Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Med Phys ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598093

RESUMO

BACKGROUND: While careful planning and pre-treatment checks are performed to ensure patient safety during external beam radiation therapy (EBRT), inevitable daily variations mean that in vivo dosimetry (IVD) is the only way to attain the true delivered dose. Several countries outside the US require daily IVD for quality assurance. However, elsewhere, the manual labor and time considerations of traditional in vivo dosimeters may be preventing frequent use of IVD in the clinic. PURPOSE: This study expands upon previous research using plastic scintillator discs for optical dosimetry for electron therapy treatments. We present the characterization of scintillator discs for in vivo x-ray dosimetry and describe additional considerations due to geometric complexities. METHODS: Plastic scintillator discs were coated with reflective white paint on all sides but the front surface. An anti-reflective, matte coating was applied to the transparent face to minimize specular reflection. A time-gated iCMOS camera imaged the discs under various irradiation conditions. In post-processing, background-subtracted images of the scintillators were fit with Gaussian-convolved ellipses to extract several parameters, including integral output, and observation angle. RESULTS: Dose linearity and x-ray energy independence were observed, consistent with ideal characteristics for a dosimeter. Dose measurements exhibited less than 5% variation for incident beam angles between 0° and 75° at the anterior surface and 0-60 ∘ $^\circ $ at the posterior surface for exit beam dosimetry. Varying the angle between the disc surface and the camera lens did not impact the integral output for the same dose up to 55°. Past this point, up to 75°, there is a sharp falloff in response; however, a correction can be used based on the detected width of the disc. The reproducibility of the integral output for a single disc is 2%, and combined with variations from the gantry angle, we report the accuracy of the proposed scintillator disc dosimeters as ±5.4%. CONCLUSIONS: Plastic scintillator discs have characteristics that are well-suited for in vivo optical dosimetry for x-ray radiotherapy treatments. Unlike typical point dosimeters, there is no inherent readout time delay, and an optical recording of the measurement is saved after treatment for future reference. While several factors influence the integral output for the same dose, they have been quantified here and may be corrected in post-processing.

2.
Adv Radiat Oncol ; 9(1): 101314, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38260228

RESUMO

Purpose: In our experience treating locally advanced pancreatic cancer with magnetic resonance-guided radiation therapy (MRgRT), the true-fast imaging with steady-state free precession sequences used to generate both the real-time 2-dimensional (2D) magnetic resonance images (MRI; 2D cine) and the pretreatment high-resolution 3-dimensional (3D) MRI impart differing intensities for relevant structures between the 2 scans. Since these variations can confound target tracking selection, we propose that an understanding of the differing contrast profiles could improve selection of tracking structures. Methods and Materials: We retrospectively reviewed both 2D cine and 3D MRI images for 20 patients with pancreatic cancer treated with MRgRT. At simulation, an appropriate tracking target was identified and contoured on a single 3-mm sagittal slice of the 3D MRI. This sagittal slice was directly compared with the coregistered 7-mm 2D cine to identify structures with notable discrepancies in signal intensity. The 3D MRI was then explored in additional planes to confirm structure identities. For quantitative verification of the clinically observed differences, the pixel intensity distributions of 2D cine and 3D MRI digital imaging and communications in medicine data sets were statistically compared. Results: In all patients reviewed, arteries (aorta, celiac, superior mesenteric artery, hepatic artery) appeared mildly hyperintense on both scans. However, veins (portal vein, superior mesenteric vein) appeared hyperintense on 2D cine but isointense on 3D MRI. Biliary structures appeared mildly hyperintense on 2D cine but starkly hyperintense on 3D MRI. The pixel intensity distributions extracted from 2D cine and 3D MRI images were confirmed to differ significantly (2 sample Kolmogorov-Smirnov test; test statistic, 0.40; P < .001). Conclusions: There are significant variations in image intensity between the immediate pretreatment 2D cine compared with the initial planning 3D MRI. Understanding variations of image intensity between the different MRI sequences used in MRgRT is valuable to radiation oncologists and may lead to improved target tracking and optimized treatment delivery.

3.
Int J Radiat Oncol Biol Phys ; 119(1): 292-301, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072322

RESUMO

PURPOSE: Electron paramagnetic resonance (EPR) biodosimetry, used to triage large numbers of individuals incidentally exposed to unknown doses of ionizing radiation, is based on detecting a stable physical response in the body that is subject to quantifiable variation after exposure. In vivo measurement is essential to fully characterize the radiation response relevant to a living tooth measured in situ. The purpose of this study was to verify EPR spectroscopy in vivo by estimating the radiation dose received in participants' teeth. METHODS AND MATERIALS: A continuous wave L-band spectrometer was used for EPR measurements. Participants included healthy volunteers and patients undergoing head and neck and total body irradiation treatments. Healthy volunteers completed 1 measurement each, and patients underwent measurement before starting treatment and between subsequent fractions. Optically stimulated luminescent dosimeters and diodes were used to determine the dose delivered to the teeth to validate EPR measurements. RESULTS: Seventy measurements were acquired from 4 total body irradiation and 6 head and neck patients over 15 months. Patient data showed a linear increase of EPR signal with delivered dose across the dose range tested. A linear least-squares weighted fit of the data gave a statistically significant correlation between EPR signal and absorbed dose (P < .0001). The standard error of inverse prediction (SEIP), used to assess the usefulness of fits, was 1.92 Gy for the dose range most relevant for immediate triage (≤7 Gy). Correcting for natural background radiation based on patient age reduced the SEIP to 1.51 Gy. CONCLUSIONS: This study demonstrated the feasibility of using spectroscopic measurements from radiation therapy patients to validate in vivo EPR biodosimetry. The data illustrated a statistically significant correlation between the magnitude of EPR signals and absorbed dose. The SEIP of 1.51 Gy, obtained under clinical conditions, indicates the potential value of this technique in response to large radiation events.


Assuntos
Dente , Humanos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Dente/química , Dente/efeitos da radiação , Irradiação Corporal Total , Radiometria/métodos , Doses de Radiação
4.
Radiat Res ; 200(3): 223-231, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37590482

RESUMO

Recent studies suggest ultra-high dose rate radiation treatment (UHDR-RT) reduces normal tissue damage compared to conventional radiation treatment (CONV-RT) at the same dose. In this study, we compared first, the kinetics and degree of skin damage in wild-type C57BL/6 mice, and second, tumor treatment efficacy in GL261 and B16F10 dermal tumor models, at the same UHDR-RT and CONV-RT doses. Flank skin of wild-type mice received UHDR-RT or CONV-RT at 25 Gy and 30 Gy. Normal skin damage was tracked by clinical observation to determine the time to moist desquamation, an endpoint which was verified by histopathology. Tumors were inoculated on the right flank of the mice, then received UHDR-RT or CONV-RT at 1 × 11 Gy, 1 × 15, 1 × 25, 3 × 6 and 3 × 8 Gy, and time to tumor tripling volume was determined. Tumors also received 1 × 11, 1 × 15, 3 × 6 and 3 × 8 Gy doses for assessment of CD8+/CD4+ tumor infiltrate and genetic expression 96 h postirradiation. All irradiations of the mouse tumor or flank skin were performed with megavoltage electron beams (10 MeV, 270 Gy/s for UHDR-RT and 9 MeV, 0.12 Gy/s for CONV-RT) delivered via a clinical linear accelerator. Tumor control was statistically equal for similar doses of UHDR-RT and CONV-RT in B16F10 and GL261 murine tumors. There were variable qualitative differences in genetic expression of immune and cell damage-associated pathways between UHDR and CONV irradiated B16F10 tumors. Compared to CONV-RT, UHDR-RT resulted in an increased latent period to skin desquamation after a single 25 Gy dose (7 days longer). Time to moist skin desquamation did not significantly differ between UHDR-RT and CONV-RT after a 30 Gy dose. The histomorphological characteristics of skin damage were similar for UHDR-RT and CONV-RT. These studies demonstrated similar tumor control responses for equivalent single and fractionated radiation doses, with variable difference in expression of tumor progression and immune related gene pathways. There was a modest UHDR-RT skin sparing effect after a 1 × 25 Gy dose but not after a 1 × 30 Gy dose.


Assuntos
Neoplasias , Lesões por Radiação , Camundongos , Animais , Camundongos Endogâmicos C57BL , Pele/efeitos da radiação , Neoplasias/patologia , Modelos Animais de Doenças , Lesões por Radiação/patologia , Dosagem Radioterapêutica
5.
Pract Radiat Oncol ; 13(2): 153-165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36375771

RESUMO

PURPOSE: The use of a linear accelerator (LINAC) in ultrahigh-dose-rate (UHDR) mode can provide a conduit for wider access to UHDR FLASH effects, sparing normal tissue, but care needs to be taken in the use of such systems to ensure errors are minimized. The failure mode and effects analysis was carried out in a team that has been involved in converting a LINAC between clinical use and UHDR experimental mode for more than 1 year after the proposed methods of TG100. METHODS AND MATERIALS: A team of 9 professionals with extensive experience were polled to outline the process map and workflow for analysis, and developed fault trees for potential errors, as well as failure modes that would result. The team scored the categories of severity magnitude, occurrence likelihood, and detectability potential in a scale of 1 to 10, so that a risk priority number (RPN = severity×occurrence×detectability) could be assessed for each. RESULTS: A total of 46 potential failure modes were identified, including 5 with an RPN >100. These failure modes involved (1) patient set up, (2) gating mechanisms in delivery, and (3) detector in the beam stop mechanism. The identified methods to mitigate errors included the (1) use of a checklist post conversion, (2) use of robust radiation detectors, (3) automation of quality assurance and beam consistency checks, and (4) implementation of surface guidance during beam delivery. CONCLUSIONS: The failure mode and effects analysis process was considered critically important in this setting of a new use of a LINAC, and the expert team developed a higher level of confidence in the ability to safely move UHDR LINAC use toward expanded research access.


Assuntos
Análise do Modo e do Efeito de Falhas na Assistência à Saúde , Radiocirurgia , Humanos , Aceleradores de Partículas , Radiocirurgia/métodos , Probabilidade
6.
Pract Radiat Oncol ; 13(1): 71-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35777728

RESUMO

PURPOSE: Cherenkov imaging is clinically available as a radiation therapy treatment verification tool. The aim of this work was to discover the benefits of always-on Cherenkov imaging as a novel incident detection and quality improvement system through review of all imaging at our center. METHODS AND MATERIALS: Multicamera Cherenkov imaging systems were permanently installed in 3 treatment bunkers, imaging continuously over a year. Images were acquired as part of normal treatment procedures and reviewed for potential treatment delivery anomalies. RESULTS: In total, 622 unique patients were evaluated for this study. We identified 9 patients with treatment anomalies occurring over their course of treatment, which were only detected with Cherenkov imaging. Categorizing each event indicated issues arising in simulation, planning, pretreatment review, and treatment delivery, and none of the incidents were detected before this review by conventional measures. The incidents identified in this study included dose to unintended areas in planning, dose to unintended areas due to positioning at treatment, and nonideal bolus placement during setup. CONCLUSIONS: Cherenkov imaging was shown to provide a unique method of detecting radiation therapy incidents that would have otherwise gone undetected. Although none of the events detected in this study reached the threshold of reporting, they identified opportunities for practice improvement and demonstrated added value of Cherenkov imaging in quality assurance programs.


Assuntos
Melhoria de Qualidade , Humanos , Simulação por Computador
7.
Adv Exp Med Biol ; 1395: 315-321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527655

RESUMO

The delivery of radiation at an ultra-high dose rate (FLASH) is an important new approach to radiotherapy (RT) that appears to be able to improve the therapeutic ratio by diminishing damage to normal tissues. While the mechanisms by which FLASH improves outcomes have not been established, a role involving molecular oxygen (O2) is frequently mentioned. In order to effectively determine if the protective effect of FLASH RT occurs via a differential direct depletion of O2 (compared to conventional radiation), it is essential to consider the known role of O2 in modifying the response of cells and tissues to ionising radiation (known as 'the oxygen effect'). Considerations include: (1) The pertinent reaction involves an unstable intermediate of radiation-damaged DNA, which either undergoes chemical repair to restore the DNA or reacts with O2, resulting in an unrepairable lesion in the DNA, (2) These reactions occur in the nuclear DNA, which can be used to estimate the distance needed for O2 to diffuse through the cell to reach the intermediates, (3) The longest lifetime that the reactive site of the DNA is available to react with O2 is 1-10 µsec, (4) Using these lifetime estimates and known diffusion rates in different cell media, the maximal distance that O2 could travel in the cytosol to reach the site of the DNA (i.e., the nucleus) in time to react are 60-185 nm. This calculation defines the volume of oxygen that is pertinent for the direct oxygen effect, (5) Therefore, direct measurements of oxygen to determine if FLASH RT operates through differential radiochemical depletion of oxygen will require the ability to measure oxygen selectively in a sphere of <200 nm, with a time resolution of the duration of the delivery of FLASH, (6) It also is possible that alterations of oxygen levels by FLASH could occur more indirectly by affecting oxygen-dependent cell signalling and/or cellular repair.


Assuntos
Dano ao DNA , Oxigênio , Dosagem Radioterapêutica
8.
Radiother Oncol ; 177: 179-184, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36404528

RESUMO

PURPOSE: Increased oxygen levels may enhance the radiosensitivity of brain metastases treated with stereotactic radiosurgery (SRS). This project administered hyperbaric oxygen (HBO) prior to SRS to assess feasibility, safety, and response. METHODS: 38 patients were studied, 19 with 25 brain metastases treated with HBO prior to SRS, and 19 historical controls with 27 metastases, matched for histology, GPA, resection status, and lesion size. Outcomes included time from HBO to SRS, quality-of-life (QOL) measures, local control, distant (brain) metastases, radionecrosis, and overall survival. RESULTS: The average time from HBO chamber to SRS beam-on was 8.3 ± 1.7 minutes. Solicited adverse events (AEs) were comparable between HBO and control patients; no grade III or IV serious AEs were observed. Radionecrosis-free survival (RNFS), radionecrosis-free survival before whole-brain radiation therapy (WBRT) (RNBWFS), local recurrence-free survival before WBRT (LRBWFS), distant recurrence-free survival before WBRT (DRBWFS), and overall survival (OS) were not significantly different for HBO patients and controls on Kaplan-Meier analysis, though at 1-year estimated survival rates trended in favor of SRS + HBO: RNFS - 83% vs 60%; RNBWFS - 78% vs 60%; LRBWFS - 95% vs 78%; DRBWFS - 61% vs 57%; and OS - 73% vs 56%. Multivariate Cox models indicated no significant association between HBO treatment and hazards of RN, local or distant recurrence, or mortality; however, these did show statistically significant associations (p < 0.05) for: local recurrence with higher volume, radionecrosis with tumor resection, overall survival with resection, and overall survival with higher GPA. CONCLUSION: Addition of HBO to SRS for brain metastases is feasible without evident decrement in radiation necrosis and other clinical outcomes.


Assuntos
Neoplasias Encefálicas , Oxigenoterapia Hiperbárica , Lesões por Radiação , Radiocirurgia , Humanos , Radiocirurgia/efeitos adversos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Irradiação Craniana , Qualidade de Vida , Resultado do Tratamento , Estudos Retrospectivos , Lesões por Radiação/etiologia , Oxigênio
9.
J Med Imaging Radiat Sci ; 53(4): 612-622, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36045017

RESUMO

INTRODUCTION/BACKGROUND: The goal of Total Skin Electron Therapy (TSET) is to achieve a uniform surface dose, although assessment of this is never really done and typically limited points are sampled. A computational treatment simulation approach was developed to estimate dose distributions over the body surface, to compare uniformity of (i) the 6 pose Stanford technique and (ii) the rotational technique. METHODS: The relative angular dose distributions from electron beam irradiation was calculated by Monte Carlo simulation for cylinders with a range of diameters, approximating body part curvatures. These were used to project dose onto a 3D body model of the TSET patient's skin surfaces. Computer animation methods were used to accumulate the dose values, for display and analysis of the homogeneity of coverage. RESULTS: The rotational technique provided more uniform coverage than the Stanford technique. Anomalies of under dose were observed in lateral abdominal regions, above the shoulders and in the perineum. The Stanford technique had larger areas of low dose laterally. In the rotational technique, 90% of the patient's skin was within ±10% of the prescribed dose, while this percentage decreased to 60% or 85% for the Stanford technique, varying with patient body mass. Interestingly, the highest discrepancy was most apparent in high body mass patients, which can be attributed to the loss of tangent dose at low angles of curvature. DISCUSSION/CONCLUSION: This simulation and visualization approach is a practical means to analyze TSET dose, requiring only optical surface body topography scans. Under- and over-exposed body regions can be found, and irradiation could be customized to each patient. Dose Area Histogram (DAH) distribution analysis showed the rotational technique to have better uniformity, with most areas within 10% of the umbilicus value. Future use of this approach to analyze dose coverage is possible as a routine planning tool.


Assuntos
Elétrons , Neoplasias Cutâneas , Humanos , Dosagem Radioterapêutica , Pele/efeitos da radiação , Método de Monte Carlo , Neoplasias Cutâneas/radioterapia
10.
Phys Med Biol ; 67(9)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313290

RESUMO

Objective.Existing ultra-high dose rate (UHDR) electron sources lack dose rate independent dosimeters and a calibrated dose control system for accurate delivery. In this study, we aim to develop a custom single-pulse dose monitoring and a real-time dose-based control system for a FLASH enabled clinical linear accelerator (Linac).Approach.A commercially available point scintillator detector was coupled to a gated integrating amplifier and a real-time controller for dose monitoring and feedback control loop. The controller was programmed to integrate dose for each radiation pulse and stop the radiation beam when the prescribed dose was delivered. Additionally, the scintillator was mounted in a solid water phantom and placed underneath mice skin forin vivodose monitoring. The scintillator was characterized in terms of its radiation stability, mean dose-rate (Dm), and dose per pulse (Dp) dependence.Main results.TheDpexhibited a consistent ramp-up period across ∼4-5 pulse. The plastic scintillator was shown to be linear withDm(40-380 Gy s-1) andDp(0.3-1.3 Gy Pulse-1) to within +/- 3%. However, the plastic scintillator was subject to significant radiation damage (16%/kGy) for the initial 1 kGy and would need to be calibrated frequently. Pulse-counting control was accurately implemented with one-to-one correspondence between the intended and the actual delivered pulses. The dose-based control was sufficient to gate on any pulse of the Linac.In vivodosimetry monitoring with a 1 cm circular cut-out revealed that during the ramp-up period, the averageDpwas ∼0.045 ± 0.004 Gy Pulse-1, whereas after the ramp-up it stabilized at 0.65 ± 0.01 Gy Pulse-1.Significance.The tools presented in this study can be used to determine the beam parameter space pertinent to the FLASH effect. Additionally, this study is the first instance of real-time dose-based control for a modified Linac at ultra-high dose rates, which provides insight into the tool required for future clinical translation of FLASH-RT.


Assuntos
Aceleradores de Partículas , Radiometria , Animais , Camundongos , Imagens de Fantasmas , Plásticos , Dosagem Radioterapêutica
11.
Magn Reson Med ; 87(3): 1621-1637, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719047

RESUMO

PURPOSE: Electron paramagnetic resonance oximetry using the OxyChip as an implantable oxygen sensor can directly and repeatedly measure tissue oxygen levels. A phase I, first-in-human clinical study has established the safety and feasibility of using OxyChip for reliable and repeated measurements of oxygen levels in a variety of tumors and treatment regimens. A limitation in these studies is the inability to easily locate and identify the implanted probes in the tissue, particularly in the long term, thus limiting spatial/anatomical registration of the implant for proper interpretation of the oxygen data. In this study, we have developed and evaluated an enhanced oxygen-sensing probe embedded with gold nanoparticles (GNP), called the OxyChip-GNP, to enable visualization of the sensor using routine clinical imaging modalities. METHODS: In vitro characterization, imaging, and histopathology studies were carried out using tissue phantoms, excised tissues, and in vivo animal models (mice and rats). RESULTS: The results demonstrated a substantial enhancement of ultrasound and CT contrast using the OxyChip-GNP without compromising its electron paramagnetic resonance and oxygen-sensing properties or biocompatibility. CONCLUSIONS: The OxyChips embedded with gold nanoparticles (OxyChip-GNP) can be readily identified in soft tissues using standard clinical imaging modalities such as CT, cone beam-CT, or ultrasound imaging while maintaining its capability to make repeated in vivo measurements of tissue oxygen levels over the long term. This unique capability of the OxyChip-GNP facilitates precisely localized in vivo oxygen measurements in the clinical setting.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Camundongos , Oximetria , Oxigênio , Ratos
12.
Front Oncol ; 11: 743256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660306

RESUMO

OBJECTIVE: The overall objective of this clinical study was to validate an implantable oxygen sensor, called the 'OxyChip', as a clinically feasible technology that would allow individualized tumor-oxygen assessments in cancer patients prior to and during hypoxia-modification interventions such as hyperoxygen breathing. METHODS: Patients with any solid tumor at ≤3-cm depth from the skin-surface scheduled to undergo surgical resection (with or without neoadjuvant therapy) were considered eligible for the study. The OxyChip was implanted in the tumor and subsequently removed during standard-of-care surgery. Partial pressure of oxygen (pO2) at the implant location was assessed using electron paramagnetic resonance (EPR) oximetry. RESULTS: Twenty-three cancer patients underwent OxyChip implantation in their tumors. Six patients received neoadjuvant therapy while the OxyChip was implanted. Median implant duration was 30 days (range 4-128 days). Forty-five successful oxygen measurements were made in 15 patients. Baseline pO2 values were variable with overall median 15.7 mmHg (range 0.6-73.1 mmHg); 33% of the values were below 10 mmHg. After hyperoxygenation, the overall median pO2 was 31.8 mmHg (range 1.5-144.6 mmHg). In 83% of the measurements, there was a statistically significant (p ≤ 0.05) response to hyperoxygenation. CONCLUSIONS: Measurement of baseline pO2 and response to hyperoxygenation using EPR oximetry with the OxyChip is clinically feasible in a variety of tumor types. Tumor oxygen at baseline differed significantly among patients. Although most tumors responded to a hyperoxygenation intervention, some were non-responders. These data demonstrated the need for individualized assessment of tumor oxygenation in the context of planned hyperoxygenation interventions to optimize clinical outcomes.

13.
Adv Exp Med Biol ; 1269: 301-308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33966234

RESUMO

Clinical measurements of O2 in tissues will inevitably provide data that are at best aggregated and will not reflect the inherent heterogeneity of O2 in tissues over space and time. Additionally, the nature of all existing techniques to measure O2 results in complex sampling of the volume that is sensed by the technique. By recognizing these potential limitations of the measures, one can focus on the very important and useful information that can be obtained from these techniques, especially data about factors that can change levels of O2 and then exploit these changes diagnostically and therapeutically. The clinical utility of such data ultimately needs to be verified by careful studies of outcomes related to the measured changes in levels of O2.


Assuntos
Consumo de Oxigênio , Oxigênio , Gasometria
14.
Phys Med Biol ; 66(13)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34015774

RESUMO

Purpose.In this study, spatio-temporal beam profiling for electron ultra-high dose rate (UHDR; >40 Gy s-1) radiation via Cherenkov emission and radioluminescence imaging was investigated using intensified complementary metal-oxide-semiconductor cameras.Methods.The cameras, gated to FLASH optimized linear accelerator pulses, imaged radioluminescence and Cherenkov emission incited by single pulses of a UHDR (>40 Gy s-1) 10 MeV electron beam delivered to the isocenter. Surface dosimetry was investigated via imaging Cherenkov emission or scintillation from a solid water phantom or Gd2O2S:Tb screen positioned on top of the phantom, respectively. Projected depth-dose profiles were imaged from a tank filled with water (Cherenkov emission) and a 1 g l-1quinine sulfate solution (scintillation). These optical results were compared with projected lateral dose profiles measured by Gafchromic film at different depths, including the surface.Results.The per-pulse beam output from Cherenkov imaging agreed with the photomultiplier tube Cherenkov output to within 3% after about the first five to seven ramp-up pulses. Cherenkov emission and scintillation were linear with dose (R2 = 0.987 and 0.995, respectively) and independent of dose rate from ∼50 to 300 Gy s-1(0.18-0.91 Gy/pulse). The surface dose distribution from film agreed better with scintillation than with Cherenkov emission imaging (3%/3 mm gamma pass rates of 98.9% and 88.8%, respectively). Using a 450 nm bandpass filter, the quinine sulfate-based water imaging of the projected depth optical profiles agreed with the projected film dose to within 5%.Conclusion.The agreement of surface dosimetry using scintillation screen imaging and Gafchromic film suggests it can verify the consistency of daily beam quality assurance parameters with an accuracy of around 2% or 2 mm. Cherenkov-based surface dosimetry was affected by the target's optical properties, prompting additional calibration. In projected depth-dose profiling, scintillation imaging via spectral suppression of Cherenkov emission provided the best match to film. Both camera-based imaging modalities resolved dose from single UHDR beam pulses of up to 60 Hz repetition rate and 1 mm spatial resolution.


Assuntos
Elétrons , Radiometria , Imagem Óptica , Aceleradores de Partículas , Imagens de Fantasmas
16.
Int J Radiat Oncol Biol Phys ; 111(1): 240-248, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33845146

RESUMO

PURPOSE: Delivery of radiation at ultrahigh dose rates (UHDRs), known as FLASH, has recently been shown to preferentially spare normal tissues from radiation damage compared with tumor tissues. However, the underlying mechanism of this phenomenon remains unknown, with one of the most widely considered hypotheses being that the effect is related to substantial oxygen depletion upon FLASH, thereby altering the radiochemical damage during irradiation, leading to different radiation responses of normal and tumor cells. Testing of this hypothesis would be advanced by direct measurement of tissue oxygen in vivo during and after FLASH irradiation. METHODS AND MATERIALS: Oxygen measurements were performed in vitro and in vivo using the phosphorescence quenching method and a water-soluble molecular probe Oxyphor 2P. The changes in oxygen per unit dose (G-values) were quantified in response to irradiation by 10 MeV electron beam at either UHDR reaching 300 Gy/s or conventional radiation therapy dose rates of 0.1 Gy/s. RESULTS: In vitro experiments with 5% bovine serum albumin solutions at 23°C resulted in G-values for oxygen consumption of 0.19 to 0.21 mm Hg/Gy (0.34-0.37 µM/Gy) for conventional irradiation and 0.16 to 0.17 mm Hg/Gy (0.28-0.30 µM/Gy) for UHDR irradiation. In vivo, the total decrease in oxygen after a single fraction of 20 Gy FLASH irradiation was 2.3 ± 0.3 mm Hg in normal tissue and 1.0 ± 0.2 mm Hg in tumor tissue (P < .00001), whereas no decrease in oxygen was observed from a single fraction of 20 Gy applied in conventional mode. CONCLUSIONS: Our observations suggest that oxygen depletion to radiologically relevant levels of hypoxia is unlikely to occur in bulk tissue under FLASH irradiation. For the same dose, FLASH irradiation induces less oxygen consumption than conventional irradiation in vitro, which may be related to the FLASH sparing effect. However, the difference in oxygen depletion between FLASH and conventional irradiation could not be quantified in vivo because measurements of oxygen depletion under conventional irradiation are hampered by resupply of oxygen from the blood.


Assuntos
Neoplasias Experimentais/radioterapia , Oxigênio/análise , Animais , Camundongos , Neoplasias Experimentais/metabolismo , Consumo de Oxigênio , Dosagem Radioterapêutica
17.
Sci Rep ; 11(1): 4422, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627688

RESUMO

During a first-in-humans clinical trial investigating electron paramagnetic resonance tumor oximetry, a patient injected with the particulate oxygen sensor Printex ink was found to have unexpected fluorodeoxyglucose (FDG) uptake in a dermal nodule via positron emission tomography (PET). This nodule co-localized with the Printex ink injection; biopsy of the area, due to concern for malignancy, revealed findings consistent with ink and an associated inflammatory reaction. Investigations were subsequently performed to assess the impact of oxygen sensors on FDG-PET/CT imaging. A retrospective analysis of three clinical tumor oximetry trials involving two oxygen sensors (charcoal particulates and LiNc-BuO microcrystals) in 22 patients was performed to evaluate FDG imaging characteristics. The impact of clinically used oxygen sensors (carbon black, charcoal particulates, LiNc-BuO microcrystals) on FDG-PET/CT imaging after implantation in rat muscle (n = 12) was investigated. The retrospective review revealed no other patients with FDG avidity associated with particulate sensors. The preclinical investigation found no injected oxygen sensor whose mean standard uptake values differed significantly from sham injections. The risk of a false-positive FDG-PET/CT scan due to oxygen sensors appears low. However, in the right clinical context the potential exists that an associated inflammatory reaction may confound interpretation.

18.
Int J Radiat Oncol Biol Phys ; 110(3): 872-882, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444695

RESUMO

PURPOSE: In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy. METHODS AND MATERIALS: The LINAC was converted to deliver UHDR beam within 20 minutes by retracting the x-ray target from the beam's path, positioning the carousel on an empty port, and selecting 10 MV photon beam energy in the treatment console. Dose rate surface and depth dose profiles were measured in solid water phantom at different field sizes with Gafchromic film and an optically stimulated luminescent dosimeter (OSLD). A pulse controller counted the pulses via scattered radiation signal and gated the delivery for a preset pulse count. A fast photomultiplier tube-based Cherenkov detector measured the per pulse beam output at a 2-ns sampling rate. After conversion back to clinical mode, conventional beam output, flatness, symmetry, field size, and energy were measured for all clinically commissioned energies. RESULTS: The surface average dose rates at the isocenter for 1-cm diameter and 1.5-in diameter circular fields and for a jaws-wide-open field were 238 ± 5 Gy/s, 262 ± 5 Gy/s, and 290 ± 5 Gy/s, respectively. The radial symmetry of the beams was within 2.4%, 0.5%, and 0.2%, respectively. The doses from simultaneous irradiation of film and OSLD were within 1%. The photomultiplier tube showed the LINAC required ramp up time in the first 4 to 6 pulses before the output stabilized, after which its stability was within 3%. CONCLUSIONS: At the isocenter of the treatment room, 10 MeV UHDR beams were achieved. The beam output was reproducible but requires further investigation of the ramp up time, equivalent to ∼1 Gy, requiring dose monitoring. The UHDR beam can irradiate both small and large subjects to investigate potential FLASH radiobiological effects in minimally modified clinical settings, and the dose rate can be further increased by reducing the source-to-surface distance.


Assuntos
Elétrons , Aceleradores de Partículas , Humanos , Imagens de Fantasmas
19.
Int J Radiat Oncol Biol Phys ; 109(5): 1627-1637, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227443

RESUMO

PURPOSE: The value of Cherenkov imaging as an on-patient, real-time, treatment delivery verification system was examined in a 64-patient cohort during routine radiation treatments in a single-center study. METHODS AND MATERIALS: Cherenkov cameras were mounted in treatment rooms and used to image patients during their standard radiation therapy regimen for various sites, predominantly for whole breast and total skin electron therapy. For most patients, multiple fractions were imaged, with some involving bolus or scintillators on the skin. Measures of repeatability were calculated with a mean distance to conformity (MDC) for breast irradiation images. RESULTS: In breast treatments, Cherenkov images identified fractions when treatment delivery resulted in dose on the contralateral breast, the arm, or the chin and found nonideal bolus positioning. In sarcoma treatments, safe positioning of the contralateral leg was monitored. For all 199 imaged breast treatment fields, the interfraction MDC was within 7 mm compared with the first day of treatment (with only 7.5% of treatments exceeding 3 mm), and all but 1 fell within 7 mm relative to the treatment plan. The value of imaging dose through clear bolus or quantifying surface dose with scintillator dots was examined. Cherenkov imaging also was able to assess field match lines in cerebral-spinal and breast irradiation with nodes. Treatment imaging of other anatomic sites confirmed the value of surface dose imaging more broadly. CONCLUSIONS: Daily radiation therapy can be imaged routinely via Cherenkov emissions. Both the real-time images and the posttreatment, cumulative images provide surrogate maps of surface dose delivery that can be used for incident discovery and/or continuous improvement in many delivery techniques. In this initial 64-patient cohort, we discovered 6 minor incidents using Cherenkov imaging; these otherwise would have gone undetected. In addition, imaging provides automated, quantitative metrics useful for determining the quality of radiation therapy delivery.


Assuntos
Luminescência , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Imagem Óptica/métodos , Aceleradores de Partículas , Posicionamento do Paciente , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Estudos de Coortes , Radiação Cranioespinal/métodos , Fracionamento da Dose de Radiação , Feminino , Humanos , Masculino , Imagem Óptica/instrumentação , Radioterapia/métodos , Planejamento da Radioterapia Assistida por Computador , Sarcoma/diagnóstico por imagem , Sarcoma/radioterapia , Pele/diagnóstico por imagem , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/radioterapia
20.
Front Oncol ; 10: 572060, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194670

RESUMO

Introduction: Tumor hypoxia confers both a poor prognosis and increased resistance to oncologic therapies, and therefore, hypoxia modification with reliable oxygen profiling during anticancer treatment is desirable. The OxyChip is an implantable oxygen sensor that can detect tumor oxygen levels using electron paramagnetic resonance (EPR) oximetry. We report initial safety and feasibility outcomes after OxyChip implantation in a first-in-humans clinical trial (NCT02706197, www.clinicaltrials.gov). Materials and Methods: Twenty-four patients were enrolled. Eligible patients had a tumor ≤ 3 cm from the skin surface with planned surgical resection as part of standard-of-care therapy. Most patients had a squamous cell carcinoma of the skin (33%) or a breast malignancy (33%). After an initial cohort of six patients who received surgery alone, eligibility was expanded to patients receiving either chemotherapy or radiotherapy prior to surgical resection. The OxyChip was implanted into the tumor using an 18-G needle; a subset of patients had ultrasound-guided implantation. Electron paramagnetic resonance oximetry was carried out using a custom-built clinical EPR scanner. Patients were evaluated for associated toxicity using the Common Terminology Criteria for Adverse Events (CTCAE); evaluations started immediately after OxyChip placement, occurred during every EPR oximetry measurement, and continued periodically after removal. The OxyChip was removed during standard-of-care surgery, and pathologic analysis of the tissue surrounding the OxyChip was performed. Results: Eighteen patients received surgery alone, while five underwent chemotherapy and one underwent radiotherapy prior to surgery. No unanticipated serious adverse device events occurred. The maximum severity of any adverse event as graded by the CTCAE was 1 (least severe), and all were related to events typically associated with implantation. After surgical resection, 45% of the patients had no histopathologic findings specifically associated with the OxyChip. All tissue pathology was "anticipated" excepting a patient with greater than expected inflammatory findings, which was assessed to be related to the tumor as opposed to the OxyChip. Conclusion: This report of the first-in-humans trial of OxyChip implantation and EPR oximetry demonstrated no significant clinical pathology or unanticipated serious adverse device events. Use of the OxyChip in the clinic was thus safe and feasible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA