Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 155: 22-30, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100290

RESUMO

Palatability driven feeding and voluntary physical activity are mediated by and influence similar neural mechanisms, notably through the actions of opioids within the nucleus accumbens. Recent studies suggest that access to a voluntary running wheel results in sex dependent behavioral and physiological adaptations related to opioid mediated palatability-driven feeding. To explore this relationship, male and female Wistar rats were given either access to a voluntary running wheel (RUN group) or no access (SED group) for one week prior to being stereotaxically implanted with bilateral cannulae targeting the nucleus accumbens. Following 7 days of recovery, with RUN or SED conditions continuing the duration of the experiment, all rats were assessed daily (2 h/day) for feeding behavior of concurrently accessible high-carbohydrate and high-fat diet for one week. Following this week, all rats were administered the µ-opioid receptor agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO) (0.0025  µg, 0.025  µg, or 0.25 µg/0.5 µl/side) or the opioid antagonist naloxone (20 µg/0.5 µl/side) into the nucleus accumbens and given concurrent access (2 h) to both diets. All groups expressed a significant baseline preference for the high-carbohydrate diet. DAMGO administration, compared to saline treatment, led to significant increased consumption of the high-carbohydrate diet in all treatment groups. While high-fat diet consumption also increased following DAMGO administration, the influence of DAMGO was much more robust for the preferred high-carbohydrate diet in all groups. Compared to males, females consumed significantly more of both diets at baseline and following DAMGO treatment. Both male and female rats in the RUN condition consumed more high-carbohydrate diet compared to rats in the SED condition. While males exhibited similar increased consumption of both diets regardless of RUN or SED condition, females in the RUN condition displayed a greater sensitivity to DAMGO-driven consumption of the preferred high-carbohydrate, compared to SED females.


Assuntos
Analgésicos Opioides/farmacologia , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Comportamento Alimentar/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Teste de Esforço/métodos , Teste de Esforço/psicologia , Comportamento Alimentar/fisiologia , Comportamento Alimentar/psicologia , Feminino , Masculino , Atividade Motora/fisiologia , Núcleo Accumbens/fisiologia , Ratos , Ratos Wistar
2.
Physiol Behav ; 206: 67-75, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30807769

RESUMO

The present study examined the influence of physical activity vs. sedentary home cage conditions on baseline and opioid-driven high-fat feeding behaviors in two common strains of laboratory rats. Sprague-Dawley and Wistar rats were singly housed with either access to a voluntary running wheel (RUN) or locked-wheel (SED) for 5 weeks, before being stereotaxically implanted with bilateral cannulae targeting the nucleus accumbens. Following recovery, with RUN or SED conditions continuing the duration of the experiment, all rats were given 2 h daily access to a high-fat diet for 6 consecutive days to establish a stable baseline intake. Over the next 2 weeks, all subjects were administered the µ-opioid agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO) (multiple dose range) or saline into the nucleus accumbens, immediately followed by 2 h access to a high-fat diet. Drug treatments were separated by at least 1 day and treatment order was counterbalanced. Baseline consumption of the high-fat diet during the 1-week baseline acclimation period did not differ between RUN and SED groups in either rat strain. Higher doses of DAMGO produced increased fat consumption in both strains of rats, yet no differences were observed between RUN vs. SED treated groups. However, SED treatment produced a greater locomotor response following intra-accumbens DAMGO administration, compared to the RUN condition, during the 2 h feeding session. The data suggest that the animals housed in sedentary versus voluntary wheel running conditions may differ in behavioral tolerance to the locomotor but not the orexigenic activating properties of intra-accumbens DAMGO treatment.


Assuntos
Analgésicos Opioides/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Comportamento Alimentar/fisiologia , Atividade Motora/fisiologia , Núcleo Accumbens/fisiologia , Corrida/fisiologia , Animais , Gorduras na Dieta/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores Opioides mu/agonistas
3.
Behav Brain Res ; 359: 95-103, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30392852

RESUMO

Considering the current obesity epidemic is due in large part to an energy imbalance, it is crucial to explore biological mechanisms that mediate palatable high energy food intake and physical activity behavior levels. Previous research demonstrates a unique sex dependent influence of physical activity on diet preference, specifically changes in palatable high-fat diet intake. Therefore, factors of motivation may be underlying the differential effect of physical activity in male and female rats on their diet preference. The present study extends this hypothesis by assessing diet preference in male and female Wistar rats selectively bred for high (HVR) and low (LVR) levels of voluntary wheel running distances. HVR and LVR rats were housed under either sedentary (SED) or voluntary wheel running access (RUN) conditions for the duration of the study. Following a 1 week acclimation period to these conditions, standard chow was replaced with concurrent ad libitum access to a choice of 3 pelleted diets (high-fat, high-sucrose, and high-corn starch); all 3 were provided in the home cage. Body weight, running distance, and intake of each diet was measured daily. At the conclusion of the 4 week diet preference test, animals were sacrificed and ventral striatum tissue was collected for later analysis. Results demonstrated intake patterns of diets were uniquely influenced by physical activity dependent on both the sex and the selectively bred line of rat. In addition, reward related ventral striatal mRNA expression was also dependent on both the sex and the selectively bred line of rat. Overall, the pattern of both behavioral and mRNA results suggest that voluntary wheel running behavior differentially mediates palatable diet consumption in males and females. Considering the pervasive abundance of both physical inactivity, combined with over-consumption of energy dense palatable diets, it is vital to understand the nature of these behavioral interactions.


Assuntos
Preferências Alimentares , Atividade Motora , Corrida , Animais , Peso Corporal , Dieta Hiperlipídica , Sacarose Alimentar , Ingestão de Alimentos/fisiologia , Feminino , Preferências Alimentares/fisiologia , Masculino , Atividade Motora/fisiologia , RNA Mensageiro/metabolismo , Ratos Wistar , Recompensa , Corrida/fisiologia , Comportamento Sedentário , Seleção Artificial , Fatores Sexuais , Especificidade da Espécie , Amido , Estriado Ventral/metabolismo , Volição
4.
Behav Brain Res ; 334: 16-25, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28743600

RESUMO

Previous studies suggest an interaction between the level of physical activity and diet preference. However, this relationship has not been well characterized for sex differences that may exist. The present study examined the influence of sex on diet preference in male and female Wistar rats that were housed under either sedentary (no wheel access) (SED) or voluntary wheel running access (RUN) conditions. Following a 1 week acclimation period to these conditions, standard chow was replaced with concurrent ad libitum access to a choice of 3 pelleted diets (high-fat, high-sucrose, and high-corn starch) in the home cage. SED and RUN conditions remained throughout the next 4 week diet preference assessment period. Body weight, running distance, and intake of each diet were measured daily. At the conclusion of the 4 week diet preference test, animals were sacrificed and brains were collected for mRNA analysis. Fecal samples were also collected before and after the 4 week diet preference phase to characterize microbiota composition. Results indicate sex dependent interactions between physical activity and both behavioral and physiological measures. Females in both RUN and SED conditions preferred the high-fat diet, consuming significantly more high-fat diet than either of the other two diets. While male SED rats also preferred the high-fat diet, male RUN rats consumed significantly less high-fat diet than the other groups, instead preferring all three diets equally. There was also a sex dependent influence of physical activity on both reward related opioid mRNA expression in the ventral striatum and the characterization of gut microbiota. The significant sex differences in response to physical activity observed through both behavioral and physiological measures suggest potential motivational or metabolic difference between males and females. The findings highlight the necessity for further exploration between male and female response to physical activity and feeding behavior.


Assuntos
Dieta/psicologia , Preferências Alimentares/fisiologia , Microbioma Gastrointestinal/fisiologia , Corrida/fisiologia , Caracteres Sexuais , Estriado Ventral/metabolismo , Animais , Gorduras na Dieta , Sacarose Alimentar , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/psicologia , Fezes/microbiologia , Feminino , Preferências Alimentares/psicologia , Masculino , Motivação/fisiologia , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores de Dopamina D2/metabolismo , Receptores Opioides mu/metabolismo , Recompensa , Corrida/psicologia , Amido
5.
Behav Neurosci ; 129(6): 812-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26501175

RESUMO

The present study explored the role of the amygdala in mediating a unique pattern of feeding behavior driven by intra-accumbens (intra-Acb) opioid activation in the rat. Temporary inactivation of the basolateral amygdala (BLA), via GABAA agonist muscimol administration prevents increased consumption following intra-Acb opioid administration of the selective µ-opioid agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO), yet leaves food approach behaviors intact, particularly after consumption has ended. One interpretation is that inactivation of the BLA selectively blocks neural activity underlying DAMGO-driven consummatory (consumption) but not appetitive (approach) behaviors. The present experiments take advantage of this temporal dissociation of consumption and approach behaviors to investigate their associated neural activity. Following either intra-Acb saline or DAMGO administration, with or without BLA muscimol administration, rats were given 2-hr access to a limited amount of high-fat diet. Immediately following the feeding session, rats were sacrificed and brains assayed for neural activity patterns across critical brain regions known to regulate both appetitive and consummatory feeding behaviors. The results show that intra-Acb DAMGO administration increased c-Fos activation in orexin neurons within the perifornical area of the hypothalamus and that this increase in activation is blocked by BLA muscimol inactivation. Intra-Acb DAMGO administration significantly increased c-Fos activation within dopaminergic neurons of the ventral tegmental area, compared to saline controls, and BLA inactivation had no effect on this increase. Overall, these data provide underlying circuitry that may mediate the selective influence of the BLA on driving consummatory, but not appetitive, feeding behaviors in a model of hedonically driven feeding behavior.


Assuntos
Analgésicos Opioides/farmacologia , Comportamento Apetitivo/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Dieta Hiperlipídica , Comportamento Alimentar/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Animais , Comportamento Apetitivo/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiologia , Masculino , Motivação/efeitos dos fármacos , Motivação/fisiologia , Atividade Motora/fisiologia , Muscimol/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
6.
Neuropharmacology ; 97: 171-81, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26044640

RESUMO

The exact role of opioid receptor signaling in mediating voluntary wheel running is unclear. To provide additional understanding, female rats selectively bred for motivation of low (LVR) versus high voluntary running (HVR) behaviors were used. Aims of this study were 1) to identify intrinsic differences in nucleus accumbens (NAc) mRNA expression of opioid-related transcripts and 2) to determine if nightly wheel running is differently influenced by bilateral NAc injections of either the mu-opioid receptor agonist D-Ala2, NMe-Phe4, Glyo5-enkephalin (DAMGO) (0.25, 2.5 µg/side), or its antagonist, naltrexone (5, 10, 20 µg/side). In Experiment 1, intrinsic expression of Oprm1 and Pdyn mRNAs were higher in HVR compared to LVR. Thus, the data imply that line differences in opioidergic mRNA in the NAc could partially contribute to differences in wheel running behavior. In Experiment 2, a significant decrease in running distance was present in HVR rats treated with 2.5 µg DAMGO, or with 10 µg and 20 µg naltrexone between hours 0-1 of the dark cycle. Neither DAMGO nor naltrexone had a significant effect on running distance in LVR rats. Taken together, the data suggest that the high nightly voluntary running distance expressed by HVR rats is mediated by increased endogenous mu-opioid receptor signaling in the NAc, that is disturbed by either agonism or antagonism. In summary, our findings on NAc opioidergic mRNA expression and mu-opioid receptor modulations suggest HVR rats, compared to LVR rats, express higher running levels mediated by an increase in motivation driven, in part, by elevated NAc opioidergic signaling.


Assuntos
Motivação/fisiologia , Atividade Motora/fisiologia , Núcleo Accumbens/fisiologia , Receptores Opioides mu/metabolismo , Corrida/fisiologia , Analgésicos Opioides/farmacologia , Animais , Animais não Endogâmicos , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Encefalinas/metabolismo , Feminino , Motivação/efeitos dos fármacos , Motivação/genética , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inibidores , Corrida/psicologia , Especificidade da Espécie
7.
Neurosci Biobehav Rev ; 37(9 Pt A): 1985-98, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23466532

RESUMO

Circuits that participate in specific subcomponents of feeding (e.g., gustatory perception, peripheral feedback relevant to satiety and energy balance, reward coding, etc.) are found at all levels of the neural axis. Further complexity is conferred by the wide variety of feeding-modulatory neurotransmitters and neuropeptides that act within these circuits. An ongoing challenge has been to refine the understanding of the functional specificity of these neurotransmitters and circuits, and there have been exciting advances in recent years. We focus here on foundational work of Dr. Ann Kelley that identified distinguishable actions of striatal opioid peptide modulation and dopamine transmission in subcomponents of reward processing. We also discuss her work in overlaying these neuropharmacological effects upon anatomical pathways that link the telencephalon (cortex and basal ganglia) with feeding-control circuits in the hypothalamus. Using these seminal contributions as a starting point, we will discuss new findings that expand our understanding of (1) the specific, differentiable motivational processes that are governed by central dopamine and opioid transmission, (2) the manner in which other striatal neuromodulators, specifically acetylcholine, endocannabinoids and adenosine, modulate these motivational processes (including via interactions with opioid systems), and (3) the organization of the cortical-subcortical network that subserves opioid-driven feeding. The findings discussed here strengthen the view that incentive-motivational properties of food are coded by substrates and neural circuits that are distinguishable from those that mediate the acute hedonic experience of food reward. Striatal opioid transmission modulates reward processing by engaging frontotemporal circuits, possibly via a hypothalamic-thalamic axis, that ultimately impinges upon hypothalamic modules dedicated to autonomic function and motor pattern control. We will conclude by discussing implications for understanding disorders of "non-homeostatic" feeding.


Assuntos
Comportamento Alimentar/fisiologia , Motivação/fisiologia , Recompensa , Animais , Comportamento Alimentar/efeitos dos fármacos , Humanos , Motivação/efeitos dos fármacos , Vias Neurais , Neuroanatomia , Neurofarmacologia
8.
Physiol Behav ; 105(3): 661-8, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22001493

RESUMO

Dopamine signaling in the nucleus accumbens (NAc) has been postulated to influence reward development towards drugs of abuse and exercise. Herein, we used generation 4-5 rats that were selectively bred to voluntary run high (HVR) versus low (LVR) distances in order to examine if dopamine-like 1 (D1) receptor modulation in the NAc differentially affects nightly voluntary wheel running between these lines. A subset of generation 5-6 HVR and LVR rats were also used to study the mRNA expression of key genes related to reward and addiction in the NAc (i.e., DRD1, DRD5, DRD2, Nr4a2, FosB, and BDNF). In a crossover fashion, a D1-like agonist SKF 82958 (2 µg per side) or D1-like full antagonist SCH 23390 (4 µg per side) was bilaterally injected into the NAc of HVR and LVR female Wistar rats prior to their high running nights. Notably, during hours 2-4 (between 2000 and 2300) of the dark cycle there was a significant decrement in running distances in the HVR rats treated with the D1 agonist (p=0.025) and antagonist (p=0.017) whereas the running distances in LVR rats were not affected. Interestingly, HVR and LVR rats possessed similar NAc concentrations of the studied mRNAs. These data suggest that: a) animals predisposed to run high distances on a nightly basis may quickly develop a rewarding response to exercise due to an optimal D1-like receptor signaling pathway in the NAc that can be perturbed by either activation or blocking, b) D1-like agonist or antagonist injections do not increase running distances in rats that are bred to run low nightly distances, and c) running differences between HVR and LVR animals are seemingly not due to the expression of the studied mRNAs. Given the societal prevalence of obesity and extraneous physical inactivity, future studies should be performed in order to further determine the culprit for the low running phenotype observed in LVR animals.


Assuntos
Atividade Motora/genética , Núcleo Accumbens/fisiologia , Receptores de Dopamina D1/fisiologia , Corrida/fisiologia , Análise de Variância , Animais , Índice de Massa Corporal , Dopaminérgicos/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Fatores de Tempo
9.
Brain Res ; 1306: 85-92, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19822132

RESUMO

Nucleus accumbens micro-opioid stimulation leads to robust increases in the intake of highly palatable foods, such as a high-fat diet. While interactions between opioids and certain striatal neurotransmitters underlying this phenomenon have been explored, many potential interactions have not. Striatal adenosine has been shown to have a significant influence on striatal neurotransmission and locomotor activity behavior, however the interaction between opioids and adenosine on feeding behaviors has received less attention. The present study explored this interaction within the context of opioid-driven consumption of a high-fat diet. Specifically, intra-accumbens administration of selective A1 and A2(A) adenosine receptor ligands, with or without concurrent administration of the micro-opioid agonist (D)-Ala(2),N,Me-Phe(4),Gly-ol(5)-enkaphalin (DAMGO), on high-fat consumption and associated locomotor activity was examined. The A1 receptor agonist 2-Chloro-N6-cyclopentyladenosine (CCPA) had no effect on either baseline or DAMGO-induced locomotor or consumption behaviors associated with the high-fat diet. However, the A2(A) receptor agonist 2-p-(2 carboxyethyl)-phenethylamino-5'-N-ethylcarboxamido adenosine hydrochloride (CGS 21680) and the prodrug of the A2(A) receptor antagonist MSX-2, 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3) produced the expected decrease and increase in locomotor activity, respectively. CGS 21680 had no effect on baseline or DAMGO-driven consumption of the high-fat diet. MSX-3 had no effect on DAMGO-induced locomotor activity but increased DAMGO-induced consumption. Lastly, the increased activity and consumption produced by MSX-3 alone was blocked by prior administration of the opioid antagonist naltrexone. In summary, these results suggest a potential role of striatal adenosine A2(A) receptors in mediating baseline and striatal opioid-mediated intake of a high-fat diet.


Assuntos
Gorduras na Dieta , Ingestão de Alimentos/fisiologia , Núcleo Accumbens/fisiologia , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores Opioides mu/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina , Agonistas do Receptor A2 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Animais , Cateterismo , Fármacos do Sistema Nervoso Central/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Fenetilaminas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inibidores , Xantinas/farmacologia
10.
Drug Alcohol Depend ; 89(2-3): 282-91, 2007 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-17368966

RESUMO

Lobeline diminishes the behavioral and neurochemical effects of nicotine and amphetamines, and is considered a potential pharmacotherapy for drug abuse and addiction. Lobeline has high affinity for nicotinic acetylcholine receptors and inhibits the function of vesicular monoamine and dopamine transporters. The present study investigated the less-explored interaction of lobeline and the endogenous opioid system. In guinea pig brain homogenates, lobeline displaced (K(i)=0.74 microM) the binding of [(3)H]DAMGO [(D-Ala(2), N-ME-Phe(4), Gly(5)-ol)-enkephalin]. In a functional assay system comprised of MOR-1 mu opioid receptors and GIRK2 potassium channels expressed in Xenopus oocytes, lobeline had no effect on the resting current, but maximally inhibited (IC(50)=1.1 microM) morphine- and DAMGO-activated potassium current in a concentration-dependent manner. In a second functional assay, lobeline-evoked [(3)H]overflow from rat striatal slices preloaded with [(3)H]dopamine was not blocked by naltrexone. Importantly, concentrations of lobeline (0.1-0.3 microM) that did not have intrinsic activity attenuated ( approximately 50%) morphine-evoked [(3)H]overflow. Overall, the results suggest that lobeline functions as a mu opioid receptor antagonist. The ability of lobeline to block psychostimulant effects may be mediated by opioid receptor antagonism, and lobeline could be investigated as a treatment for opiate addiction.


Assuntos
Encéfalo/efeitos dos fármacos , Lobelina/farmacologia , Morfina/farmacologia , Antagonistas de Entorpecentes/farmacologia , Entorpecentes/farmacologia , Receptores Opioides mu/efeitos dos fármacos , Receptores Opioides/efeitos dos fármacos , Analgésicos Opioides/farmacocinética , Animais , Ligação Competitiva , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacocinética , Cobaias , Técnicas In Vitro , Mecamilamina/farmacologia , Naltrexona/farmacologia , Nicotina/farmacologia , Oócitos , Ensaio Radioligante , Receptores Opioides/metabolismo , Receptores Opioides mu/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA