Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurodegener ; 17(1): 41, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690868

RESUMO

BACKGROUND: Genetic mutations underlying familial Alzheimer's disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (AppSAA) using homologous recombination to introduce three disease-causing coding mutations (Swedish, Arctic and Austrian) to the mouse App gene. Amyloid-ß pathology, neurodegeneration, glial responses, brain metabolism and behavioral phenotypes were characterized in heterozygous and homozygous AppSAA mice at different ages in brain and/ or biofluids. Wild type littermate mice were used as experimental controls. We used in situ imaging technologies to define the whole-brain distribution of amyloid plaques and compare it to other AD mouse models and human brain pathology. To further explore the microglial response to AD relevant pathology, we isolated microglia with fibrillar Aß content from the brain and performed transcriptomics and metabolomics analyses and in vivo brain imaging to measure energy metabolism and microglial response. Finally, we also characterized the mice in various behavioral assays. RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aß content. The AppSAA knock-in mouse model recapitulates key pathological features of AD such as a progressive accumulation of parenchymal amyloid plaques and vascular amyloid deposits, altered astroglial and microglial responses and elevation of CSF markers of neurodegeneration. Those observations were associated with increased TSPO and FDG-PET brain signals and a hyperactivity phenotype as the animals aged. DISCUSSION: Our findings demonstrate that fibrillar Aß in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/patologia , Receptores de GABA/metabolismo
2.
Front Aging Neurosci ; 14: 854031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431893

RESUMO

We undertook longitudinal ß-amyloid positron emission tomography (Aß-PET) imaging as a translational tool for monitoring of chronic treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone in Aß model mice. We thus tested the hypothesis this treatment would rescue from increases of the Aß-PET signal while promoting spatial learning and preservation of synaptic density. Here, we investigated longitudinally for 5 months PS2APP mice (N = 23; baseline age: 8 months) and App NL-G-F mice (N = 37; baseline age: 5 months) using Aß-PET. Groups of mice were treated with pioglitazone or vehicle during the follow-up interval. We tested spatial memory performance and confirmed terminal PET findings by immunohistochemical and biochemistry analyses. Surprisingly, Aß-PET and immunohistochemistry revealed a shift toward higher fibrillary composition of Aß-plaques during upon chronic pioglitazone treatment. Nonetheless, synaptic density and spatial learning were improved in transgenic mice with pioglitazone treatment, in association with the increased plaque fibrillarity. These translational data suggest that a shift toward higher plaque fibrillarity protects cognitive function and brain integrity. Increases in the Aß-PET signal upon immunomodulatory treatments targeting Aß aggregation can thus be protective.

3.
J Nucl Med ; 63(1): 117-124, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34016733

RESUMO

ß-amyloid (Aß) PET is an important tool for quantification of amyloidosis in the brain of suspected Alzheimer disease (AD) patients and transgenic AD mouse models. Despite the excellent correlation of Aß PET with gold standard immunohistochemical assessments, the relative contributions of fibrillar and nonfibrillar Aß components to the in vivo Aß PET signal remain unclear. Thus, we obtained 2 murine cerebral amyloidosis models that present with distinct Aß plaque compositions and performed regression analysis between immunohistochemistry and Aß PET to determine the biochemical contributions to Aß PET signal in vivo. Methods: We investigated groups of AppNL-G-F and APPPS1 mice at 3, 6, and 12 mo of age by longitudinal 18F-florbetaben Aß PET and with immunohistochemical analysis of the fibrillar and total Aß burdens. We then applied group-level intermodality regression models using age- and genotype-matched sets of fibrillar and nonfibrillar Aß data (predictors) and Aß PET results (outcome) for both Aß mouse models. An independent group of double-hit APPPS1 mice with dysfunctional microglia due to knockout of triggering receptor expression on myeloid cells 2 (Trem2-/-) served for validation and evaluation of translational impact. Results: Neither fibrillar nor nonfibrillar Aß content alone sufficed to explain the Aß PET findings in either AD model. However, a regression model compiling fibrillar and nonfibrillar Aß together with the estimate of individual heterogeneity and age at scanning could explain a 93% of variance of the Aß PET signal (P < 0.001). Fibrillar Aß burden had a 16-fold higher contribution to the Aß PET signal than nonfibrillar Aß. However, given the relatively greater abundance of nonfibrillar Aß, we estimate that nonfibrillar Aß produced 79% ± 25% of the net in vivo Aß PET signal in AppNL-G-F mice and 25% ± 12% in APPPS1 mice. Corresponding results in separate groups of APPPS1/Trem2-/- and APPPS1/Trem2+/+ mice validated the calculated regression factors and revealed that the altered fibrillarity due to Trem2 knockout impacts the Aß PET signal. Conclusion: Taken together, the in vivo Aß PET signal derives from the composite of fibrillar and nonfibrillar Aß plaque components. Although fibrillar Aß has inherently higher PET tracer binding, the greater abundance of nonfibrillar Aß plaque in AD-model mice contributes importantly to the PET signal.


Assuntos
Placa Amiloide
4.
Cells ; 12(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36611872

RESUMO

Amyloid-ß (Aß) deposition is an initiating factor in Alzheimer's disease (AD). Microglia are the brain immune cells that surround and phagocytose Aß plaques, but their phagocytic capacity declines in AD. This is in agreement with studies that associate AD risk loci with genes regulating the phagocytic function of immune cells. Immunotherapies are currently pursued as strategies against AD and there are increased efforts to understand the role of the immune system in ameliorating AD pathology. Here, we evaluated the effect of the Aß targeting ACI-24 vaccine in reducing AD pathology in an amyloidosis mouse model. ACI-24 vaccination elicited a robust and sustained antibody response in APPPS1 mice with an accompanying reduction of Aß plaque load, Aß plaque-associated ApoE and dystrophic neurites as compared to non-vaccinated controls. Furthermore, an increased number of NLRP3-positive plaque-associated microglia was observed following ACI-24 vaccination. In contrast to this local microglial activation at Aß plaques, we observed a more ramified morphology of Aß plaque-distant microglia compared to non-vaccinated controls. Accordingly, bulk transcriptomic analysis revealed a trend towards the reduced expression of several disease-associated microglia (DAM) signatures that is in line with the reduced Aß plaque load triggered by ACI-24 vaccination. Our study demonstrates that administration of the Aß targeting vaccine ACI-24 reduces AD pathology, suggesting its use as a safe and cost-effective AD therapeutic intervention.


Assuntos
Doença de Alzheimer , Amiloidose , Camundongos , Animais , Microglia/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Placa Amiloide/metabolismo , Fenótipo , Vacinação
5.
Sci Transl Med ; 13(615): eabe5640, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644146

RESUMO

2-Deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) is widely used to study cerebral glucose metabolism. Here, we investigated whether the FDG-PET signal is directly influenced by microglial glucose uptake in mouse models and patients with neurodegenerative diseases. Using a recently developed approach for cell sorting after FDG injection, we found that, at cellular resolution, microglia displayed higher glucose uptake than neurons and astrocytes. Alterations in microglial glucose uptake were responsible for both the FDG-PET signal decrease in Trem2-deficient mice and the FDG-PET signal increase in mouse models for amyloidosis. Thus, opposite microglial activation states determine the differential FDG uptake. Consistently, 12 patients with Alzheimer's disease and 21 patients with four-repeat tauopathies also exhibited a positive association between glucose uptake and microglial activity as determined by 18F-GE-180 18-kDa translocator protein PET (TSPO-PET) in preserved brain regions, indicating that the cerebral glucose uptake in humans is also strongly influenced by microglial activity. Our findings suggest that microglia activation states are responsible for FDG-PET signal alterations in patients with neurodegenerative diseases and mouse models for amyloidosis. Microglial activation states should therefore be considered when performing FDG-PET.


Assuntos
Fluordesoxiglucose F18 , Doenças Neurodegenerativas , Humanos , Glucose , Microglia , Doenças Neurodegenerativas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Camundongos
6.
J Nucl Med ; 61(12): 1825-1831, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32414948

RESUMO

Asymmetries of amyloid-ß (Aß) burden are well known in Alzheimer disease (AD) but did not receive attention in Aß mouse models of Alzheimer disease. Therefore, we investigated Aß asymmetries in Aß mouse models examined by Aß small-animal PET and tested if such asymmetries have an association with microglial activation. Methods: We analyzed 523 cross-sectional Aß PET scans of 5 different Aß mouse models (APP/PS1, PS2APP, APP-SL70, AppNL-G-F , and APPswe) together with 136 18-kDa translocator protein (TSPO) PET scans for microglial activation. The asymmetry index (AI) was calculated between tracer uptake in both hemispheres. AIs of Aß PET were analyzed in correlation with TSPO PET AIs. Extrapolated required sample sizes were compared between analyses of single and combined hemispheres. Results: Relevant asymmetries of Aß deposition were identified in at least 30% of all investigated mice. There was a significant correlation between AIs of Aß PET and TSPO PET in 4 investigated Aß mouse models (APP/PS1: R = 0.593, P = 0.001; PS2APP: R = 0.485, P = 0.019; APP-SL70: R = 0.410, P = 0.037; AppNL-G-F : R = 0.385, P = 0.002). Asymmetry was associated with higher variance of tracer uptake in single hemispheres, leading to higher required sample sizes. Conclusion: Asymmetry of fibrillar plaque neuropathology occurs frequently in Aß mouse models and acts as a potential confounder in experimental designs. Concomitant asymmetry of microglial activation indicates a neuroinflammatory component to hemispheric predominance of fibrillary amyloidosis.


Assuntos
Peptídeos beta-Amiloides/química , Placa Amiloide/metabolismo , Agregados Proteicos , Animais , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Placa Amiloide/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
7.
EMBO Mol Med ; 12(4): e11227, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32154671

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is essential for the transition of homeostatic microglia to a disease-associated microglial state. To enhance TREM2 activity, we sought to selectively increase the full-length protein on the cell surface via reducing its proteolytic shedding by A Disintegrin And Metalloproteinase (i.e., α-secretase) 10/17. We screened a panel of monoclonal antibodies against TREM2, with the aim to selectively compete for α-secretase-mediated shedding. Monoclonal antibody 4D9, which has a stalk region epitope close to the cleavage site, demonstrated dual mechanisms of action by stabilizing TREM2 on the cell surface and reducing its shedding, and concomitantly activating phospho-SYK signaling. 4D9 stimulated survival of macrophages and increased microglial uptake of myelin debris and amyloid ß-peptide in vitro. In vivo target engagement was demonstrated in cerebrospinal fluid, where nearly all soluble TREM2 was 4D9-bound. Moreover, in a mouse model for Alzheimer's disease-related pathology, 4D9 reduced amyloidogenesis, enhanced microglial TREM2 expression, and reduced a homeostatic marker, suggesting a protective function by driving microglia toward a disease-associated state.


Assuntos
Anticorpos Monoclonais/farmacologia , Glicoproteínas de Membrana/imunologia , Microglia , Mieloma Múltiplo , Receptores Imunológicos/imunologia , Peptídeos beta-Amiloides , Animais , Linhagem Celular Tumoral , Feminino , Macrófagos , Camundongos , Microglia/patologia , Ratos , Ratos Wistar
8.
Theranostics ; 8(18): 4957-4968, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429879

RESUMO

Beta secretase (BACE) inhibitors are promising therapeutic compounds currently in clinical phase II/III trials. Preclinical [18F]-florbetaben (FBB) amyloid PET imaging facilitates longitudinal monitoring of amyloidosis in Alzheimer's disease (AD) mouse models. Therefore, we applied this theranostic concept to investigate, by serial FBB PET, the efficacy of a novel BACE1 inhibitor in the PS2APP mouse, which is characterized by early and massive amyloid deposition. Methods: PS2APP and C57BL/6 (WT) mice were assigned to treatment (PS2APP: N=13; WT: N=11) and vehicle control (PS2APP: N=13; WT: N=11) groups at the age of 9.5 months. All animals had a baseline PET scan and follow-up scans at two months and after completion of the four-month treatment period. In addition to this longitudinal analysis of cerebral amyloidosis by PET, we undertook biochemical amyloid peptide quantification and histological amyloid plaque analyses after the final PET session. Results: BACE1 inhibitor-treated transgenic mice revealed a progression of the frontal cortical amyloid signal by 8.4 ± 2.2% during the whole treatment period, which was distinctly lower when compared to vehicle-treated mice (15.3 ± 4.4%, p<0.001). A full inhibition of progression was evident in regions with <3.7% of the increase in controls, whereas regions with >10% of the increase in controls showed only 40% attenuation with BACE1 inhibition. BACE1 inhibition in mice with lower amyloidosis at treatment initiation showed a higher efficacy in attenuating progression to PET. A predominant reduction of small plaques in treated mice indicated a main effect of BACE1 on inhibition of de novo amyloidogenesis. Conclusions: This theranostic study with BACE1 treatment in a transgenic AD model together with amyloid PET monitoring indicated that progression of amyloidosis is more effectively reduced in regions with low initial plaque development and revealed the need of an early treatment initiation during amyloidogenesis.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/análise , Compostos de Anilina/administração & dosagem , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Estilbenos/administração & dosagem , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons/métodos , Resultado do Tratamento
9.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 217-230, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27818272

RESUMO

Despite existing knowledge about the role of the A Disintegrin and Metalloproteinase 10 (ADAM10) as the α-secretase involved in the non-amyloidogenic processing of the amyloid precursor protein (APP) and Notch signalling we have only limited information about its regulation. In this study, we have identified ADAM10 interactors using a split ubiquitin yeast two hybrid approach. Tetraspanin 3 (Tspan3), which is highly expressed in the murine brain and elevated in brains of Alzheimer´s disease (AD) patients, was identified and confirmed to bind ADAM10 by co-immunoprecipitation experiments in mammalian cells in complex with APP and the γ-secretase protease presenilin. Tspan3 expression increased the cell surface levels of its interacting partners and was mainly localized in early and late endosomes. In contrast to the previously described ADAM10-binding tetraspanins, Tspan3 did not affect the endoplasmic reticulum to plasma membrane transport of ADAM10. Heterologous Tspan3 expression significantly increased the appearance of carboxy-terminal cleavage products of ADAM10 and APP, whereas N-cadherin ectodomain shedding appeared unaffected. Inhibiting the endocytosis of Tspan3 by mutating a critical cytoplasmic tyrosine-based internalization motif led to increased surface expression of APP and ADAM10. After its downregulation in neuroblastoma cells and in brains of Tspan3-deficient mice, ADAM10 and APP levels appeared unaltered possibly due to a compensatory increase in the expression of Tspans 5 and 7, respectively. In conclusion, our data suggest that Tspan3 acts in concert with other tetraspanins as a stabilizing factor of active ADAM10, APP and the γ-secretase complex at the plasma membrane and within the endocytic pathway.


Assuntos
Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Endossomos/metabolismo , Proteínas de Membrana/genética , Presenilinas/genética , Tetraspaninas/genética , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Química Encefálica , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endocitose , Endossomos/química , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Presenilinas/metabolismo , Ligação Proteica , Transporte Proteico , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Tetraspaninas/metabolismo , Técnicas do Sistema de Duplo-Híbrido
10.
Brain Res Bull ; 126(Pt 2): 178-182, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27393467

RESUMO

Neuregulin-1 (NRG1), known also as heregulin, acetylcholine receptor inducing activity (ARIA), glial growth factor (GGF), or sensory and motor neuron derived factor (SMDF), is a key factor for many developmental processes and in adult brain. All known splice variants contain an epidermal growth factor (EGF)-like domain, which is mediating signaling via receptors of the ErbB family. In particular, NRG1 acts as an essential signaling molecule expressed on the axonal surface, where it signals to Schwann cells throughout development and regulates the thickness of the myelin sheath. NRG1 is required also by other cell types in the nervous system, for instance as an axonal signal released by proprioceptive afferents to induce development of the muscle spindle, and it controls aspects of cortical interneuron development as well as the formation of thalamo-cortical projections. The precursor protein of NRG1 can be activated and released from the membrane through limited proteolysis by the ß-Secretase (ß-site amyloid precursor protein cleaving enzyme 1, BACE1) which was first identified through its function as the rate limiting enzyme of amyloid-ß-peptide (Aß) production. Aß is the major component of amyloid plaques in Alzheimer's disease (AD). Due to the hairpin nature of NRG1 type III two membrane-bound stubs with a type 1 and a type 2 orientation are generated by an initial proteolytic cleavage and successive release of the EGF-like domain either by dual cleavage by BACE1 or by ADAM17 (a disintegrin and metalloprotease) which is also called TACE (Tumor Necrosis Factor-α-converting enzyme). The cleavages activate NRG1 to allow juxtacrine or paracrine signaling. The type 1 oriented stub is further cleaved by γ-secretase in the transmembrane domain with a putative role in intracellular domain (ICD) signaling, while the type II oriented stub is cleaved by signal peptidase like proteases (SPPLs). Neuregulin-1 was identified as a major physiological substrate of BACE1 during early postnatal development when similarities in BACE1 KO mice and NRG1 heterozygous mice were discovered. Both display severe hypomyelination of peripheral nerves. Later it was shown with genetic and pharmacological evidence that the developmental effect of type I NRG1 on the formation and the maintenance of muscle spindles is BACE1 dependent. Thus, NRG1 functions in PNS and CNS are likely to set limits to an Alzheimer disease therapy with relatively strong BACE1 inhibition.


Assuntos
Neuregulina-1/metabolismo , Proteólise , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Humanos , Proteólise/efeitos dos fármacos
11.
J Biol Chem ; 291(1): 318-33, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26574544

RESUMO

Numerous membrane-bound proteins undergo regulated intramembrane proteolysis. Regulated intramembrane proteolysis is initiated by shedding, and the remaining stubs are further processed by intramembrane-cleaving proteases (I-CLiPs). Neuregulin 1 type III (NRG1 type III) is a major physiological substrate of ß-secretase (ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1)). BACE1-mediated cleavage is required to allow signaling of NRG1 type III. Because of the hairpin nature of NRG1 type III, two membrane-bound stubs with a type 1 and a type 2 orientation are generated by proteolytic processing. We demonstrate that these stubs are substrates for three I-CLiPs. The type 1-oriented stub is further cleaved by γ-secretase at an ϵ-like site five amino acids N-terminal to the C-terminal membrane anchor and at a γ-like site in the middle of the transmembrane domain. The ϵ-cleavage site is only one amino acid N-terminal to a Val/Leu substitution associated with schizophrenia. The mutation reduces generation of the NRG1 type III ß-peptide as well as reverses signaling. Moreover, it affects the cleavage precision of γ-secretase at the γ-site similar to certain Alzheimer disease-associated mutations within the amyloid precursor protein. The type 2-oriented membrane-retained stub of NRG1 type III is further processed by signal peptide peptidase-like proteases SPPL2a and SPPL2b. Expression of catalytically inactive aspartate mutations as well as treatment with 2,2'-(2-oxo-1,3-propanediyl)bis[(phenylmethoxy)carbonyl]-l-leucyl-l-leucinamide ketone inhibits formation of N-terminal intracellular domains and the corresponding secreted C-peptide. Thus, NRG1 type III is the first protein substrate that is not only cleaved by multiple sheddases but is also processed by three different I-CLiPs.


Assuntos
Membrana Celular/enzimologia , Neuregulina-1/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Peptídeo C/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutação/genética , Neurônios/metabolismo , Peptídeos/química , Polimorfismo de Nucleotídeo Único/genética , Estrutura Terciária de Proteína , Ratos , Esquizofrenia/genética , Especificidade por Substrato
12.
J Neurosci ; 33(18): 7856-69, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23637177

RESUMO

Proteolytic shedding of cell surface proteins generates paracrine signals involved in numerous signaling pathways. Neuregulin 1 (NRG1) type III is involved in myelination of the peripheral nervous system, for which it requires proteolytic activation by proteases of the ADAM family and BACE1. These proteases are major therapeutic targets for the prevention of Alzheimer's disease because they are also involved in the proteolytic generation of the neurotoxic amyloid ß-peptide. Identification and functional investigation of their physiological substrates is therefore of greatest importance in preventing unwanted side effects. Here we investigated proteolytic processing of NRG1 type III and demonstrate that the ectodomain can be cleaved by three different sheddases, namely ADAM10, ADAM17, and BACE1. Surprisingly, we not only found cleavage by ADAM10, ADAM17, and BACE1 C-terminal to the epidermal growth factor (EGF)-like domain, which is believed to play a pivotal role in signaling, but also additional cleavage sites for ADAM17 and BACE1 N-terminal to that domain. Proteolytic processing at N- and C-terminal sites of the EGF-like domain results in the secretion of this domain from NRG1 type III. The soluble EGF-like domain is functionally active and stimulates ErbB3 signaling in tissue culture assays. Moreover, the soluble EGF-like domain is capable of rescuing hypomyelination in a zebrafish mutant lacking BACE1. Our data suggest that NRG1 type III-dependent myelination is not only controlled by membrane-retained NRG1 type III, but also in a paracrine manner via proteolytic liberation of the EGF-like domain.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Neurregulinas/metabolismo , Comunicação Parácrina/fisiologia , Proteína ADAM17 , Animais , Membrana Celular/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Embrião de Mamíferos , Fator de Crescimento Epidérmico/análogos & derivados , Fator de Crescimento Epidérmico/química , Humanos , Imunoprecipitação , Neurregulinas/genética , Neurônios , Fosforilação , Proteólise , RNA Mensageiro/administração & dosagem , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Células de Schwann , Transfecção , Peixe-Zebra
13.
J Neurochem ; 127(4): 471-81, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23406323

RESUMO

Alzheimer's disease is the most frequent dementia. Pathologically, Alzheimer's disease is characterized by the accumulation of senile plaques composed of amyloid ß-peptide (Aß). Two proteases, ß- and γ-secretase proteolytically generate Aß from its precursor, the ß-amyloid precursor protein (APP). Inhibition of ß-secretase, also referred to as beta-site APP cleaving enzyme (BACE1) or γ-secretase is therefore of prime interest for the development of amyloid-lowering drugs. To assess the in vivo function of zebrafish Bace1 (zBace1), we generated zBace1 knock out fish by zinc finger nuclease-mediated genome editing. bace1 mutants (bace1-/-) are hypomyelinated in the PNS while the CNS is not affected. Moreover, the number of mechanosensory neuromasts is elevated in bace1-/-. Mutations in zebrafish Bace2 (zBace2) revealed a distinct melanocyte migration phenotype, which is not observed in bace1-/-. Double homozygous bace1-/-; bace2-/- fish do not enhance the single mutant phenotypes indicating non-redundant distinct physiological functions. Single homozygous bace1 mutants as well as double homozygous bace1 and bace2 mutants are viable and fertile suggesting that Bace1 is a promising drug target without major side effects. The identification of a specific bace2 -/- associated phenotype further allows improving selective Bace1 inhibitors and to distinguish between Bace 1 and Bace 2 inhibition in vivo. Inhibition of BACE1 protease activity has therapeutic importance for Alzheimer's disease. Analysis of BACE1 and BACE2 knock-out zebrafish revealed that they exhibit distinct phenotypes. bace1 mutants display hypomyelination in the PNS and supernumerary neuromasts while in bace2 mutants the shape and migration of melanocytes is affected. These phenotypes are not further enhanced in the viable double mutants. Our data suggest that blocking BACE1 activity is a safe therapeutic approach.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Melanócitos/fisiologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Animais Geneticamente Modificados , Movimento Celular , Técnicas de Inativação de Genes , Larva/genética , Larva/metabolismo , Modelos Animais , Mutação , Fenótipo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo
14.
EMBO J ; 31(14): 3157-68, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22728825

RESUMO

Cell surface proteolysis is essential for communication between cells and results in the shedding of membrane-protein ectodomains. However, physiological substrates of the contributing proteases are largely unknown. We developed the secretome protein enrichment with click sugars (SPECS) method, which allows proteome-wide identification of shedding substrates and secreted proteins from primary cells, even in the presence of serum proteins. SPECS combines metabolic glycan labelling and click chemistry-mediated biotinylation and distinguishes between cellular and serum proteins. SPECS identified 34, mostly novel substrates of the Alzheimer protease BACE1 in primary neurons, making BACE1 a major sheddase in the nervous system. Selected BACE1 substrates-seizure-protein 6, L1, CHL1 and contactin-2-were validated in brains of BACE1 inhibitor-treated and BACE1 knock-out mice. For some substrates, BACE1 was the major sheddase, whereas for other substrates additional proteases contributed to total substrate shedding. The new substrates point to a central function of BACE1 in neurite outgrowth and synapse formation. SPECS is also suitable for quantitative secretome analyses of primary cells and may be used for the discovery of biomarkers secreted from tumour or stem cells.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Sinapses/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Especificidade por Substrato
15.
Curr Alzheimer Res ; 9(2): 178-83, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22455478

RESUMO

Neuregulin-1 (NRG1), known also as heregulin, acetylcholine receptor inducing activity (ARIA), glial growth factor (GGF), or sensory and motor neuron derived factor (SMDF), plays essential roles in several developmental processes, and is required also later in life. Many variants of NRG1 are produced via alternative splicing and usage of distinct promoters. All contain an epidermal growth factor (EGF)-like domain, which alone is sufficient to bind and activate the cognate receptors, members of the ErbB family. NRG1 mediated signaling is crucial for cardiogenesis and the development of the mammary gland and ErbB2 (HER2), an orphan co-receptor for NRG1 is the target of the drug Herceptin� (trastuzumab) used for treatment of metastatic breast cancer. In the nervous system, NRG1 controls the early development of subpopulations of neural crest cells. In particular, NRG1 acts as an essential paracrine signaling molecule expressed on the axonal surface, where it signals to Schwann cells throughout development and regulates the thickness of the myelin sheath. NRG1 is required also by other cell types in the nervous system, for instance as an axonal signal released by proprioceptive afferents to induce development of the muscle spindle, and it controls aspects of cortical interneuron development as well as the formation of thalamocortical projections. Work from several laboratories implicates dysregulation of NRG1/ErbB4 signaling in the etiology of schizophrenia. Biochemical studies have shown that the precursor proteins of NRG1 can be released from the membrane through limited proteolysis. In addition, most NRG1 isoforms contain a transmembrane domain, which is processed by γ-secretase after shedding. Thereby the intracellular domain is released into the cytoplasm. Despite this, the importance of NRG1 cleavage for its functions in vivo remained unclear until recently. ß- Secretase (ß-site amyloid precursor protein cleaving enzyme 1, BACE1) was first identified through its function as the rate limiting enzyme of amyloid-ß-peptide (Aß) production. Aß is the major component of amyloid plaques in Alzheimer's disease (AD). More recently it was shown that Neuregulin-1 is a major physiological substrate of BACE1 during early postnatal development. Mutant mice lacking BACE1 display severe hypomyelination of peripheral nerves similar to that seen in mice lacking NRG1/ErbB signaling in Schwann cells, and a BACE1-dependent activation of NRG1 in the process of peripheral myelination was proposed. Here we summarize the current knowledge about the role of NRG1 proteolysis for ErbB receptor mediated signaling during development and in Alzheimer's disease.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Neurregulinas/metabolismo , Transdução de Sinais/fisiologia , Animais , Receptores ErbB/metabolismo , Humanos , Camundongos , Modelos Biológicos , Neurregulinas/genética
16.
J Alzheimers Dis ; 25(1): 151-62, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21358044

RESUMO

We have previously reported that the nuclear receptor peroxisome proliferator activated receptor-γ (PPARγ) regulates the transcription of ß-secretase (BACE1), a key enzyme involved in amyloid-ß (Aß) generation. Here, we aimed to investigate the role of PPARγ coactivator-1α (PGC-1α), which controls major metabolic functions through the co-activation of PPARγ and other transcription factors. Western blotting experiments with nuclear extracts from brain cortex of AD cases and controls showed a reduction in the levels of PGC-1α in AD patients. PGC-1α overexpression in N2a neuroblastoma cells induced a decrease in the levels of secreted Aß and an increase in the levels of non-amyloidogenic soluble AßPPα. The decrease in Aß after exogenous expression of PGC-1α was a consequence of reduced BACE1 expression and transcription, together with a decrease in BACE1 promoter activity. In addition, we detected a significant reduction in ß-secretase activity by measuring the levels of ß-carboxy terminus fragment (ß-CTFs) and by using a commercial assay for ß-secretase. In contrast, down-regulation of PGC-1α levels by transfection with PGC-1α siRNA increased BACE1 expression. These effects appeared to be dependent on PPARγ, because PGC-1α did not affect Aß and BACE1 levels in N2a cells transfected with PPARγ siRNA or in PPARγ knockout fibroblasts. In conclusion, since PGC-1α appears to decrease Aß generation, therapeutic modulation of PGC-1α could have real potential as a treatment for AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/biossíntese , Proteínas de Choque Térmico/fisiologia , PPAR gama/fisiologia , Fatores de Transcrição/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Linhagem Celular Tumoral , Regulação para Baixo/fisiologia , Feminino , Proteínas de Choque Térmico/antagonistas & inibidores , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/antagonistas & inibidores
17.
J Neurochem ; 102(4): 1264-75, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17763532

RESUMO

Consecutive cleavages of amyloid precursor protein (APP) generate APP intracellular domain (AICD). Its cellular function is still unclear. In this study, we investigated the functional role of AICD in cellular Ca(2+) homeostasis. We could confirm previous observations that endoplasmic reticulum Ca(2+) stores contain less calcium in cells with reduced APP gamma-secretase cleavage products, increased AICD degradation, reduced AICD expression or in cells lacking APP. In addition, we observed an enhanced resting cytosolic calcium concentration under conditions where AICD is decreased or missing. In view of the reciprocal effects of Ca(2+) on mitochondria and of mitochondria on Ca(2+) homeostasis, we analysed further the cellular ATP content and the mitochondrial membrane potential. We observed a reduced ATP content and a mitochondrial hyperpolarisation in cells with reduced amounts of AICD. Blockade of mitochondrial oxidative phosphorylation chain in control cells lead to similar alterations as in cells lacking AICD. On the other hand, substrates of Complex II rescued the alteration in Ca(2+) homeostasis in cells lacking AICD. Based on these observations, our findings indicate that alterations observed in endoplasmic reticulum Ca(2+) storage in cells with reduced amounts of AICD are reciprocally linked to mitochondrial bioenergetic function.


Assuntos
Trifosfato de Adenosina/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Cálcio/metabolismo , Homeostase/fisiologia , Precursor de Proteína beta-Amiloide/deficiência , Análise de Variância , Animais , Animais Recém-Nascidos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/genética , Humanos , Indóis/farmacologia , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Knockout , Mutação/fisiologia , Estrutura Terciária de Proteína/fisiologia , Fatores de Tempo , Triglicerídeos/farmacologia , Ácido gama-Aminobutírico/análogos & derivados , Ácido gama-Aminobutírico/farmacologia
18.
Science ; 314(5799): 664-6, 2006 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-16990514

RESUMO

Although BACE1 (beta-site amyloid precursor protein-cleaving enzyme 1) is essential for the generation of amyloid-b peptide in Alzheimer's disease, its physiological function is unclear. We found that very high levels of BACE1 were expressed at time points when peripheral nerves become myelinated. Deficiency of BACE1 resulted in the accumulation of unprocessed neuregulin 1 (NRG1), an axonally expressed factor required for glial cell development and myelination. BACE1-/- mice displayed hypomyelination of peripheral nerves and aberrant axonal segregation of small-diameter afferent fibers, very similar to that seen in mice with mutations in type III NRG1 or Schwann cell-specific ErbB2 knockouts. Thus, BACE1 is required for myelination and correct bundling of axons by Schwann cells, probably through processing of type III NRG1.


Assuntos
Axônios/fisiologia , Endopeptidases/metabolismo , Bainha de Mielina/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neuregulina-1/metabolismo , Células de Schwann/fisiologia , Nervo Isquiático/fisiologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide , Animais , Ácido Aspártico Endopeptidases , Endopeptidases/genética , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Bainha de Mielina/ultraestrutura , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neuregulina-1/química , Neuregulina-1/genética , Neurônios Aferentes/metabolismo , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional , Nervo Isquiático/citologia , Medula Espinal/citologia , Medula Espinal/metabolismo
19.
Am J Pathol ; 165(5): 1621-31, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15509532

RESUMO

The generation of amyloid peptides (Abeta) from the amyloid precursor protein (APP) is initiated by beta-secretase (BACE), whereas subsequent gamma-secretase cleavage mediated by presenilin-1, produces Abeta peptides mainly of 40 or 42 amino acids long. In addition, alternative beta'-cleavage of APP at position 11 of the amyloid sequence results in N-truncated Abeta(11-40/42) peptides, but the functional significance or pathological impact is unknown. Here we demonstrate that in the brain of BACE x APP[V717I] double-transgenic mice, amyloidogenic processing at both Asp1 and Glu11 is increased resulting in more and different Abeta species and APP C-terminal fragments. Pathologically, BACE significantly increased the number of diffuse and senile amyloid plaques in old double-transgenic mice. Unexpectedly, vascular amyloid deposition was dramatically lower in the same BACE x APP[V717I] double-transgenic mice, relative to sex- and age-matched APP[V717I] single-transgenic mice in the same genetic background. The tight inverse relation of vascular amyloid to the levels of the less soluble N-terminally truncated Abeta peptides is consistent with the hypothesis that vascular amyloid deposition depends on drainage of excess tissue Abeta. This provides biochemical evidence in vivo for the preferential contribution of N-truncated Abeta to parenchymal amyloid deposition in contrast to vascular amyloid pathology.


Assuntos
Amiloide/metabolismo , Encéfalo/metabolismo , Endopeptidases/fisiologia , Fatores Etários , Amiloide/química , Amiloide/genética , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Ácido Aspártico Endopeptidases , Encéfalo/patologia , Angiopatia Amiloide Cerebral/patologia , Córtex Cerebral/patologia , Endopeptidases/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Genótipo , Imuno-Histoquímica , Modelos Lineares , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Peptídeos/química , Fatores Sexuais
20.
J Biol Chem ; 279(51): 53205-12, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15485862

RESUMO

Cleavage of the beta-amyloid precursor protein (APP) by the aspartyl protease beta-site APP-cleaving enzyme (BACE) is the first step in the generation of the amyloid beta-peptide, which is deposited in the brain of Alzheimer's disease patients. Whereas the subsequent cleavage by gamma-secretase was shown to originate from the cooperation of a multicomponent complex, it is currently unknown whether in a cellular environment BACE is enzymatically active as a monomer or in concert with other proteins. Using blue native gel electrophoresis we found that endogenous and overexpressed BACE has a molecular mass of 140 kDa instead of the expected mass of 70 kDa under denaturing conditions. This suggests that under native conditions BACE exists as a homodimer. Homodimerization was confirmed by co-immunoprecipitation of full-length BACE carrying different epitope tags. In contrast, the soluble active BACE ectodomain was exclusively present as a monomer both under native and denaturing conditions. A domain analysis revealed that the BACE ectodomain dimerized as long as it was attached to the membrane, whereas the cytoplasmic domain and the transmembrane domain were dispensable for dimerization. By adding a KKXX-endoplasmic reticulum retention signal to BACE, we demonstrate that dimerization of BACE occurs already before full maturation and pro-peptide cleavage. Furthermore, kinetic analysis of the purified native BACE dimer revealed a higher affinity and turnover rate in comparison to the monomeric soluble BACE. Dimerization of BACE might, thus, facilitate binding and cleavage of physiological substrates.


Assuntos
Ácido Aspártico Endopeptidases/fisiologia , Motivos de Aminoácidos , Secretases da Proteína Precursora do Amiloide , Animais , Ácido Aspártico Endopeptidases/química , Sítios de Ligação , Catálise , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Citoplasma/metabolismo , Dimerização , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Endopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Epitopos/química , Humanos , Immunoblotting , Imunoprecipitação , Cinética , Camundongos , Microscopia de Fluorescência , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Transfecção , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA