperglycemia-induced increase in vascular permeability, angiogenic and inflammatory mediators, and oxidative stress. Conclusions: Our data demonstrate the ability of dh404 to protect the retina against diabetes-induced damage and potentially prevent vision loss.


Assuntos
Barreira Hematorretiniana/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Diabetes Mellitus Experimental/prevenção & controle , Retinopatia Diabética/prevenção & controle , Células Ependimogliais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Angiopoietina-2/metabolismo , Animais , Barreira Hematorretiniana/fisiologia , Western Blotting , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Ensaio de Imunoadsorção Enzimática , Células Ependimogliais/metabolismo , Gliose , Interleucina-6/metabolismo , Ácido Oleanólico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Diabetes ; 67(4): 755-768, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29311219

RESUMO

Diabetes is a negative risk factor for aortic aneurysm, but the underlying explanation for this phenomenon is unknown. We have previously demonstrated that cell division autoantigen 1 (CDA1), which enhances transforming growth factor-ß signaling, is upregulated in diabetes. We hypothesized that CDA1 plays a key role in conferring the protective effect of diabetes against aortic aneurysms. Male wild-type, CDA1 knockout (KO), apolipoprotein E (ApoE) KO, and CDA1/ApoE double-KO (dKO) mice were rendered diabetic. Whereas aneurysms were not observed in diabetic ApoE KO and wild-type mice, 40% of diabetic dKO mice developed aortic aneurysms. These aneurysms were associated with attenuated aortic transforming growth factor-ß signaling, reduced expression of various collagens, and increased aortic macrophage infiltration and matrix metalloproteinase 12 expression. In the well-characterized model of angiotensin II-induced aneurysm formation, concomitant diabetes reduced fatal aortic rupture and attenuated suprarenal aortic expansion, changes not seen in dKO mice. Furthermore, aortic CDA1 expression was downregulated ∼70% within biopsies from human abdominal aortic aneurysms. The identification that diabetes is associated with upregulation of vascular CDA1 and that CDA1 deletion in diabetic mice promotes aneurysm formation provides evidence that CDA1 plays a role in diabetes to reduce susceptibility to aneurysm formation.


Assuntos
Aneurisma da Aorta Abdominal/genética , Autoantígenos/genética , Diabetes Mellitus Experimental/metabolismo , Adulto , Idoso , Angiotensina II/farmacologia , Animais , Aneurisma Aórtico/induzido quimicamente , Aneurisma Aórtico/genética , Aneurisma Aórtico/imunologia , Aneurisma Aórtico/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/imunologia , Aneurisma da Aorta Abdominal/metabolismo , Ruptura Aórtica , Autoantígenos/metabolismo , Colágeno/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Macrófagos/imunologia , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo , Vasoconstritores/farmacologia
7.
Am J Pathol ; 188(3): 805-817, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29248456

RESUMO

Although increasing evidence indicates that endothelin-2 (Edn2) has distinct roles in tissue pathology, including inflammation, glial cell dysfunction, and angiogenesis, its role in the retina and the factors that regulate its actions are not fully understood. We hypothesized that Edn2 damages the blood-retinal barrier (BRB) and that this is mediated by interactions with the renin-angiotensin-aldosterone system and reactive oxygen species derived from NADPH oxidase (Nox). C57BL/6J mice received an intravitreal injection of Edn2 or control vehicle to examine the blood pressure-independent effects of Edn2. Mice administered Edn2 were randomized to receive by intraperitoneal injection treatments that inhibited the Edn type a receptor, Edn type b receptor, angiotensin type 1 receptor, mineralocorticoid receptor, or Nox isoforms 1 to 4. One month later, mice administered Edn2 exhibited breakdown of the BRB with increased vascular leakage, vascular endothelial growth factor expression, and infiltrating macrophages (Ly6C+CD45highCD11b+). Further, macroglial Müller cells, which influence the integrity of the BRB and prevent retinal edema, became gliotic and expressed increased levels of water (aquaporin-4) and ion (Kir4.1) channels. This Edn2-mediated retinopathy was reduced by all treatments. Complementary in vitro studies in cultured Müller cells supported these findings and demonstrated the importance of reactive oxygen species in mediating these events. In conclusion, Edn2 has detrimental effects on the BRB and Müller cells that involve interactions with the renin-angiotensin aldosterone system and Nox1/4.


Assuntos
Aldosterona/farmacologia , Angiotensina II/farmacologia , Barreira Hematorretiniana/efeitos dos fármacos , Endotelina-2/farmacologia , Células Ependimogliais/efeitos dos fármacos , NADPH Oxidases/metabolismo , Retina/efeitos dos fármacos , Aquaporina 4/metabolismo , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Movimento Celular/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia
8.
Nat Commun ; 8(1): 748, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963474

RESUMO

Neovascular retinopathies are major causes of vision loss; yet treatments to prevent the condition are inadequate. The role of regulatory T cells in neovascular retinopathy is unknown. Here we show that in retinopathy regulatory T cells are transiently increased in lymphoid organs and the retina, but decline when neovascularization is established. The decline is prevented following regulatory T cells expansion with an IL-2/anti-IL-2 mAb complex or the adoptive transfer of regulatory T cells. Further, both approaches reduce vasculopathy (vaso-obliteration, neovascularization, vascular leakage) and alter the activation of Tmem119+ retinal microglia. Our in vitro studies complement these findings, showing that retinal microglia co-cultured with regulatory T cells exhibit a reduction in co-stimulatory molecules and pro-inflammatory mediators that is attenuated by CTLA-4 blockade. Collectively, we demonstrate that regulatory T cells are recruited to the retina and, when expanded in number, repair the vasculature. Manipulation of regulatory T cell numbers is a previously unrecognized, and promising avenue for therapies to prevent blinding neovascular retinopathies.The local immune responses in the eye are attenuated to preserve sight. Surprisingly, Deliyanti et al. show that regulatory T cells (Tregs) take an active role in protecting the eye from neovascularization in oxygen-induced retinopathy, and that interventions that augment the retinal Treg numbers reduce neovascular retinopathy in mice.


Assuntos
Microglia/imunologia , Retina/imunologia , Neovascularização Retiniana/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Antígeno CTLA-4/antagonistas & inibidores , Técnicas de Cocultura , Fatores de Transcrição Forkhead/metabolismo , Interleucina-2 , Proteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Vasos Retinianos , Linfócitos T Reguladores/metabolismo , Doenças Vasculares
9.
Mol Ther ; 24(7): 1290-301, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27203438

RESUMO

The advancement of microRNA (miRNA) therapies has been hampered by difficulties in delivering miRNA to the injured kidney in a robust and sustainable manner. Using bioluminescence imaging in mice with unilateral ureteral obstruction (UUO), we report that mesenchymal stem cells (MSCs), engineered to overexpress miRNA-let7c (miR-let7c-MSCs), selectively homed to damaged kidneys and upregulated miR-let7c gene expression, compared with nontargeting control (NTC)-MSCs. miR-let7c-MSC therapy attenuated kidney injury and significantly downregulated collagen IVα1, metalloproteinase-9, transforming growth factor (TGF)-ß1, and TGF-ß type 1 receptor (TGF-ßR1) in UUO kidneys, compared with controls. In vitro analysis confirmed that the transfer of miR-let7c from miR-let7c-MSCs occurred via secreted exosomal uptake, visualized in NRK52E cells using cyc3-labeled pre-miRNA-transfected MSCs with/without the exosomal inhibitor, GW4869. The upregulated expression of fibrotic genes in NRK52E cells induced by TGF-ß1 was repressed following the addition of isolated exosomes or indirect coculture of miR-let7c-MSCs, compared with NTC-MSCs. Furthermore, the cotransfection of NRK52E cells using the 3'UTR of TGF-ßR1 confirmed that miR-let7c attenuates TGF-ß1-driven TGF-ßR1 gene expression. Taken together, the effective antifibrotic function of engineered MSCs is able to selectively transfer miR-let7c to damaged kidney cells and will pave the way for the use of MSCs for therapeutic delivery of miRNA targeted at kidney disease.


Assuntos
Exossomos/metabolismo , Nefropatias/genética , Nefropatias/patologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Actinas/metabolismo , Animais , Transporte Biológico , Engenharia Celular , Colágeno/metabolismo , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Vesículas Extracelulares/metabolismo , Fibrose , Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Nefropatias/metabolismo , Nefropatias/terapia , Masculino , Camundongos , Ratos , Transdução Genética
10.
Arterioscler Thromb Vasc Biol ; 36(6): 1186-96, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27055905

RESUMO

OBJECTIVE: Although inhibitors of vascular endothelial growth factor (VEGF) provide benefit for the management of neovascular retinopathies, their use is limited to end-stage disease and some eyes are resistant. We hypothesized that retinoic acid-related orphan nuclear receptor γ (RORγ) and its downstream effector, interleukin (IL)-17A, upregulate VEGF and hence are important treatment targets for neovascular retinopathies. APPROACH AND RESULTS: Utilizing a model of oxygen-induced retinopathy, confocal microscopy and flow cytometry, we identified that retinal immunocompetent cells, microglia, express IL-17A. This was confirmed in primary cultures of rat retinal microglia, where hypoxia increased IL-17A protein as well as IL-17A, RORγ, and tumor necrosis factor-α mRNA, which were reduced by the RORγ inhibitor, digoxin, and the RORα/RORγ inverse agonist, SR1001. By contrast, retinal macroglial Müller cells and ganglion cells, key sources of VEGF in oxygen-induced retinopathy, did not produce IL-17A when exposed to hypoxia and IL-1ß. However, they expressed IL-17 receptors, and in response to IL-17A, secreted VEGF. This suggested that RORγ and IL-17A inhibition might attenuate neovascular retinopathy. Indeed, digoxin and SR1001 reduced retinal vaso-obliteration, neovascularization, and vascular leakage as well as VEGF and VEGF-related placental growth factor. Digoxin and SR1001 reduced microglial-derived IL-17A and Müller cell and ganglion cell damage. The importance of IL-17A in oxygen-induced retinopathy was confirmed by IL-17A neutralization reducing vasculopathy, VEGF, placental growth factor, tumor necrosis factor-α, microglial density and Müller cell, and ganglion cell injury. CONCLUSIONS: Our findings indicate that an RORγ/IL-17A axis influences VEGF production and neovascular retinopathy by mechanisms involving neuroglia. Inhibition of RORγ and IL-17A may have potential for the improved treatment of neovascular retinopathies.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Monoclonais/farmacologia , Digoxina/farmacologia , Interleucina-17/antagonistas & inibidores , Microglia/efeitos dos fármacos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Retina/efeitos dos fármacos , Neovascularização Retiniana/prevenção & controle , Retinopatia da Prematuridade/prevenção & controle , Sulfonamidas/farmacologia , Tiazóis/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/imunologia , Células Ependimogliais/metabolismo , Hiperóxia/complicações , Interleucina-17/genética , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fator de Crescimento Placentário/metabolismo , Ratos Sprague-Dawley , Retina/imunologia , Retina/metabolismo , Retina/patologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/imunologia , Células Ganglionares da Retina/metabolismo , Neovascularização Retiniana/imunologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/imunologia , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
J Pathol ; 239(2): 152-61, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26924464

RESUMO

Leakage of fluid from blood vessels, leading to oedema, is a key feature of many diseases including hyperoxic acute lung injury (HALI), which can occur when patients are ventilated with high concentrations of oxygen (hyperoxia). The molecular mechanisms driving vascular leak and oedema in HALI are poorly understood. VEGF-D is a protein that promotes blood vessel leak and oedema when overexpressed in tissues, but the role of endogenous VEGF-D in pathological oedema was unknown. To address these issues, we exposed Vegfd-deficient mice to hyperoxia. The resulting pulmonary oedema in Vegfd-deficient mice was substantially reduced compared to wild-type, as was the protein content of bronchoalveolar lavage fluid, consistent with reduced vascular leak. Vegf-d and its receptor Vegfr-3 were more highly expressed in lungs of hyperoxic, versus normoxic, wild-type mice, indicating that components of the Vegf-d signalling pathway are up-regulated in hyperoxia. Importantly, VEGF-D and its receptors were co-localized on blood vessels in clinical samples of human lungs exposed to hyperoxia; hence, VEGF-D may act directly on blood vessels to promote fluid leak. Our studies show that Vegf-d promotes oedema in response to hyperoxia in mice and support the hypothesis that VEGF-D signalling promotes vascular leak in human HALI. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Lesão Pulmonar Aguda/complicações , Hiperóxia/complicações , Edema Pulmonar/etiologia , Transdução de Sinais , Fator D de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar , Linhagem Celular Tumoral , Feminino , Humanos , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Oxigênio/metabolismo , Edema Pulmonar/complicações , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Fator D de Crescimento do Endotélio Vascular/administração & dosagem , Fator D de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Clin Sci (Lond) ; 130(15): 1375-87, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27005782

RESUMO

An imbalance in oxidative stress and antioxidant defense mechanisms contributes to the development of ischaemic retinopathies such as diabetic retinopathy and retinopathy of prematurity (ROP). Currently, the therapeutic utility of targeting key transcription factors to restore this imbalance remains to be determined. We postulated that dh404, an activator of nuclear factor erythroid-2 related factor 2 (Nrf2), the master regulator of oxidative stress responses, would attenuate retinal vasculopathy by mechanisms involving protection against oxidative stress-mediated damage to glia. Oxygen-induced retinopathy (OIR) was induced in neonatal C57BL/6J mice by exposure to hyperoxia (phase I) followed by room air (phase II). dh404 (1 mg/kg/every second day) reduced the vaso-obliteration of phase I OIR and neovascularization, vascular leakage and inflammation of phase II OIR. In phase I, the astrocytic template and vascular endothelial growth factor (VEGF) expression necessary for physiological angiogenesis are compromised resulting in vaso-obliteration. These events were attenuated by dh404 and related to dh404's ability to reduce the hyperoxia-induced increase in reactive oxygen species (ROS) and markers of cell damage as well as boost the Nrf2-responsive antioxidants in cultured astrocytes. In phase II, neovascularization and vascular leakage occurs following gliosis of Müller cells and their subsequent increased production of angiogenic factors. dh404 reduced Müller cell gliosis and vascular leakage in OIR as well as the hypoxia-induced increase in ROS and angiogenic factors with a concomitant increase in Nrf2-responsive antioxidants in cultured Müller cells. In conclusion, agents such as dh404 that reduce oxidative stress and promote antioxidant capacity offer a novel approach to lessen the vascular and glial cell damage that occurs in ischaemic retinopathies.


Assuntos
Antioxidantes/farmacologia , Células Ependimogliais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/agonistas , Ácido Oleanólico/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Retina/efeitos dos fármacos , Neovascularização Retiniana/prevenção & controle , Retinopatia da Prematuridade/prevenção & controle , Proteínas Angiogênicas/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Hiperóxia/complicações , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/farmacologia , Ratos Sprague-Dawley , Retina/metabolismo , Retina/patologia , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/etiologia , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia , Transdução de Sinais/efeitos dos fármacos
13.
PLoS One ; 10(7): e0134392, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222724

RESUMO

Diabetic retinopathy features inflammation as well as injury to glial cells and the microvasculature, which are influenced by hypertension and overactivity of the renin-angiotensin system. FT011 is an anti-inflammatory and anti-fibrotic agent that has been reported to attenuate organ damage in diabetic rats with cardiomyopathy and nephropathy. However, the potential therapeutic utility of FT011 for diabetic retinopathy has not been evaluated. We hypothesized that FT011 would attenuate retinopathy in diabetic Ren-2 rats, which exhibit hypertension due to an overactive extra-renal renin-angiotensin system. Diabetic rats were studied for 8 and 32 weeks and received intravitreal injections of FT011 (50 µM) or vehicle (0.9% NaCl). Comparisons were to age-matched controls. In the 8-week study, retinal inflammation was examined by quantitating vascular leukocyte adherence, microglial/macrophage density and the expression of inflammatory mediators. Macroglial Müller cells, which exhibit a pro-inflammatory and pro-angiogenic phenotype in diabetes, were evaluated in the 8-week study as well as in culture following exposure to hyperglycaemia and FT011 (10, 30, 100 µM) for 72 hours. In the 32-week study, severe retinal vasculopathy was examined by quantitating acellular capillaries and extracellular matrix proteins. In diabetic rats, FT011 reduced retinal leukostasis, microglial density and mRNA levels of intercellular adhesion molecule-1 (ICAM-1). In Müller cells, FT011 reduced diabetes-induced gliosis and vascular endothelial growth factor (VEGF) immunolabeling and the hyperglycaemic-induced increase in ICAM-1, monocyte chemoattractant protein-1, CCL20, cytokine-induced neutrophil chemoattractant-1, VEGF and IL-6. Late intervention with FT011 reduced acellular capillaries and the elevated mRNA levels of collagen IV and fibronectin in diabetic rats. In conclusion, the protective effects of FT011 in cardiorenal disease extend to key elements of diabetic retinopathy and highlight its potential as a treatment approach.


Assuntos
Ácidos Cafeicos/farmacologia , Retinopatia Diabética/tratamento farmacológico , Gliose/tratamento farmacológico , Inflamação/tratamento farmacológico , Substâncias Protetoras/farmacologia , ortoaminobenzoatos/farmacologia , Animais , Quimiocina CCL2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Células Ependimogliais , Feminino , Gliose/metabolismo , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular , Interleucina-6/metabolismo , Leucostasia/tratamento farmacológico , Leucostasia/metabolismo , Ratos , Sistema Renina-Angiotensina/efeitos dos fármacos , Retina/efeitos dos fármacos , Retina/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Fator A de Crescimento do Endotélio Vascular
14.
J Neuroinflammation ; 12: 136, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26219952

RESUMO

BACKGROUND: Inflammation and the excess production of reactive oxygen species (ROS) contribute significantly to the pathogenesis of ischemic retinopathies such as diabetic retinopathy and retinopathy of prematurity. We hypothesized that GKT137831, a dual inhibitor of NADPH oxidases (NOX) 1 and NOX4, reduces inflammation in the ischemic retina by dampening the pro-inflammatory phenotype of retinal immune cells as well as macroglial Müller cells and neurons. METHODS: Ischemic retinopathy was induced in Sprague-Dawley rats by exposure to 80 % O2 cycled with 21 % O2 for 3 h per day from postnatal day (P) 0 to P11, followed by room air (P12 to P18). GKT137831 was administered P12 to P18 (60 mg/kg, subcutaneous) and comparisons were to room air controls. Retinal inflammation was examined by measuring leukocyte adherence to the retinal vasculature, ionized calcium-binding adaptor protein-1-positive microglia/macrophages, and the mRNA and protein levels of key inflammatory factors involved in retinal disease. Damage to Müller cells was evaluated by quantitating glial fibrillary acidic protein-positive cells and vascular leakage with an albumin ELISA. To verify the anti-inflammatory actions of GKT137831 on glia and neurons involved in ischemic retinopathy, primary cultures of rat retinal microglia, Müller cells, and ganglion cells were exposed to the in vitro counterpart of ischemia, hypoxia (0.5 %), and treated with GKT137831 for up to 72 h. ROS levels were evaluated with dihydroethidium and the protein and gene expression of inflammatory factors with quantitative PCR, ELISA, and a protein cytokine array. RESULTS: In the ischemic retina, GKT137831 reduced the increased leukocyte adherence to the vasculature, the pro-inflammatory phenotype of microglia and macroglia, the increased gene and protein expression of vascular endothelial growth factor, monocyte chemoattractant protein-1, and leukocyte adhesion molecules as well as vascular leakage. In all cultured cell types, GKT137831 reduced the hypoxia-induced increase in ROS levels and protein expression of various inflammatory mediators. CONCLUSIONS: NOX1/4 enzyme inhibition with GKT137831 has potent anti-inflammatory effects in the retina, indicating its potential as a treatment for a variety of vision-threatening retinopathies.


Assuntos
NADH NADPH Oxirredutases/antagonistas & inibidores , NADPH Oxidases/antagonistas & inibidores , Neuroglia/efeitos dos fármacos , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Retinite/prevenção & controle , Animais , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Hipóxia/complicações , Técnicas In Vitro , Molécula 1 de Adesão Intercelular/metabolismo , Isquemia/etiologia , Isquemia/patologia , Isquemia/prevenção & controle , NADH NADPH Oxirredutases/efeitos dos fármacos , NADPH Oxidase 1 , NADPH Oxidase 4 , NADPH Oxidases/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Pirazolonas , Piridonas , Ratos , Espécies Reativas de Oxigênio/metabolismo , Retinite/metabolismo , Retinite/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
J Autoimmun ; 61: 9-16, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26027434

RESUMO

B cell-activating factor of the TNF family (BAFF) is an essential B cell survival factor. However, high levels of BAFF promote systemic lupus erythematosus (SLE) in mice and humans. Belimumab (anti-human BAFF) limits B cell survival and is approved for use in patients with SLE. Surprisingly, the efficacy of rituximab (anti-human CD20) in SLE remains controversial, despite depleting B cells more potently than belimumab. This raises the question of whether B cell depletion is really the mechanism of action of belimumab. In BAFF transgenic mice, SLE development is T cell-independent but relies on innate activation of B cells via TLRs, and TLR expression is modulated by the BAFF receptor TACI. Here, we show that loss of TACI on B cells protected against BAFF-mediated autoimmune manifestations while preserving B cells, suggesting that loss of BAFF signaling through TACI rather than loss of B cells may underpin the effect of belimumab in the clinic. Therefore, B cell-sparing blockade of TACI may offer a more specific and safer therapeutic alternative to broad B cell depletion in SLE.


Assuntos
Fator Ativador de Células B/imunologia , Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Proteína Transmembrana Ativadora e Interagente do CAML/imunologia , Animais , Autoanticorpos/imunologia , Fator Ativador de Células B/genética , Fator Ativador de Células B/metabolismo , Linfócitos B/metabolismo , Citometria de Fluxo , Expressão Gênica/imunologia , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo
16.
Clin Sci (Lond) ; 129(2): 199-216, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25927680

RESUMO

Despite the wealth of pre-clinical support for a role for reactive oxygen and nitrogen species (ROS/RNS) in the aetiology of diabetic complications, enthusiasm for antioxidant therapeutic approaches has been dampened by less favourable outcomes in large clinical trials. This has necessitated a re-evaluation of pre-clinical evidence and a more rational approach to antioxidant therapy. The present review considers current evidence, from both pre-clinical and clinical studies, to address the benefits of antioxidant therapy. The main focus of the present review is on the effects of direct targeting of ROS-producing enzymes, the bolstering of antioxidant defences and mechanisms to improve nitric oxide availability. Current evidence suggests that a more nuanced approach to antioxidant therapy is more likely to yield positive reductions in end-organ injury, with considerations required for the types of ROS/RNS involved, the timing and dosage of antioxidant therapy, and the selective targeting of cell populations. This is likely to influence future strategies to lessen the burden of diabetic complications such as diabetes-associated atherosclerosis, diabetic nephropathy and diabetic retinopathy.


Assuntos
Vasos Sanguíneos/metabolismo , Angiopatias Diabéticas/metabolismo , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/uso terapêutico , Azóis/uso terapêutico , Vasos Sanguíneos/efeitos dos fármacos , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/etiologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Desenho de Fármacos , Ativação Enzimática , Ativadores de Enzimas/uso terapêutico , Humanos , Isoindóis , Rim/efeitos dos fármacos , Terapia de Alvo Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Compostos Organosselênicos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/uso terapêutico
17.
Exp Eye Res ; 136: 1-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25912997

RESUMO

Oxidative stress is an important contributor to glial and vascular cell damage in ischemic retinopathies. We hypothesized that ebselen via its ability to reduce reactive oxygen species (ROS) and augment nuclear factor-like 2 (Nrf2) anti-oxidants would attenuate hypoxia-induced damage to macroglial Müller cells and also lessen retinal vasculopathy. Primary cultures of rat Müller cells were exposed to normoxia (21% O2), hypoxia (0.5% O2) and ebselen (2.5 µM) for up to 72 h. Oxygen-induced retinopathy (OIR) was induced in C57BL/6J mice while control mice were housed in room air. Mice received vehicle (saline, 5% dimethyl sulfoxide) or ebselen (10 mg/kg) each day between postnatal days 6-18. In cultured Müller cells, flow cytometry for dihydroethidium revealed that ebselen reduced the hypoxia-induced increase in ROS levels, whilst increasing the expression of Nrf2-regulated anti-oxidant genes, heme oxygenase 1, glutathione peroxidase-1, NAD(P)H dehydrogenase quinone oxidoreductase 1 and glutamate-cysteine ligase. Moreover, in Müller cells, ebselen reduced the hypoxia-induced increase in protein levels of pro-angiogenic and pro-inflammatory factors including vascular endothelial growth factor, interleukin-6, monocyte chemoattractant-protein 1 and intercellular adhesion molecule-1, and the mRNA levels of glial fibrillary acidic protein (GFAP), a marker of Müller cell injury. Ebselen improved OIR by attenuating capillary vaso-obliteration and neovascularization and a concomitant reduction in Müller cell gliosis and GFAP. We conclude that ebselen protects against hypoxia-induced injury of retinal Müller cells and the microvasculature, which is linked to its ability to reduce oxidative stress, vascular damaging factors and inflammation. Agents such as ebselen may be potential treatments for retinopathies that feature oxidative stress-mediated damage to glia and the microvasculature.


Assuntos
Antioxidantes/farmacologia , Azóis/farmacologia , Células Ependimogliais/efeitos dos fármacos , Gliose/tratamento farmacológico , Hipóxia/metabolismo , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Degeneração Retiniana/prevenção & controle , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Células Ependimogliais/metabolismo , Citometria de Fluxo , Proteína Glial Fibrilar Ácida , Gliose/metabolismo , Isoindóis , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Degeneração Retiniana/metabolismo , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/prevenção & controle , Vasos Retinianos/efeitos dos fármacos , Superóxidos/metabolismo , Lesões do Sistema Vascular/prevenção & controle
18.
Clin Exp Pharmacol Physiol ; 42(5): 537-48, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25707593

RESUMO

Angiogenesis and inflammation are causative factors in the development of neovascular retinopathies. These processes involve the retinal endothelium and the retinal immune cells, microglia. The renin-angiotensin system contributes to retinal injury via the actions of the type 1 angiotensin receptor (AT1R). However, it has been suggested that prorenin, the initiator of the renin-angiotensin system cascade, influences retinal injury independently from the AT1R. We evaluated whether prorenin induced a pro-angiogenic and pro-inflammatory response in retinal endothelial cells and a pro-inflammatory phenotype in retinal microglia. Primary cultures of retinal endothelial cells and microglia were studied. Rat recombinant prorenin (2 nmol/L) stimulated the proliferation and tubulogenesis of retinal endothelial cells; it increased the levels of pro-angiogenic factors, vascular endothelial growth factor, angiopoietin-1, and tyrosine kinase with immunoglobulin and epidermal growth factor homology domains, and pro-inflammatory factors, intercellular adhesion molecule-1 and monocyte chemoattractant protein-1, relative to the controls. The messenger RNA levels of the (pro)renin receptor were also increased. These effects occurred in the presence of the AT1R blocker candesartan (10 µmol/L) and the renin inhibitor aliskiren (10 µmol/L). Microglia, which express the (pro)renin receptor, elicited an activated phenotype when exposed to prorenin, which was characterized by increased levels of intercellular adhesion molecule-1, monocyte chemoattractant protein-1, tumour necrosis factor-α, interleukin-6, and interleukin-1ß and by decreased levels of interleukin-10 and arginase-1 relative to controls. Candesartan did not influence the effects of prorenin on retinal microglia. In conclusion, prorenin has distinct pro-angiogenic and pro-inflammatory effects on retinal cells that are independent of the AT1R, indicating the potential importance of prorenin in retinopathy.


Assuntos
Células Endoteliais/efeitos dos fármacos , Microglia/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fenótipo , Renina/farmacologia , Retina/citologia , Retina/efeitos dos fármacos , Animais , Bovinos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/metabolismo , Receptor de Pró-Renina
19.
Arterioscler Thromb Vasc Biol ; 34(9): 2033-41, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25012132

RESUMO

OBJECTIVE: Neovascularization and vaso-obliteration are vision-threatening events that develop by interactions between retinal vascular and glial cells. A high-salt diet is causal in cardiovascular and renal disease, which is linked to modulation of the renin-angiotensin-aldosterone system. However, it is not known whether dietary salt influences retinal vasculopathy and if the renin-angiotensin-aldosterone system is involved. We examined whether a low-salt (LS) diet influenced vascular and glial cell injury and the renin-angiotensin-aldosterone system in ischemic retinopathy. APPROACH AND RESULTS: Pregnant Sprague Dawley rats were fed LS (0.03% NaCl) or normal salt (0.3% NaCl) diets, and ischemic retinopathy was induced in the offspring. An LS diet reduced retinal neovascularization and vaso-obliteration, the mRNA and protein levels of the angiogenic factors, vascular endothelial growth factor, and erythropoietin. Microglia, which influence vascular remodeling in ischemic retinopathy, were reduced by LS as was tumor necrosis factor-α. Macroglial Müller cells maintain the integrity of the blood-retinal barrier, and in ischemic retinopathy, LS reduced their gliosis and also vascular leakage. In retina, LS reduced mineralocorticoid receptor, angiotensin type 1 receptor, and renin mRNA levels, whereas, as expected, plasma levels of aldosterone and renin were increased. The aldosterone/mineralocorticoid receptor-sensitive epithelial sodium channel alpha (ENaCα), which is expressed in Müller cells, was increased in ischemic retinopathy and reduced by LS. In cultured Müller cells, high salt increased ENaCα, which was prevented by mineralocorticoid receptor and angiotensin type 1 receptor blockade. Conversely, LS reduced ENaCα, angiotensin type 1 receptor, and mineralocorticoid receptor expression. CONCLUSIONS: An LS diet reduced retinal vasculopathy, by modulating glial cell function and the retinal renin-angiotensin-aldosterone system.


Assuntos
Dieta Hipossódica , Canais Epiteliais de Sódio/fisiologia , Microglia/fisiologia , Sistema Renina-Angiotensina/fisiologia , Neovascularização Retiniana/dietoterapia , Complexo 1 de Proteínas Adaptadoras/análise , Aldosterona/sangue , Aldosterona/fisiologia , Animais , Animais Recém-Nascidos , Aquaporina 4/biossíntese , Aquaporina 4/genética , Peso Corporal , Células Cultivadas , Modelos Animais de Doenças , Comportamento de Ingestão de Líquido , Células Ependimogliais/química , Células Ependimogliais/patologia , Eritropoetina/análise , Gliose/etiologia , Gliose/fisiopatologia , Hematócrito , Transporte de Íons , Isquemia/fisiopatologia , Glomérulos Renais/patologia , Sistema de Sinalização das MAP Quinases , Fosforilação , Canais de Potássio Corretores do Fluxo de Internalização/biossíntese , Canais de Potássio Corretores do Fluxo de Internalização/genética , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/metabolismo , Neovascularização Retiniana/fisiopatologia , Neovascularização Retiniana/prevenção & controle , Retinopatia da Prematuridade , Sódio/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Fator de Necrose Tumoral alfa/biossíntese , Fator A de Crescimento do Endotélio Vascular/análise
20.
Antioxid Redox Signal ; 20(17): 2726-40, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24053718

RESUMO

AIMS: Ischemic retinal diseases such as retinopathy of prematurity are major causes of blindness due to damage to the retinal microvasculature. Despite this clinical situation, retinopathy of prematurity is mechanistically poorly understood. Therefore, effective preventative therapies are not available. However, hypoxic-induced increases in reactive oxygen species (ROS) have been suggested to be involved with NADPH oxidases (NOX), the only known dedicated enzymatic source of ROS. Our major aim was to determine the contribution of NOX isoforms (1, 2, and 4) to a rodent model of retinopathy of prematurity. RESULTS: Using a genetic approach, we determined that only mice with a deletion of NOX1, but not NOX2 or NOX4, were protected from retinal neovascularization and vaso-obliteration, adhesion of leukocytes, microglial accumulation, and the increased generation of proangiogenic and proinflammatory factors and ROS. We complemented these studies by showing that the specific NOX inhibitor, GKT137831, reduced vasculopathy and ROS levels in retina. The source of NOX isoforms was evaluated in retinal vascular cells and neuro-glial elements. Microglia, the immune cells of the retina, expressed NOX1, 2, and 4 and responded to hypoxia with increased ROS formation, which was reduced by GKT137831. INNOVATION: Our studies are the first to identify the NOX1 isoform as having an important role in the pathogenesis of retinopathy of prematurity. CONCLUSIONS: Our findings suggest that strategies targeting NOX1 have the potential to be effective treatments for a range of ischemic retinopathies.


Assuntos
Isquemia/genética , NADPH Oxidases/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Retinopatia da Prematuridade/genética , Animais , Modelos Animais de Doenças , Humanos , Isquemia/metabolismo , Isquemia/patologia , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Camundongos , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/genética , Oxirredução , Pirazóis/administração & dosagem , Pirazolonas , Piridinas/administração & dosagem , Piridonas , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia , Lesões do Sistema Vascular/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA