Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 61(10): 2215-2224, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30046852

RESUMO

AIMS/HYPOTHESIS: Islet amyloid deposits contribute to beta cell dysfunction and death in most individuals with type 2 diabetes but non-invasive methods to determine the presence of these pathological protein aggregates are currently not available. Therefore, we examined whether florbetapir, a radiopharmaceutical agent used for detection of amyloid-ß deposits in the brain, also allows identification of islet amyloid in the pancreas. METHODS: Saturation binding assays were used to determine the affinity of florbetapir for human islet amyloid polypeptide (hIAPP) aggregates in vitro. Islet amyloid-prone transgenic mice that express hIAPP in their beta cells and amyloid-free non-transgenic control mice were used to examine the ability of florbetapir to detect islet amyloid deposits in vitro, in vivo and ex vivo. Mice or mouse pancreases were subjected to autoradiographic, histochemical and/or positron emission tomography (PET) analyses to assess the utility of florbetapir in identifying islet amyloid. RESULTS: In vitro, florbetapir bound synthetic hIAPP fibrils with a dissociation constant of 7.9 nmol/l. Additionally, florbetapir bound preferentially to amyloid-containing hIAPP transgenic vs amyloid-free non-transgenic mouse pancreas sections in vitro, as determined by autoradiography (16,475 ± 5581 vs 5762 ± 575 density/unit area, p < 0.05). In hIAPP transgenic and non-transgenic mice fed a high-fat diet for 1 year, intravenous administration of florbetapir followed by PET scanning showed that the florbetapir signal was significantly higher in amyloid-laden hIAPP transgenic vs amyloid-free non-transgenic pancreases in vivo during the first 5 min of the scan (36.83 ± 2.22 vs 29.34 ± 2.03 standardised uptake value × min, p < 0.05). Following PET, pancreases were excised and florbetapir uptake was determined ex vivo by γ counting. Pancreatic uptake of florbetapir was significantly correlated with the degree of islet amyloid deposition, the latter assessed by histochemistry (r = 0.74, p < 0.001). CONCLUSIONS/INTERPRETATION: Florbetapir binds to islet amyloid deposits in a specific and quantitative manner. In the future, florbetapir may be useful as a non-invasive tool to identify islet amyloid deposits in humans.


Assuntos
Amiloide/química , Compostos de Anilina/farmacologia , Etilenoglicóis/farmacologia , Ilhotas Pancreáticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Composição Corporal , Calorimetria Indireta , Radioisótopos de Flúor/farmacologia , Regulação da Expressão Gênica , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Hipotálamo/metabolismo , Insulina/metabolismo , Resistência à Insulina , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais
2.
Diabetologia ; 60(4): 701-708, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27933334

RESUMO

AIM/HYPOTHESIS: Neprilysin, a widely expressed peptidase, is upregulated in metabolically altered states such as obesity and type 2 diabetes. Like dipeptidyl peptidase-4 (DPP-4), neprilysin can degrade and inactivate the insulinotropic peptide glucagon-like peptide-1 (GLP-1). Thus, we investigated whether neprilysin deficiency enhances active GLP-1 levels and improves glycaemia in a mouse model of high fat feeding. METHODS: Nep +/+ and Nep -/- mice were fed a 60% fat diet for 16 weeks, after which active GLP-1 and DPP-4 activity levels were measured, as were glucose, insulin and C-peptide levels during an OGTT. Insulin sensitivity was assessed using an insulin tolerance test. RESULTS: High-fat-fed Nep -/- mice exhibited elevated active GLP-1 levels (5.8 ± 1.1 vs 3.5 ± 0.8 pmol/l, p < 0.05) in association with improved glucose tolerance, insulin sensitivity and beta cell function compared with high-fat-fed Nep +/+ mice. In addition, plasma DPP-4 activity was lower in high-fat-fed Nep -/- mice (7.4 ± 1.0 vs 10.7 ± 1.3 nmol ml-1 min-1, p < 0.05). No difference in insulin:C-peptide ratio was observed between Nep -/- and Nep +/+ mice, suggesting that improved glycaemia does not result from changes in insulin clearance. CONCLUSIONS/INTERPRETATION: Under conditions of increased dietary fat, an improved glycaemic status in neprilysin-deficient mice is associated with elevated active GLP-1 levels, reduced plasma DPP-4 activity and improved beta cell function. Thus, neprilysin inhibition may be a novel treatment strategy for type 2 diabetes.


Assuntos
Glicemia/metabolismo , Dipeptidil Peptidase 4/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Neprilisina/deficiência , Neprilisina/metabolismo , Análise de Variância , Animais , Peptídeo C/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/metabolismo , Masculino , Camundongos , Camundongos Mutantes
3.
Endocrinology ; 158(2): 293-303, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27870582

RESUMO

Islet endothelial cells produce paracrine factors that support ß-cell function and growth. Endothelial dysfunction underlies diabetic microvascular complications; thus, we hypothesized that in diabetes, islet endothelial cells become dysfunctional, which may contribute to ß-cell secretory dysfunction. Islets/islet endothelial cells were isolated from diabetic B6.BKS(D)-Leprdb/J male (db/db) mice, treated with or without the glucose-lowering agent phlorizin, or from C57BL/6J mice fed a high-fat diet for 18 weeks and appropriate controls. Messenger RNA (mRNA) and/or the protein levels of the cell adhesion molecule E-selectin (Sele), proinflammatory cytokine interleukin-6 (Il6), vasoconstrictor endothelin-1 (Edn1), and endothelial nitric oxide synthase (Nos3; Nos3) were evaluated, along with advanced glycation end product immunoreactivity. Furthermore, an islet endothelial cell line (MS-1) was exposed to diabetic factors (glucose, palmitate, insulin, and tumor necrosis factor-α) for six days. Conditioned media were collected from these cells, incubated with isolated islets, and glucose-stimulated insulin secretion and insulin content were assessed. Islet endothelial cells from db/db mice exhibited increased Sele, Il6, and Edn1 mRNA levels, decreased Nos3 protein, and accumulation of advanced glycation end products. Phlorizin treatment significantly increased Nos3 protein levels but did not alter expression of the other markers. High-fat feeding in C57BL/6J mice resulted in increased islet Sele, Il6, and Edn1 but no change in Nos3. Exposure of islets to conditioned media from MS-1 cells cultured in diabetic conditions resulted in a 50% decrease in glucose-stimulated insulin secretion and 30% decrease in insulin content. These findings demonstrate that, in diabetes, islet endothelial cells show evidence of a dysfunctional phenotype, which may contribute to loss of ß-cell function.


Assuntos
Endotélio/fisiopatologia , Insulina/metabolismo , Ilhotas Pancreáticas/fisiopatologia , Animais , Biomarcadores/metabolismo , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/metabolismo , Glucose , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Florizina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA