Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mod Pathol ; 36(8): 100190, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37080394

RESUMO

Squamous cell carcinoma is the most common head and neck malignancy arising from the oral mucosa and the skin. The histologic and immunohistochemical features of oral squamous cell carcinoma (OSCC) and head and neck cutaneous squamous cell carcinoma (HNcSCC) are similar, making it difficult to identify the primary site in cases of metastases. With the advent of immunotherapy, reliable distinction of OSCC and HNcSCC at metastatic sites has important treatment and prognostic implications. Here, we investigate and compare the genomic landscape of OSCC and HNcSCC to identify diagnostically useful biomarkers. Whole-genome sequencing data from 57 OSCC and 41 HNcSCC patients were obtained for tumor and matched normal samples. Tumor mutation burden (TMB), Catalogue of Somatic Mutations in Cancer (COSMIC) mutational signatures, frequent chromosomal alterations, somatic single nucleotide, and copy number variations were analyzed. The median TMB of 3.75 in primary OSCC was significantly lower (P < .001) than that of 147.51 mutations/Mb in primary HNcSCC. The COSMIC mutation signatures were significantly different (P < .001) between OSCC and HNcSCC. OSCC showed COSMIC single-base substitution (SBS) mutation signature 1 and AID/APOBEC activity-associated signature 2 and/or 13. All except 1 HNcSCC from hair-bearing scalp showed UV damage-associated COSMIC SBS mutation signature 7. Both OSCC and HNcSCC demonstrated a predominance of tumor suppressor gene mutations, predominantly TP53. The most frequently mutated oncogenes were PIK3CA and MUC4 in OSCC and HNcSCC, respectively. The metastases of OSCC and HNcSCC demonstrated TMB and COSMIC SBS mutation signatures similar to their primary counterparts. The combination of high TMB and UV signature in a metastatic keratinizing squamous cell carcinoma suggests HNcSCC as the primary site and may also facilitate decisions regarding immunotherapy. HNcSCC and OSCC show distinct genomic profiles despite histologic and immunohistochemical similarities. Their genomic characteristics may underlie differences in behavior and guide treatment decisions in recurrent and metastatic settings.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Variações do Número de Cópias de DNA , Neoplasias Bucais/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias de Cabeça e Pescoço/genética , Mutação , Genômica , Biomarcadores Tumorais/genética
2.
Genes (Basel) ; 13(8)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893065

RESUMO

Chronic superficial keratitis (CSK) is a progressive inflammatory condition of the eye (cornea) that can cause discomfort and blindness. Differential disease risk across dog breeds strongly suggests that CSK has a genetic basis. In addition to genetic risk, the occurrence of CSK is exacerbated by exposure to ultraviolet light. Genome-wide association analysis considered 109 greyhounds, 70 with CSK and the remainder with normal phenotype at an age over four years. Three co-located variants on CFA18 near the 5' region of the Epidermal Growth Factor Receptor (EGFR) gene were associated with genome-wide significance after multiple-test correction (BICF2P579527, CFA18: 6,068,508, praw = 1.77 × 10-7, pgenome = 0.017; BICF2P1310662, CFA18: 6,077,388, praw = 4.09 × 10-7, pgenome = 0.040; BICF2P160719, CFA18: 6,087,347, praw = 4.09 × 10-7, pgenome = 0.040) (canFam4)). Of the top 10 associated markers, eight were co-located with the significantly associated markers on CFA18. The associated haplotype on CFA18 is protective for the CSK condition. EGFR is known to play a role in corneal healing, where it initiates differentiation and proliferation of epithelial cells that in turn signal the involvement of stromal keratocytes to commence apoptosis. Further validation of the putative functional variants is required prior to their use in genetic testing for breeding programs.


Assuntos
Doenças do Cão , Ceratite , Animais , Austrália , Doenças do Cão/epidemiologia , Doenças do Cão/genética , Cães , Receptores ErbB/genética , Estudo de Associação Genômica Ampla , Ceratite/epidemiologia , Ceratite/genética , Ceratite/veterinária
3.
Sci Rep ; 7(1): 423, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28341828

RESUMO

Devil facial tumour disease (DFTD) has decimated wild populations of Tasmanian devils (Sarcophilus harrisii) due to its ability to avoid immune detection and pass from host to host by biting. A small number of devils have been observed to spontaneously recover from the disease which is otherwise fatal. We have sequenced the genomes of these rare cases and compared them to the genomes of devils who succumbed to the disease. Genome-wide association, based on this limited sampling, highlighted two key genomic regions potentially associated with ability to survive DFTD. Following targeted genotyping in additional samples, both of these loci remain significantly different between cases and controls, with the PAX3 locus retaining significance at the 0.001 level, though genome-wide significance was not achieved. We propose that PAX3 may be involved in a regulatory pathway that influences the slowing of tumour growth and may allow more time for an immune response to be mounted in animals with regressed tumours. This provides an intriguing hypothesis for further research and could provide a novel route of treatment for this devastating disease.


Assuntos
Neoplasias Faciais/genética , Neoplasias Faciais/veterinária , Marsupiais/genética , Animais , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Masculino , Mutação , Fator de Transcrição PAX3/genética , Polimorfismo de Nucleotídeo Único
4.
BMC Genomics ; 16: 791, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26467759

RESUMO

BACKGROUND: The Tasmanian devil (Sarcophilus harrisii) has undergone a recent, drastic population decline due to the highly contagious devil facial tumor disease. The tumor is one of only two naturally occurring transmissible cancers and is almost inevitably fatal. In 2006 a disease-free insurance population was established to ensure that the Tasmanian devil is protected from extinction. The insurance program is dependent upon preserving as much wild genetic diversity as possible to maximize the success of subsequent reintroductions to the wild. Accurate genotypic data is vital to the success of the program to ensure that loss of genetic diversity does not occur in captivity. Until recently, microsatellite markers have been used to study devil population genetics, however as genetic diversity is low in the devil and potentially decreasing in the captive population, a more sensitive genotyping assay is required. METHODS: Utilising the devil reference genome and whole genome re-sequencing data, we have identified polymorphic regions for use in a custom genotyping assay. These regions were amplified using PCR and sequenced on the Illumina MiSeq platform to refine a set a markers to genotype the Tasmanian devil insurance population. RESULTS: We have developed a set of single nucleotide polymorphic (SNP) markers, assayed by amplicon sequencing, that provide a high-throughput method for monitoring genetic diversity and assessing familial relationships among devils. To date we have used a total of 267 unique SNPs within both putatively neutral and functional loci to genotype 305 individuals in the Tasmanian devil insurance population. We have used these data to assess genetic diversity in the population as well as resolve the parentage of 21 offspring. CONCLUSIONS: Our molecular data has been incorporated with studbook management practices to provide more accurate pedigree information and to inform breeding recommendations. The assay will continue to be used to monitor the genetic diversity of the insurance population of Tasmanian devils with the aim of reducing inbreeding and maximizing success of reintroductions to the wild.


Assuntos
Variação Genética , Marsupiais/genética , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Bioensaio , Espécies em Perigo de Extinção , Neoplasias Faciais/genética , Neoplasias Faciais/patologia , Genótipo , Endogamia , Tasmânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA