Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bone ; 187: 117195, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39002838

RESUMO

Bone grafting procedures are commonly used for the repair, regeneration, and fusion of bones in a wide range of orthopaedic surgeries, including large bone defects and spine fusion procedures. Autografts are the clinical gold standard, though recombinant human bone morphogenetic proteins (rhBMPs) are often used, particularly in difficult clinical situations. However, treatment with rhBMPs can have off-target effects and increase surgical costs, adding to patients' already high economic and mental burden. Recent studies have identified that FDA-approved immunosuppressant drug, FK506 (Tacrolimus), can also activate the BMP pathway by binding to its inhibitors. This study tested the hypothesis that FK506, as a standalone treatment, could induce osteogenic differentiation of human mesenchymal stromal cells (hMSCs), as well as functional bone formation in a rat segmental bone defect model and rabbit spinal fusion model. FK506 enhanced osteogenic differentiation and mineralization of hMSCs in vitro. Standalone treatment with FK506 delivered on a collagen sponge produced consistent bone bridging of a critically sized rat femoral defect with functional mechanical properties comparable to naïve bone. In a rabbit single level posterolateral spine fusion model, treatment with FK506 delivered on a collagen sponge successfully fused the L5-L6 vertebrae at rates comparable to rhBMP-2 treatment. These data demonstrate the ability of FK506 to induce bone formation in human cells and two challenging in vivo models, and indicate FK506 can be utilized to treat a variety of spine disorders.


Assuntos
Diferenciação Celular , Osteogênese , Ratos Sprague-Dawley , Fusão Vertebral , Tacrolimo , Animais , Tacrolimo/farmacologia , Tacrolimo/administração & dosagem , Osteogênese/efeitos dos fármacos , Fusão Vertebral/métodos , Coelhos , Humanos , Ratos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Masculino
2.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38617208

RESUMO

Compromised vascular supply and insufficient neovascularization impede bone repair, increasing risk of non-union. Cyr61, Cysteine-rich angiogenic inducer of 61kD (also known as CCN1), is a matricellular growth factor that is regulated by mechanical cues during fracture repair. Here, we map the distribution of endogenous Cyr61 during bone repair and evaluate the effects of recombinant Cyr61 delivery on vascularized bone regeneration. In vitro, Cyr61 treatment did not alter chondrogenesis or osteogenic gene expression, but significantly enhanced angiogenesis. In a mouse femoral fracture model, Cyr61 delivery did not alter cartilage or bone formation, but accelerated neovascularization during fracture repair. Early initiation of ambulatory mechanical loading disrupted Cyr61-induced neovascularization. Together, these data indicate that Cyr61 delivery can enhance angiogenesis during bone repair, particularly for fractures with stable fixation, and may have therapeutic potential for fractures with limited blood vessel supply.

3.
Osteoarthritis Cartilage ; 32(7): 912-921, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642879

RESUMO

OBJECTIVE: Exercise remains a hallmark treatment for post-traumatic osteoarthritis (PTOA) and may maintain joint homeostasis in part by clearing inflammatory cytokines, cells, and particles. It remains largely unknown whether exercise-induced joint clearance can provide therapeutic relief of PTOA. In this study, we hypothesized that exercise could slow the progression of preclinical PTOA in part by enhancing knee joint clearance. DESIGN: Surgical medial meniscal transection was used to induce PTOA in 3-month-old male Lewis rats. A sham surgery was used as a control. Mild treadmill walking was introduced 3 weeks post-surgery and maintained to 6 weeks post-surgery. Gait and isometric muscle torque were measured at the study endpoint. Near-infrared imaging tracked how exercise altered lymphatic and venous knee joint clearance during discrete time points of PTOA progression. RESULTS: Exercise mitigated joint degradation associated with PTOA by preserving glycosaminoglycan content and reducing osteophyte volume (effect size (95% Confidence Interval (CI)); 1.74 (0.71-2.26)). PTOA increased hind step widths (0.57 (0.18-0.95) cm), but exercise corrected this gait dysfunction (0.54 (0.16-0.93) cm), potentially indicating pain relief. Venous, but not lymphatic, clearance was quicker 1-, 3-, and 6-weeks post-surgery compared to baseline. The mild treadmill walking protocol expedited lymphatic clearance rate in moderate PTOA (3.39 (0.20-6.59) hrs), suggesting exercise may play a critical role in restoring joint homeostasis. CONCLUSIONS: We conclude that mild exercise has the potential to slow disease progression in part by expediting joint clearance in moderate PTOA.


Assuntos
Instabilidade Articular , Osteoartrite do Joelho , Condicionamento Físico Animal , Ratos Endogâmicos Lew , Animais , Masculino , Ratos , Condicionamento Físico Animal/fisiologia , Instabilidade Articular/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Modelos Animais de Doenças , Marcha/fisiologia , Articulação do Joelho/fisiopatologia , Glicosaminoglicanos/metabolismo , Osteoartrite/fisiopatologia , Osteoartrite/metabolismo , Osteófito , Progressão da Doença
4.
Front Bioeng Biotechnol ; 11: 1224141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744252

RESUMO

Background: Micronized dehydrated human amnion/chorion membrane (mdHACM) has reduced short term post-traumatic osteoarthritis (PTOA) progression in rats when delivered 24 h after medial meniscal transection (MMT) and is being investigated for clinical use as a disease modifying therapy. Much remains to be assessed, including its potential for longer-term therapeutic benefit and treatment effects after onset of joint degeneration. Objectives: Characterize longer-term effects of acute treatment with mdHACM and determine whether treatment administered to joints with established PTOA could slow or reverse degeneration. Hypotheses: Acute treatment effects will be sustained for 6 weeks, and delivery of mdHACM after onset of joint degeneration will attenuate structural osteoarthritic changes. Methods: Rats underwent MMT or sham surgery (left leg). mdHACM was delivered intra-articularly 24 h or 3 weeks post-surgery (n = 5-7 per group). Six weeks post-surgery, animals were euthanized and left tibiae scanned using equilibrium partitioning of an ionic contrast agent microcomputed tomography (EPIC-µCT) to structurally quantify joint degeneration. Histology was performed to examine tibial plateau cartilage. Results: Quantitative 3D µCT showed that cartilage structural metrics (thickness, X-ray attenuation, surface roughness, exposed bone area) for delayed mdHACM treatment limbs were significantly improved over saline treatment and not significantly different from shams. Subchondral bone mineral density and thickness for the delayed treatment group were significantly improved over acute treated, and subchondral bone thickness was not significantly different from sham. Marginal osteophyte degenerative changes were decreased with delayed mdHACM treatment compared to saline. Acute treatment (24 h post-surgery) did not reduce longer-term joint tissue degeneration compared to saline. Histology supported µCT findings and further revealed that while delayed treatment reduced cartilage damage, chondrocytes displayed qualitatively different morphologies and density compared to sham. Conclusion: This study provides insight into effects of intra-articular delivery timing relative to PTOA progression and the duration of therapeutic benefit of mdHACM. Results suggest that mdHACM injection into already osteoarthritic joints can improve joint health, but a single, acute mdHACM injection post-injury does not prevent long term osteoarthritis associated with meniscal instability. Further work is needed to fully characterize the durability of therapeutic benefit in stable osteoarthritic joints and the effects of repeated injections.

5.
BMJ Open ; 13(3): e069070, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944463

RESUMO

INTRODUCTION: Orthopaedic trauma and fracture care commonly cause perioperative anaemia and associated functional iron deficiency due to a systemic inflammatory state. Modern, strict transfusion thresholds leave many patients anaemic; managing this perioperative anaemia is an opportunity to impact outcomes in orthopaedic trauma surgery. The primary outcome of this pilot study is feasibility for a large randomised controlled trial (RCT) to evaluate intravenous iron therapy (IVIT) to improve patient well-being following orthopaedic injury. Measurements will include rate of participant enrolment, screening failure, follow-up, missing data, adverse events and protocol deviation. METHODS AND ANALYSIS: This single-centre, pilot, double-blind RCT investigates the use of IVIT for acute blood loss anaemia in traumatically injured orthopaedic patients. Patients are randomised to receive either a single dose infusion of low-molecular weight iron dextran (1000 mg) or placebo (normal saline) postoperatively during their hospital stay for trauma management. Eligible subjects include adult patients admitted for lower extremity or pelvis operative fracture care with a haemoglobin of 7-11 g/dL within 7 days postoperatively during inpatient care. Exclusion criteria include history of intolerance to intravenous iron supplementation, active haemorrhage requiring ongoing blood product resuscitation, multiple planned procedures, pre-existing haematologic disorders or chronic inflammatory states, iron overload on screening or vulnerable populations. We follow patients for 3 months to measure the effect of iron supplementation on clinical outcomes (resolution of anaemia and functional iron deficiency), patient-reported outcomes (fatigue, physical function, depression and quality of life) and translational measures of immune cell function. ETHICS AND DISSEMINATION: This study has ethics approval (Oregon Health & Science University Institutional Review Board, STUDY00022441). We will disseminate the findings through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER: NCT05292001; ClinicalTrials.gov.


Assuntos
Anemia , Deficiências de Ferro , Ortopedia , Adulto , Humanos , Projetos Piloto , Anemia/tratamento farmacológico , Anemia/etiologia , Ferro/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Microcirculation ; 30(2-3): e12792, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36369987

RESUMO

BACKGROUND: Dysfunction of the lymphatic system following injury, disease, or cancer treatment can lead to lymphedema, a debilitating condition with no cure. Despite the various physical therapy and surgical options available, most treatments are palliative and fail to address the underlying lymphatic vascular insufficiency driving lymphedema progression. Stem cell therapy provides a promising alternative in the treatment of various chronic diseases with a wide range of therapeutic effects that reduce inflammation, fibrosis, and oxidative stress, while promoting lymphatic vessel (LV) regeneration. Specifically, stem cell transplantation is suggested to promote LV restoration, rebuild lymphatic circulation, and thus potentially be utilized towards an effective lymphedema treatment. In addition to stem cells, studies have proposed the administration of vascular endothelial growth factor C (VEGFC) to promote lymphangiogenesis and decrease swelling in lymphedema. AIMS: Here, we seek to combine the benefits of stem cell therapy, which provides a cellular therapeutic approach that can respond to the tissue environment, and VEGFC administration to restore lymphatic drainage. MATERIALS & METHODS: Specifically, we engineered mesenchymal stem cells (MSCs) to overexpress VEGFC using a lentiviral vector (hVEGFC MSC) and investigated their therapeutic efficacy in improving LV function and tissue swelling using near infrared (NIR) imaging, and lymphatic regeneration in a single LV ligation mouse tail lymphedema model. RESULTS: First, we showed that overexpression of VEGFC using lentiviral transduction led to an increase in VEGFC protein synthesis in vitro. Then, we demonstrated hVEGFC MSC administration post-injury significantly increased the lymphatic contraction frequency 14-, 21-, and 28-days post-surgery compared to the control animals (MSC administration) in vivo, while also reducing tail swelling 28-days post-surgery compared to controls. CONCLUSION: Our results suggest a therapeutic potential of hVEGFC MSC in alleviating the lymphatic dysfunction observed during lymphedema progression after secondary injury and could provide a promising approach to enhancing autologous cell therapy for treating lymphedema.


Assuntos
Vasos Linfáticos , Linfedema , Células-Tronco Mesenquimais , Animais , Camundongos , Linfangiogênese , Vasos Linfáticos/fisiologia , Linfedema/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos BALB C , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Lentivirus/genética
7.
Front Surg ; 9: 934773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874126

RESUMO

Bone non-unions resulting from severe traumatic injuries pose significant clinical challenges, and the biological factors that drive progression towards and healing from these injuries are still not well understood. Recently, a dysregulated systemic immune response following musculoskeletal trauma has been identified as a contributing factor for poor outcomes and complications such as infections. In particular, myeloid-derived suppressor cells (MDSCs), immunosuppressive myeloid-lineage cells that expand in response to traumatic injury, have been highlighted as a potential therapeutic target to restore systemic immune homeostasis and ultimately improve functional bone regeneration. Previously, we have developed a novel immunomodulatory therapeutic strategy to deplete MDSCs using Janus gold nanoparticles that mimic the structure and function of antibodies. Here, in a preclinical delayed treatment composite injury model of bone and muscle trauma, we investigate the effects of these nanoparticles on circulating MDSCs, systemic immune profiles, and functional bone regeneration. Unexpectedly, treatment with the nanoparticles resulted in depletion of the high side scatter subset of MDSCs and an increase in the low side scatter subset of MDSCs, resulting in an overall increase in total MDSCs. This overall increase correlated with a decrease in bone volume (P = 0.057) at 6 weeks post-treatment and a significant decrease in mechanical strength at 12 weeks post-treatment compared to untreated rats. Furthermore, MDSCs correlated negatively with endpoint bone healing at multiple timepoints. Single cell RNA sequencing of circulating immune cells revealed differing gene expression of the SNAb target molecule S100A8/A9 in MDSC sub-populations, highlighting a potential need for more targeted approaches to MDSC immunomodulatory treatment following trauma. These results provide further insights on the role of systemic immune dysregulation for severe trauma outcomes in the case of non-unions and composite injuries and suggest the need for additional studies on targeted immunomodulatory interventions to enhance healing.

8.
Am J Sports Med ; 50(5): 1389-1398, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35420503

RESUMO

BACKGROUND: Intra-articular injections of human mesenchymal stromal cells (hMSCs) have shown promise in slowing cartilage degradation in posttraumatic osteoarthritis (PTOA). Clinical use of cell therapies for osteoarthritis has accelerated in recent years without sufficient scientific evidence defining best-use practices. Common recommendations advise patients to avoid nonsteroidal anti-inflammatory drug (NSAID) use before and after cell injection over concerns that NSAIDs may affect therapeutic efficacy. Recommendations to restrict NSAID use are challenging for patients, and it is unclear if patients are compliant. HYPOTHESIS: NSAIDs will reduce the efficacy of hMSC therapy in treating a preclinical model of PTOA. STUDY DESIGN: Controlled laboratory study. METHODS: Lewis rats underwent medial meniscal transection (MMT) surgery to induce PTOA or a sham (sham group) surgery that did not progress to PTOA. Rats received naproxen solution orally daily before (Pre-NSAID group) or after (Post-NSAID group) hMSC treatment, throughout the course of the experiment (Full-NSAID group), or received hMSCs without NSAIDs (No NSAID). Cartilage morphology and composition were quantified using contrast-enhanced micro-computed tomography and histology. Pain (secondary allodynia) was measured using a von Frey filament. RESULTS: Injection of hMSCs attenuated cartilage degeneration associated with MMT. hMSCs prevented proteoglycan loss, maintained smooth cartilage surfaces, reduced cartilage lesions, reduced mineralized osteophyte formation, and reduced pain by week 7. The Pre-NSAID group had decreased proteoglycan levels compared with the hMSC group, although there were no other significant differences. Thus, pretreatment with NSAIDs had minimal effects on the therapeutic benefits of hMSC injections. The Post-NSAID and Full-NSAID groups, however, exhibited significantly worse osteoarthritis than the hMSC-only group, with greater proteoglycan loss, surface roughness, osteophyte volume, and pain. CONCLUSION: Use of NSAIDs before hMSC injection minimally reduced the therapeutic benefits for PTOA, which included preservation of cartilage surface integrity as well as a reduction in osteophytes. Use of NSAIDs after injections, however, substantially reduced the therapeutic efficacy of cellular treatment. CLINICAL RELEVANCE: Our data support the clinical recommendation of avoiding NSAID use after hMSC injection but suggest that using NSAIDs before treatment may not substantially diminish the therapeutic efficacy of cell treatment.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Osteófito , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Cartilagem Articular/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/patologia , Osteófito/patologia , Dor/metabolismo , Proteoglicanas/metabolismo , Ratos , Ratos Endogâmicos Lew , Roedores , Microtomografia por Raio-X
9.
Acta Biomater ; 141: 315-332, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979327

RESUMO

Mesenchymal stromal cells (MSCs) have shown promise as osteoarthritis (OA) treatments; however, effective translation has been limited by high variability and heterogeneity of MSCs, suboptimal delivery strategies, and poor understanding of critical quality and potency attributes. Furthermore, most pre-clinical studies of MSC therapeutics for OA have focused on delaying OA development and not on treating established OA, which brings added clinical relevance. Thus, the objective of the current study was to assess the effects of sodium alginate microencapsulation on human MSC (hMSC) secretion of immunomodulatory cytokines in an OA microenvironment and therapeutic efficacy in treating established OA. A Medial Meniscal Transection (MMT) pre-clinical model of OA was implemented. Three weeks post-surgery, after OA was established, intra-articular injections of encapsulated hMSCs or nonencapsulated hMSCs were administered. Six weeks post-surgery, microstructural changes in the knee joint were quantified using microCT. Encapsulated hMSCs reduced articular cartilage degeneration and subchondral bone remodeling. A multiplexed immunoassay panel was used to profile the in vitro secretome of hMSCs in response to IL-1ß. Nonencapsulated hMSCs showed an indiscriminate increase in all cytokines in response to IL-1ß while encapsulated hMSCs showed a targeted secretory response with increased expression of pro-inflammatory (IL-1ß, IL-6, IL-7, IL-8), anti-inflammatory (IL-1RA), and chemotactic (G-CSF, MDC, IP10) cytokines. These data show that sodium alginate microencapsulation can modulate hMSC paracrine signaling and enhance the therapeutic efficacy of the hMSCs in treating established OA. This cytokine profile provides a foundation for the identification of key factors affecting the overall potency of hMSC therapeutics for OA. STATEMENT OF SIGNIFICANCE: While there has been considerable interest in material based MSC encapsulation for treatment of OA, there are critical gaps in our translational understanding of these biomaterial-based technologies for OA. More specifically, previous studies have several important limitations: (1) they have been largely focused on preventing OA development, which limits their translational utility and (2) little prior work has been done to delineate potential routes/mechanisms by which material encapsulation alters MSC therapeutic action. In our manuscript, we aimed to fill these gaps in knowledge by testing the hypotheses that: (1) hMSC encapsulation can attenuate established disease progression, which is a more clinically relevant scenario and (2) hMSC encapsulation significantly changes the secreted paracrine factors from hMSCs.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Alginatos , Cartilagem Articular/metabolismo , Citocinas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo , Osteoartrite/terapia , Comunicação Parácrina
10.
Acta Biomater ; 127: 180-192, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823326

RESUMO

Successful bone healing in severe trauma depends on early revascularization to restore oxygen, nutrient, growth factor, and progenitor cell supply to the injury. Therapeutic angiogenesis strategies have therefore been investigated to promote revascularization following severe bone injuries; however, results have been inconsistent. This is the first study investigating the effects of dual angiogenic growth factors (VEGF and PDGF) with low-dose bone morphogenetic protein-2 (BMP-2; 2.5 µg) on bone healing in a clinically challenging composite bone-muscle injury model. Our hydrogel-based delivery systems demonstrated a more than 90% protein entrapment efficiency and a controlled simultaneous release of three growth factors over 28 days. Co-stimulation of microvascular fragment constructs with VEGF and PDGF promoted vascular network formation in vitro compared to VEGF or PDGF alone. In an in vivo model of segmental bone and volumetric muscle loss injury, combined VEGF (5 µg) and PDGF (7.5 µg or 15 µg) delivery with a low dose of BMP-2 significantly enhanced regeneration of vascularized bone compared to BMP-2 treatment alone. Notably, the regenerated bone mechanics reached ~60% of intact bone, a value that was previously only achieved by delivery of high-dose BMP-2 (10 µg) in this injury model. Overall, sustained delivery of VEGF, PDFG, and BMP-2 is a promising strategy to promote functional vascularized bone tissue regeneration following severe composite musculoskeletal injury. Although this study is conducted in a clinically relevant composite injury model in rats using a simultaneous release strategy, future studies are necessary to test the regenerative potential of spatiotemporally controlled delivery of triple growth factors on bone healing using large animal models. STATEMENT OF SIGNIFICANCE: Volumetric muscle loss combined with delayed union or non-union bone defect causes deleterious effects on bone regeneration even with the supplementation of bone morphogenetic protein-2 (BMP-2). In this study, the controlled delivery of dual angiogenic growth factors (vascular endothelial growth factor [VEGF] + Platelet-derived growth factor [PDGF]) increases vascular growth in vitro. Co-delivering VEGF+PDGF significantly increase the bone formation efficacy of low-dose BMP-2 and improves the mechanics of regenerated bone in a challenging composite bone-muscle injury model.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea , Sistema Musculoesquelético/lesões , Animais , Osso e Ossos , Hidrogéis/farmacologia , Osteogênese , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos , Fator A de Crescimento do Endotélio Vascular/farmacologia
11.
Nano Lett ; 21(1): 875-886, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33395313

RESUMO

Monoclonal antibodies (mAb) have had a transformative impact on treating cancers and immune disorders. However, their use is limited by high development time and monetary cost, manufacturing complexities, suboptimal pharmacokinetics, and availability of disease-specific targets. To address some of these challenges, we developed an entirely synthetic, multivalent, Janus nanotherapeutic platform, called Synthetic Nanoparticle Antibodies (SNAbs). SNAbs, with phage-display-identified cell-targeting ligands on one "face" and Fc-mimicking ligands on the opposite "face", were synthesized using a custom, multistep, solid-phase chemistry method. SNAbs efficiently targeted and depleted myeloid-derived immune-suppressor cells (MDSCs) from mouse-tumor and rat-trauma models, ex vivo. Systemic injection of MDSC-targeting SNAbs efficiently depleted circulating MDSCs in a mouse triple-negative breast cancer model, enabling enhanced T cell and Natural Killer cell infiltration into tumors. Our results demonstrate that SNAbs are a versatile and effective functional alternative to mAbs, with advantages of a plug-and-play, cell-free manufacturing process, and high-throughput screening (HTS)-enabled library of potential targeting ligands.


Assuntos
Nanopartículas Multifuncionais , Células Supressoras Mieloides , Nanopartículas , Animais , Anticorpos Monoclonais , Humanos , Células Matadoras Naturais , Camundongos , Ratos
12.
Bone ; 143: 115657, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32980561

RESUMO

Craniofacial bone loss is a complex clinical problem with limited regenerative solutions. Currently, BMP2 is used as a bone-regenerative therapy in adults, but in pediatric cases of bone loss, it is not FDA-approved due to concerns of life-threatening inflammation and cancer. Development of a bone-regenerative therapy for children will transform our ability to reduce the morbidity associated with current autologous bone grafting techniques. We discovered that JAGGED1 (JAG1) induces cranial neural crest (CNC) cell osteoblast commitment during craniofacial intramembranous ossification, suggesting that exogenous JAG1 delivery is a potential craniofacial bone-regenerative approach. In this study, we found that JAG1 delivery using synthetic hydrogels containing O9-1 cells, a CNC cell line, into critical-sized calvarial defects in C57BL/6 mice provided robust bone-regeneration. Since JAG1 signals through canonical (Hes1/Hey1) and non-canonical (JAK2) NOTCH pathways in CNC cells, we used RNAseq to analyze transcriptional pathways activated in CNC cells treated with JAG1 ± DAPT, a NOTCH-canonical pathway inhibitor. JAG1 upregulated expression of multiple NOTCH canonical pathway genes (Hes1), which were downregulated in the presence of DAPT. JAG1 also induced bone chemokines (Cxcl1), regulators of cytoskeletal organization and cell migration (Rhou), signaling targets (STAT5), promoters of early osteoblast cell proliferation (Prl2c2, Smurf1 and Esrra), and, inhibitors of osteoclasts (Id1). In the presence of DAPT, expression levels of Hes1 and Cxcl1 were decreased, whereas, Prl2c2, Smurf1, Esrra, Rhou and Id1 remain elevated, suggesting that JAG1 induces osteoblast proliferation through these non-canonical genes. Pathway analysis of JAG1 + DAPT-treated CNC cells revealed significant upregulation of multiple non-canonical pathways, including the cell cycle, tubulin pathway, regulators of Runx2 initiation and phosphorylation of STAT5 pathway. In total, our data show that JAG1 upregulates multiple pathways involved in osteogenesis, independent of the NOTCH canonical pathway. Moreover, our findings suggest that JAG1 delivery using a synthetic hydrogel, is a bone-regenerative approach with powerful translational potential.


Assuntos
Crista Neural , Receptores Notch , Adulto , Animais , Regeneração Óssea , Criança , Humanos , Proteína Jagged-1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/metabolismo , Osteoblastos/metabolismo , Receptores Notch/metabolismo , Ubiquitina-Proteína Ligases , Proteínas rho de Ligação ao GTP
13.
Osteoarthr Cartil Open ; 2(3): 100066, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36474679

RESUMO

Objective: Osteoarthritis (OA) is a chronic degenerative disease of the joints characterized by articular cartilage degradation. While clear sex differences exist in human OA development, most pre-clinical research has been conducted solely in male animals, limiting generalizability of findings to both sexes. The objective of this study was to determine if sex impacts the progression and severity of OA in the rat medial meniscal tear (MMT) preclinical model used to surgically induce OA. It was hypothesized that differences would be observed between males and females following MMT surgery. Design: An MMT model was employed in male and female Lewis rats to induce OA. Animals were euthanized 3 weeks post-surgery and EPIC-µCT was used to quantitatively evaluate articular cartilage structure and composition, osteophyte volumes and subchondral bone structure. Results: Analysis of medial 1/3 articular cartilage, showed increased cartilage thickness and proteoglycan loss in the MMT of both sexes, when compared to sham. Both male and female MMT groups also saw increased subchondral bone mineral density and larger osteophyte volumes. Significant interactions between sex and OA development were seen in normalized cartilage volume (larger in females), and normalized total osteophyte volumes (larger in males). Conclusion: This study demonstrates the viability of both sexes in the rat MMT preclinical OA model. Though clear differences exist, this model can be used to model OA development and evaluate sex as a factor in the efficacy of OA therapeutics.

14.
Tissue Eng Part A ; 26(1-2): 28-37, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31269875

RESUMO

Osteoarthritis (OA) is a widespread disease that continues to lack approved and efficacious treatments that modify disease progression. Micronized dehydrated human amnion/chorion membrane (µ-dHACM) has been shown to be effective in reducing OA progression, but many of the engineering design parameters have not been explored. The objectives of this study were to characterize the particle size distributions of two µ-dHACM formulations and to investigate the influence of these distributions on the in vivo therapeutic efficacy of µ-dHACM. Male Lewis rats underwent medial meniscus transection (MMT) or sham surgery, and intra-articular injections of saline, µ-dHACM, or reduced particle size µ-dHACM (RPS µ-dHACM) were administered at 24 hours postsurgery (n = 9 per treatment group). After 3 weeks, the animals were euthanized, and left legs harvested for equilibrium partitioning of an ionic contrast agent microcomputed tomography and histological analysis. µ-dHACM and RPS µ-dHACM particles were fluorescently tagged and particle clearance was tracked in vivo for up to 42 days postsurgery. Protein elution from both formulations was quantified in vitro. Treatment with µ-HACM, but not RPS µ-dHACM, reduced lesion volume in the MMT model 3 weeks postsurgery. In contrast, RPS µ-dHACM increased cartilage surface roughness and osteophyte cartilage thickness and volume compared to saline treatment. There was no difference of in vivo fluorescently tagged particle clearance between the two µ-dHACM sizes. RPS µ-dHACM showed significantly greater protein elution in vitro over 21 days. Overall, delivery of RPS µ-dHACM did result in an increase of in vivo joint degeneration and in vitro protein elution compared to µ-dHACM, but did not result in differences in joint clearance in vivo. These results suggest that particle size and factor elution may be tailorable factors that are important to optimize for particulate amniotic membrane treatment to be an effective therapy for OA. Impact Statement Osteoarthritis (OA) is a widespread disease that continues to lack treatments that modify the progression of the disease. Micronized dehydrated human amnion/chorion membrane (µ-dHACM) has been shown to be effective in reducing OA progression, but many of the engineering design parameters have not been explored. This work investigates the effects of particle size profile of the µ-dHACM particles and lays out the methods used in these studies. The results of this work will guide engineers in designing µ-dHACM treatments specifically and disease-modifying OA therapeutics generally, and it demonstrates the utility of novel therapeutic evaluation methods such as contrast-enhanced microcomputed tomography.


Assuntos
Âmnio/química , Osteoartrite/terapia , Animais , Meios de Contraste , Modelos Animais de Doenças , Masculino , Meniscos Tibiais/cirurgia , Ratos , Ratos Endogâmicos Lew , Microtomografia por Raio-X
15.
Acta Biomater ; 91: 209-219, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31029828

RESUMO

Oral cavity wound healing occurs in an environment that sustains ongoing physical trauma and is rich in bacteria. Despite this, injuries to the mucosal surface often heal faster than cutaneous wounds and leave less noticeable scars. Patients undergoing cleft palate repair have a high degree of wound healing complications with up to 60% experiencing oronasal fistula (ONF) formation. In this study, we developed a mouse model of hard palate mucosal injury, to study the endogenous injury response during oral cavity wound healing and ONF formation. Immunophenotyping of the inflammatory infiltrate following hard palate injury showed delayed recruitment of non-classical LY6Clo monocytes and failure to resolve inflammation. To induce a pro-regenerative inflammatory response, delivery of FTY720 nanofiber scaffolds following hard palate mucosal injury promoted complete ONF healing and was associated with increased LY6Clo monocytes and pro-regenerative M2 macrophages. Alteration in gene expression with FTY720 delivery included increased Sox2 expression, reduction in pro-inflammatory IL-1, IL-4 and IL-6 and increased pro-regenerative IL-10 expression. Increased keratinocyte proliferation during ONF healing was observed at day 5 following FTY720 delivery. Our results show that local delivery of FTY720 from nanofiber scaffolds in the oral cavity enhances healing of ONF, occurring through multiple immunomodulatory mechanisms. STATEMENT OF SIGNIFICANCE: Wound healing complications occur in up to 60% of patients undergoing cleft palate repair where an oronasal fistula (ONF) develops, allowing food and air to escape from the nose. Using a mouse model of palate mucosal injury, we explored the role of immune cell infiltration during ONF formation. Delivery of FTY720, an immunomodulatory drug, using a nanofiber scaffold into the ONF was able to attract anti-inflammatory immune cells following injury that enhanced the reepithelization process. ONF healing at day 5 following FTY720 delivery was associated with altered inflammatory and epithelial transcriptional gene expression, increased anti-inflammatory immune cell infiltration, and increased proliferation. These findings demonstrate the potential efficacy of immunoregenerative therapies to improve oral cavity wound healing.


Assuntos
Cloridrato de Fingolimode , Imunomodulação/efeitos dos fármacos , Palato Duro , Cicatrização , Animais , Citocinas/imunologia , Cloridrato de Fingolimode/química , Cloridrato de Fingolimode/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Nanofibras/química , Nanofibras/uso terapêutico , Palato Duro/imunologia , Palato Duro/lesões , Palato Duro/patologia , Fatores de Transcrição SOXB1/imunologia , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia
16.
Foot Ankle Int ; 39(8): 954-959, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29620948

RESUMO

BACKGROUND: Vancomycin is frequently applied locally to the operative site during foot and ankle procedures to help prevent infection. Although the efficacy of locally applied vancomycin has been demonstrated in spine surgery, there is no consensus on dosing and indication within foot and ankle surgery. Osteogenic differentiation of human mesenchymal stromal cells (hMSCs) is key to healing of both fractures and arthrodesis. The purpose of this research was to determine the impact of vancomycin on human hMSCs during the process of osteogenic differentiation. METHODS: hMSCs were cultured in osteogenic differentiation media to promote osteogenic differentiation. Cells were treated with vancomycin at differing concentrations of 0, 50, 500, and 5000 µg/mL. Viability and cell growth were assessed via LIVE/DEAD viability/cytotoxicity kit (Invitrogen, Waltham, MA) after 1, 3, and 7 days of vancomycin treatment. Differentiation and mineralization was assessed via alizarin red staining after 21 days of treatment. Mean cell viability, cell number, and mineralization were compared between treatment groups using 1-way analysis of variance and the Tukey-Kramer method for post hoc pairwise comparisons. RESULTS: At the highest concentrations of vancomycin, there was a significant reduction in cell viability and proliferation after 3 days compared with all other treatment groups. Mineralization was also significantly decreased with higher doses of vancomycin. CONCLUSION: At high concentrations, vancomycin may impair hMSC viability and osteogenic differentiation. CLINICAL RELEVANCE: Surgeons should exercise caution and consider the limited soft tissue envelope when applying vancomycin locally during foot and ankle surgery, especially during arthrodesis procedures.


Assuntos
Antibacterianos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Vancomicina/farmacologia , Antibacterianos/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Pé/cirurgia , Humanos , Vancomicina/administração & dosagem
17.
Acta Biomater ; 72: 352-361, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29563069

RESUMO

Poly(para-phenylene) (PPP) is a novel aromatic polymer with higher strength and stiffness than polyetheretherketone (PEEK), the gold standard material for polymeric load-bearing orthopaedic implants. The amorphous structure of PPP makes it relatively straightforward to manufacture different architectures, while maintaining mechanical properties. PPP is promising as a potential orthopaedic material; however, the biocompatibility and osseointegration have not been well investigated. The objective of this study was to evaluate biological and mechanical behavior of PPP, with or without porosity, in comparison to PEEK. We examined four specific constructs: 1) solid PPP, 2) solid PEEK, 3) porous PPP and 4) porous PEEK. Pre-osteoblasts (MC3T3) exhibited similar cell proliferation among the materials. Osteogenic potential was significantly increased in the porous PPP scaffold as assessed by ALP activity and calcium mineralization. In vivo osseointegration was assessed by implanting the cylindrical materials into a defect in the metaphysis region of rat tibiae. Significantly more mineral ingrowth was observed in both porous scaffolds compared to the solid scaffolds, and porous PPP had a further increase compared to porous PEEK. Additionally, porous PPP implants showed bone formation throughout the porous structure when observed via histology. A computational simulation of mechanical push-out strength showed approximately 50% higher interfacial strength in the porous PPP implants compared to the porous PEEK implants and similar stress dissipation. These data demonstrate the potential utility of PPP for orthopaedic applications and show improved osseointegration when compared to the currently available polymeric material. STATEMENT OF SIGNIFICANCE: PEEK has been widely used in orthopaedic surgery; however, the ability to utilize PEEK for advanced fabrication methods, such as 3D printing and tailored porosity, remain challenging. We present a promising new orthopaedic biomaterial, Poly(para-phenylene) (PPP), which is a novel class of aromatic polymers with higher strength and stiffness than polyetheretherketone (PEEK). PPP has exceptional mechanical strength and stiffness due to its repeating aromatic rings that provide strong anti-rotational biaryl bonds. Furthermore, PPP has an amorphous structure making it relatively easier to manufacture (via molding or solvent-casting techniques) into different geometries with and without porosity. This ability to manufacture different architectures and use different processes while maintaining mechanical properties makes PPP a very promising potential orthopaedic biomaterial which may allow for closer matching of mechanical properties between the host bone tissue while also allowing for enhanced osseointegration. In this manuscript, we look at the potential of porous and solid PPP in comparison to PEEK. We measured the mechanical properties of PPP and PEEK scaffolds, tested these scaffolds in vitro for osteocompatibility with MC3T3 cells, and then tested the osseointegration and subsequent functional integration in vivo in a metaphyseal drill hole model in rat tibia. We found that PPP permits cell adhesion, growth, and mineralization in vitro. In vivo it was found that porous PPP significantly enhanced mineralization into the construct and increased the mechanical strength required to push out the scaffold in comparison to PEEK. This is the first study to investigate the performance of PPP as an orthopaedic biomaterial in vivo. PPP is an attractive material for orthopaedic implants due to the ease of manufacturing and superior mechanical strength.


Assuntos
Prótese Ancorada no Osso , Calcificação Fisiológica , Implantes Experimentais , Teste de Materiais , Osteogênese , Polímeros/química , Animais , Benzofenonas , Linhagem Celular , Cetonas , Masculino , Camundongos , Polietilenoglicóis , Porosidade , Ratos , Ratos Sprague-Dawley
18.
Biomater Sci ; 6(5): 1159-1167, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29564448

RESUMO

As a potential treatment for osteoarthritis (OA), we have developed injectable and hydrolytically degradable heparin-based biomaterials with tunable sulfation for the intra-articular delivery of tumor necrosis factor-alpha stimulated gene-6 (TSG-6), a protein known to inhibit plasmin which may degrade extracellular matrix within OA joints. We first assessed the effect of heparin sulfation on TSG-6 anti-plasmin activity and found that while fully sulfated (Hep) and heparin desulfated at only the N position (Hep-N) significantly enhanced TSG-6 bioactivity in vitro, fully desulfated heparin (Hep-) had no effect, indicating that heparin sulfation plays a significant role in modulating TSG-6 bioactivity. Next, TSG-6 loaded, degradable 10 wt% Hep-N microparticles (MPs) were delivered via intra-articular injection into the knee at 1, 7, and 15 days following medial meniscal transection (MMT) injury in a rat model. After 21 days, cartilage thickness, volume, and attenuation were significantly increased with soluble TSG-6, indicating degenerative changes. In contrast, no significant differences were observed with TSG-6 loaded MP treatment, demonstrating that TSG-6 loaded MPs reduced cartilage damage following MMT injury. Ultimately, our results indicate that Hep-N can enhance TSG-6 anti-plasmin activity and that Hep-N-based biomaterials may be an effective method for TSG-6 delivery to treat OA.


Assuntos
Moléculas de Adesão Celular/uso terapêutico , Portadores de Fármacos/química , Heparina/análogos & derivados , Osteoartrite do Joelho/tratamento farmacológico , Animais , Cartilagem/efeitos dos fármacos , Moléculas de Adesão Celular/administração & dosagem , Moléculas de Adesão Celular/farmacologia , Injeções Intra-Articulares , Masculino , Ratos , Ratos Sprague-Dawley
19.
Sci Rep ; 7(1): 13334, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042571

RESUMO

Bone marrow derived mesenchymal stem cells (MSCs) are regularly utilized for translational therapeutic strategies including cell therapy, tissue engineering, and regenerative medicine and are frequently used in preclinical mouse models for both mechanistic studies and screening of new cell based therapies. Current methods to culture murine MSCs (mMSCs) select for rapidly dividing colonies and require long-term expansion. These methods thus require months of culture to generate sufficient cell numbers for feasibility studies in a lab setting and the cell populations often have reduced proliferation and differentiation potential, or have become immortalized cells. Here we describe a simple and reproducible method to generate mMSCs by utilizing hypoxia and basic fibroblast growth factor supplementation. Cells produced using these conditions were generated 2.8 times faster than under traditional methods and the mMSCs showed decreased senescence and maintained their multipotency and differentiation potential until passage 11 and beyond. Our method for mMSC isolation and expansion will significantly improve the utility of this critical cell source in pre-clinical studies for the investigation of MSC mechanisms, therapies, and cell manufacturing strategies.


Assuntos
Diferenciação Celular , Autorrenovação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Biomarcadores , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Imunofenotipagem , Isquemia/diagnóstico , Isquemia/terapia , Transplante de Células-Tronco Mesenquimais , Camundongos , Osteogênese/genética , Fosforilação
20.
Tissue Eng Part A ; 21(1-2): 156-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25010532

RESUMO

Despite progress in bone tissue engineering, the healing of critically sized diaphyseal defects remains a clinical challenge. A stem cell-based approach is an attractive alternative to current treatment techniques. The objective of this study was to examine the ability of adult stem cells to enhance bone formation when co-delivered with the osteoinductive factor bone morphogenetic protein-2 (BMP-2) in a biologically functionalized hydrogel. First, adipose and bone marrow-derived mesenchymal stem cells (ADSCs and BMMSCs) were screened for their potential to form bone when delivered in an RGD functionalized alginate hydrogel using a subcutaneous implant model. BMMSCs co-delivered with BMP-2 produced significantly more mineralized tissue compared with either ADSCs co-delivered with BMP-2 or acellular hydrogels containing BMP-2. Next, the ability of BMMSCs to heal a critically sized diaphyseal defect with a nonhealing dose of BMP-2 was tested using the alginate hydrogel as an injectable cell carrier. The effect of timing of therapeutic delivery on bone regeneration was also tested in the diaphyseal model. A 7 day delayed injection of the hydrogel into the defect site resulted in less mineralized tissue formation than immediate delivery of the hydrogel. By 12 weeks, BMMSC-loaded hydrogels produced significantly more bone than acellular constructs regardless of immediate or delayed treatment. For immediate delivery, bridging of defects treated with BMMSC-loaded hydrogels occurred at a rate of 75% compared with a 33% bridging rate for acellular-treated defects. No bridging was observed in any of the delayed delivery samples for any of the groups. Therefore, for this cell-based bone tissue engineering approach, immediate delivery of constructs leads to an overall enhanced healing response compared with delayed delivery techniques. Further, these studies demonstrate that co-delivery of adult stem cells, specifically BMMSCs, with BMP-2 enhances bone regeneration in a critically sized femoral segmental defect compared with acellular hydrogels containing BMP-2.


Assuntos
Osso e Ossos/fisiologia , Hidrogéis/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Tecido Adiposo/citologia , Alginatos/farmacologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Osso e Ossos/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diáfises/efeitos dos fármacos , Diáfises/patologia , Ácido Glucurônico/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Ácidos Hexurônicos/farmacologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Implantes Experimentais , Indóis/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Tela Subcutânea/efeitos dos fármacos , Fatores de Tempo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA