RESUMO
Pyridine nucleotide-disulfide oxidoreductases are underexplored as drug targets, and thioredoxin reductases (TrxRs) stand out as compelling pharmacological targets. Selective TrxR inhibition is challenging primarily due to the reliance on covalent inhibition strategies. Recent studies identified a regulatory and druggable pocket in Schistosoma mansoni thioredoxin glutathione reductase (TGR), a TrxR-like enzyme, and an established drug target for schistosomiasis. This site is termed the "doorstop pocket" because compounds that bind there impede the movement of an aromatic side-chain necessary for the entry and exit of NADPH and NADP+ during enzymatic turnover. This discovery spearheaded the development of new TGR inhibitors with efficacies surpassing those of current schistosomiasis treatment. Targeting the "doorstop pocket" is a promising strategy, as the pocket is present in all members of the pyridine nucleotide-disulfide oxidoreductase family, opening new avenues for exploring therapeutic approaches in diseases where the importance of these enzymes is established, including cancer and inflammatory and infectious diseases.
Assuntos
Inibidores Enzimáticos , Schistosoma mansoni , Tiorredoxina Dissulfeto Redutase , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Animais , Schistosoma mansoni/enzimologia , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , NADP/metabolismo , Complexos Multienzimáticos , NADH NADPH OxirredutasesRESUMO
Innate immune cells can undergo long-term functional reprogramming after certain infections, a process called trained immunity (TI). Here, we focus on antigens of Leishmania braziliensis, which induced anti-tumor effects via trained immunity in human monocytes. We reveal that monocytes exposed to promastigote antigens of L. braziliensis develop an enhanced response to subsequent exposure to Toll-like receptor (TLR)2 or TLR4 ligands. Mechanistically, the induction of TI in monocytes by L. braziliensis is mediated by multiple pattern recognition receptors, changes in metabolism, and increased deposition of H3K4me3 at the promoter regions of immune genes. The administration of L. braziliensis exerts potent anti-tumor capabilities by delaying tumor growth and prolonging survival of mice with non-Hodgkin lymphoma. Our work reveals mechanisms of TI induced by L. braziliensis in vitro and identifies its potential for cancer immunotherapy.
Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Neoplasias , Humanos , Camundongos , Animais , MonócitosRESUMO
BACKGROUND: The involvement of the autonomic nervous system in the regulation of inflammation is an emerging concept with significant potential for clinical applications. Recent studies demonstrate that stimulating the vagus nerve activates the cholinergic anti-inflammatory pathway that inhibits pro-inflammatory cytokines and controls inflammation. The α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages plays a key role in mediating cholinergic anti-inflammatory effects through a downstream intracellular mechanism involving inhibition of NF-κB signaling, which results in suppression of pro-inflammatory cytokine production. However, the role of the α7nAChR in the regulation of other aspects of the immune response, including the recruitment of monocytes/macrophages to the site of inflammation remained poorly understood. RESULTS: We observed an increased mortality in α7nAChR-deficient mice (compared with wild-type controls) in mice with endotoxemia, which was paralleled with a significant reduction in the number of monocyte-derived macrophages in the lungs. Corroborating these results, fluorescently labeled α7nAChR-deficient monocytes adoptively transferred to WT mice showed significantly diminished recruitment to the inflamed tissue. α7nAChR deficiency did not affect monocyte 2D transmigration across an endothelial monolayer, but it significantly decreased the migration of macrophages in a 3D fibrin matrix. In vitro analysis of major adhesive receptors (L-selectin, ß1 and ß2 integrins) and chemokine receptors (CCR2 and CCR5) revealed reduced expression of integrin αM and αX on α7nAChR-deficient macrophages. Decreased expression of αMß2 was confirmed on fluorescently labeled, adoptively transferred α7nAChR-deficient macrophages in the lungs of endotoxemic mice, indicating a potential mechanism for α7nAChR-mediated migration. CONCLUSIONS: We demonstrate a novel role for the α7nAChR in mediating macrophage recruitment to inflamed tissue, which indicates an important new aspect of the cholinergic regulation of immune responses and inflammation.
Assuntos
Endotoxemia , Receptor Nicotínico de Acetilcolina alfa7 , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Endotoxemia/metabolismo , Colinérgicos/metabolismoRESUMO
Only praziquantel is available for treating schistosomiasis, a disease affecting more than 200 million people. Praziquantel-resistant worms have been selected for in the lab and low cure rates from mass drug administration programs suggest that resistance is evolving in the field. Thioredoxin glutathione reductase (TGR) is essential for schistosome survival and a validated drug target. TGR inhibitors identified to date are irreversible and/or covalent inhibitors with unacceptable off-target effects. In this work, we identify noncovalent TGR inhibitors with efficacy against schistosome infections in mice, meeting the criteria for lead progression indicated by WHO. Comparisons with previous in vivo studies with praziquantel suggests that these inhibitors outperform the drug of choice for schistosomiasis against juvenile worms.
Assuntos
Esquistossomose , Esquistossomicidas , Animais , Camundongos , Esquistossomicidas/farmacologia , Esquistossomicidas/uso terapêutico , Praziquantel/farmacologia , Schistosoma , NADH NADPH Oxirredutases/farmacologia , NADH NADPH Oxirredutases/uso terapêutico , Schistosoma mansoniRESUMO
Introduction: The mechanisms underlying innate immune memory (trained immunity) comprise epigenetic reprogramming of transcriptional pathways associated with alterations of intracellular metabolism. While the mechanisms of innate immune memory carried out by immune cells are well characterized, such processes in non-immune cells, are poorly understood. The opportunistic pathogen, Staphylococcus aureus, is responsible for a multitude of human diseases, including pneumonia, endocarditis and osteomyelitis, as well as animal infections, including chronic cattle mastitis that are extremely difficult to treat. An induction of innate immune memory may be considered as a therapeutic alternative to fight S. aureus infection. Methods: In the current work, we demonstrated the development of innate immune memory in non-immune cells during S. aureus infection employing a combination of techniques including Enzyme-linked immunosorbent assay (ELISA), microscopic analysis, and cytometry. Results: We observed that training of human osteoblast-like MG-63 cells and lung epithelial A549 cells with ß-glucan increased IL-6 and IL-8 production upon a stimulation with S. aureus, concomitant with histones modifications. IL-6 and IL-8 production was positively correlated with an acetylation of histone 3 at lysine 27 (H3K27), thus suggesting epigenetic reprogramming in these cells. An addition of the ROS scavenger N-Acetylcysteine, NAC, prior to ß-glucan pretreatment followed by an exposure to S. aureus, resulted in decreased IL-6 and IL-8 production, thereby supporting the involvement of ROS in the induction of innate immune memory. Exposure of cells to Lactococcus lactis resulted in increased IL-6 and IL-8 production by MG-63 and A549 cells upon a stimulation with S. aureus that was correlated with H3K27 acetylation, suggesting the ability of this beneficial bacterium to induce innate immune memory. Discussion: This work improves our understanding of innate immune memory in non-immune cells in the context of S. aureus infection. In addition to known inducers, probiotics may represent good candidates for the induction of innate immune memory. Our findings may help the development of alternative therapeutic approaches for the prevention of S. aureus infection.
Assuntos
Imunidade Inata , Infecções Estafilocócicas , Feminino , Humanos , Animais , Bovinos , Espécies Reativas de Oxigênio , Staphylococcus aureus , Imunidade Treinada , Interleucina-8 , Interleucina-6RESUMO
Thioredoxin/glutathione reductase from Schistosoma mansoni (SmTGR) catalyzes the reduction of both oxidized thioredoxin and glutathione with electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH). SmTGR is a drug target for the treatment of Schistosomiasis, an infection caused by Schistosoma platyhelminths residing in the blood vessels of the host. Schistosoma spp. are reliant on TGR enzymes as they lack catalase and so use reduced thioredoxin and glutathione to regenerate peroxiredoxins consumed in the detoxification of reactive oxygen species. SmTGR is a flavin adenine dinucleotide (FAD)-dependent enzyme, and we have used the flavin as a spectrophotometric reporter to observe the movement of electrons within the enzyme. The data show that NADPH fractionally reduces the active site flavin with an observed rate constant estimated in this study to be â¼3000 s-1. The flavin then reoxidizes by passing electrons at a similar rate to the proximal Cys159-Cys154 disulfide pair. The dissociation of NADP+ occurs with a rate of â¼180 s-1, which induces the deprotonation of Cys159, and this coincides with the accumulation of an intense FAD-thiolate charge transfer band. It is proposed that the electrons then pass to the Cys596-Cys597 disulfide pair of the associated subunit in the dimer with a net rate constant of â¼2 s-1. (Note: Cys597 is Sec597 in wild-type (WT) SmTGR.) From this position, the electrons can be passed to oxidized thioredoxin or further into the protein to reduce the Cys28-Cys31 disulfide pair of the originating subunit of the dimer. From the Cys28-Cys31 center, electrons can then pass to oxidized glutathione that has a binding site directly adjacent.
Assuntos
Flavina-Adenina Dinucleotídeo , Schistosoma mansoni , Animais , Schistosoma mansoni/metabolismo , Glutationa Redutase/metabolismo , NADP/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Glutationa/metabolismo , Dissulfetos , Tiorredoxinas/metabolismo , OxirreduçãoRESUMO
We determined whether gut microbiota-produced trimethylamine (TMA) is oxidized into trimethylamine N-oxide (TMAO) in nonliver tissues and whether TMAO promotes inflammation via trained immunity (TI). We found that endoplasmic reticulum (ER) stress genes were coupregulated with MitoCarta genes in chronic kidney diseases (CKD); TMAO upregulated 190 genes in human aortic endothelial cells (HAECs); TMAO synthesis enzyme flavin-containing monooxygenase 3 (FMO3) was expressed in human and mouse aortas; TMAO transdifferentiated HAECs into innate immune cells; TMAO phosphorylated 12 kinases in cytosol via its receptor PERK and CREB, and integrated with PERK pathways; and PERK inhibitors suppressed TMAO-induced ICAM-1. TMAO upregulated 3 mitochondrial genes, downregulated inflammation inhibitor DARS2, and induced mitoROS, and mitoTEMPO inhibited TMAO-induced ICAM-1. ß-Glucan priming, followed by TMAO restimulation, upregulated TNF-α by inducing metabolic reprogramming, and glycolysis inhibitor suppressed TMAO-induced ICAM-1. Our results have provided potentially novel insights regarding TMAO roles in inducing EC activation and innate immune transdifferentiation and inducing metabolic reprogramming and TI for enhanced vascular inflammation, and they have provided new therapeutic targets for treating cardiovascular diseases (CVD), CKD-promoted CVD, inflammation, transplantation, aging, and cancer.
Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Células Endoteliais , Imunidade Treinada , Fígado/metabolismo , Inflamação/metabolismo , Doenças Cardiovasculares/metabolismo , Aorta , Insuficiência Renal Crônica/metabolismoRESUMO
ABSTRACT: Introduction: Sepsis impaired vascular integrity results in multiple organ failure. Circulating lactate level is positively correlated with sepsis-induced mortality. We investigated whether lactate plays a role in causing endothelial barrier dysfunction in sepsis. Methods: Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP). Lactic acid was injected i.p. (pH 6.8, 0.5 g/kg body weight) 6 h after CLP or sham surgery. To elucidate the role of heat shock protein A12B (HSPA12B), wild-type, HSPA12B-transgenic, and endothelial HSPA12B-deficient mice were subjected to CLP or sham surgery. To suppress lactate signaling, 3OBA (120 µM) was injected i.p. 3 h before surgery. Vascular permeability was evaluated with the Evans blue dye penetration assay. Results: We found that administration of lactate elevated CLP-induced vascular permeability. Vascular endothelial cadherin (VE-cadherin), claudin 5, and zonula occluden 1 (ZO-1) play a crucial role in the maintenance of endothelial cell junction and vascular integrity. Lactate administration significantly decreased VE-cadherin, claudin 5, and ZO-1 expression in the heart of septic mice. Our in vitro data showed that lactate (10 mM) treatment disrupted VE-cadherin, claudin 5, and ZO-1 in endothelial cells. Mechanistically, we observed that lactate promoted VE-cadherin endocytosis by reducing the expression of HSPA12B. Overexpression of HSPA12B prevented lactate-induced VE-cadherin disorganization. G protein-coupled receptor 81 (GPR81) is a specific receptor for lactate. Inhibition of GPR81 with its antagonist 3OBA attenuated vascular permeability and reversed HSPA12B expression in septic mice. Conclusions: The present study demonstrated a novel role of lactate in promoting vascular permeability by decreasing VE-cadherin junctions and tight junctions in endothelial cells. The deleterious effects of lactate in vascular hyperpermeability are mediated via HSPA12B- and GPR81-dependent signaling.
Assuntos
Permeabilidade Capilar , Sepse , Animais , Camundongos , Caderinas/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Ácido Láctico/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sepse/metabolismoRESUMO
Oxidation of polyunsaturated fatty acids contributes to different aspects of the inflammatory response due to the variety of products generated. Specifically, the oxidation of DHA produces the end-product, carboxyethylpyrrole (CEP), which forms a covalent adduct with proteins via an ϵ-amino group of lysines. Previously, we found that CEP formation is dramatically increased in inflamed tissue and CEP-modified albumin and fibrinogen became ligands for αDß2 (CD11d/CD18) and αMß2 (CD11b/CD18) integrins. In this study, we evaluated the effect of extracellular matrix (ECM) modification with CEP on the adhesive properties of M1-polarized macrophages, particularly during chronic inflammation. Using digested atherosclerotic lesions and in vitro oxidation assays, we demonstrated the ability of ECM proteins to form adducts with CEP, particularly, DHA oxidation leads to the formation of CEP adducts with collagen IV and laminin, but not with collagen I. Using integrin αDß2-transfected HEK293 cells, WT and αD-/- mouse M1-polarized macrophages, we revealed that CEP-modified proteins support stronger cell adhesion and spreading when compared with natural ECM ligands such as collagen IV, laminin, and fibrinogen. Integrin αDß2 is critical for M1 macrophage adhesion to CEP. Based on biolayer interferometry results, the isolated αD I-domain demonstrates markedly higher binding affinity to CEP compared to the "natural" αDß2 ligand fibrinogen. Finally, the presence of CEP-modified proteins in a 3D fibrin matrix significantly increased M1 macrophage retention. Therefore, CEP modification converts ECM proteins to αDß2-recognition ligands by changing a positively charged lysine to negatively charged CEP, which increases M1 macrophage adhesion to ECM and promotes macrophage retention during detrimental inflammation, autoimmunity, and chronic inflammation.
Assuntos
Laminina , Macrófagos , Animais , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibrinogênio/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Integrinas/metabolismo , Laminina/metabolismo , Ligantes , CamundongosRESUMO
Praziquantel (PZQ) remains the only drug of choice for the treatment of schistosomiasis, caused by parasitic flatworms. The widespread use of PZQ in schistosomiasis endemic areas for about four decades raises concerns about the emergence of resistance of Schistosoma spp. to PZQ under drug selection pressure. This reinforces the urgency in finding alternative therapeutic options that could replace or complement PZQ. We explored the potential of medicinal plants commonly used by indigenes in Kenya for the treatment of various ailments including malaria, pneumonia, and diarrhoea for their antischistosomal properties. Employing the Soxhlet extraction method with different solvents, seven medicinal plants Artemisia annua, Ajuga remota, Bredilia micranta, Cordia africana, Physalis peruviana, Prunus africana and Senna didymobotrya were extracted. Qualitative phytochemical screening was performed to determine the presence of various phytochemicals in the plant extracts. Extracts were tested against Schistosoma mansoni newly transformed schistosomula (NTS) and adult worms and the schistosomicidal activity was determined by using the adenosine triphosphate quantitation assay. Phytochemical analysis of the extracts showed different classes of compounds such as alkaloids, tannins, terpenes, etc., in plant extracts active against S. mansoni worms. Seven extracts out of 22 resulted in <20% viability against NTS in 24 h at 100 µg/ml. Five of the extracts with inhibitory activity against NTS showed >69.7% and ≥72.4% reduction in viability against adult worms after exposure for 24 and 48 h, respectively. This study provides encouraging preliminary evidence that extracts of Kenyan medicinal plants deserve further study as potential alternative therapeutics that may form the basis for the development of the new treatments for schistosomiasis.
Assuntos
Produtos Biológicos , Plantas Medicinais , Esquistossomose mansoni , Esquistossomose , Animais , Medicina Herbária , Quênia , Schistosoma mansoni , Esquistossomose/tratamento farmacológico , Esquistossomose mansoni/tratamento farmacológicoRESUMO
Enzymes in the thiol redox systems of microbial pathogens are promising targets for drug development. In this study we characterized the thioredoxin reductase (TrxR) selenoproteins from Brugia malayi and Onchocerca volvulus, filarial nematode parasites and causative agents of lymphatic filariasis and onchocerciasis, respectively. The two filarial enzymes showed similar turnover numbers and affinities for different thioredoxin (Trx) proteins, but with a clear preference for the autologous Trx. Human TrxR1 (hTrxR1) had a high and similar specific activity versus the human and filarial Trxs, suggesting that, in vivo, hTrxR1 could possibly be the reducing agent of parasite Trxs once they are released into the host. Both filarial TrxRs were efficiently inhibited by auranofin and by a recently described inhibitor of human TrxR1 (TRi-1), but not as efficiently by the alternative compound TRi-2. The enzyme from B. malayi was structurally characterized also in complex with NADPH and auranofin, producing the first crystallographic structure of a nematode TrxR. The protein represents an unusual fusion of a mammalian-type TrxR protein architecture with an N-terminal glutaredoxin-like (Grx) domain lacking typical Grx motifs. Unlike thioredoxin glutathione reductases (TGRs) found in platyhelminths and mammals, which are also Grx-TrxR domain fusion proteins, the TrxRs from the filarial nematodes lacked glutathione disulfide reductase and Grx activities. The structural determinations revealed that the Grx domain of TrxR from B. malayi contains a cysteine (C22), conserved in TrxRs from clade IIIc nematodes, that directly interacts with the C-terminal cysteine-selenocysteine motif of the homo-dimeric subunit. Interestingly, despite this finding we found that altering C22 by mutation to serine did not affect enzyme catalysis. Thus, although the function of the Grx domain in these filarial TrxRs remains to be determined, the results obtained provide insights on key properties of this important family of selenoprotein flavoenzymes that are potential drug targets for treatment of filariasis.
Assuntos
Brugia Malayi , Onchocerca volvulus , Parasitos , Animais , Auranofina/farmacologia , Brugia Malayi/metabolismo , Cisteína/metabolismo , Humanos , Mamíferos/metabolismo , Onchocerca volvulus/genética , Onchocerca volvulus/metabolismo , Oxirredução , Parasitos/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismoRESUMO
Unlike the adaptive immune system, the innate immune system has classically been characterized as being devoid of memory functions. However, recent research shows that innate myeloid and lymphoid cells have the ability to retain memory of prior pathogen exposure and become primed to elicit a robust, broad-spectrum response to subsequent infection. This phenomenon has been termed innate immune memory or trained immunity. Innate immune memory is induced via activation of pattern recognition receptors and the actions of cytokines on hematopoietic progenitors and stem cells in bone marrow and innate leukocytes in the periphery. The trained phenotype is induced and sustained via epigenetic modifications that reprogram transcriptional patterns and metabolism. These modifications augment antimicrobial functions, such as leukocyte expansion, chemotaxis, phagocytosis, and microbial killing, to facilitate an augmented host response to infection. Alternatively, innate immune memory may contribute to the pathogenesis of chronic diseases, such as atherosclerosis and Alzheimer's disease.
Assuntos
Doenças Transmissíveis/etiologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Memória Imunológica , Animais , Biomarcadores , Doenças Transmissíveis/metabolismo , Resistência à Doença/genética , Resistência à Doença/imunologia , Suscetibilidade a Doenças/imunologia , Metabolismo Energético , Epigênese Genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de SinaisRESUMO
Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.
Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos Virais/imunologia , Candida albicans/química , Mananas/imunologia , Hidróxido de Alumínio/química , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Epitopos/imunologia , Imunidade Inata , Imunização , Inflamação/patologia , Interferons/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Seios Paranasais/metabolismo , Subunidades Proteicas/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Solubilidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Fator de Transcrição RelB/metabolismo , Células Vero , beta-Glucanas/metabolismoRESUMO
High circulating levels of lactate and high mobility group box-1 (HMGB1) are associated with the severity and mortality of sepsis. However, it is unclear whether lactate could promote HMGB1 release during sepsis. The present study demonstrated a novel role of lactate in HMGB1 lactylation and acetylation in macrophages during polymicrobial sepsis. We found that macrophages can uptake extracellular lactate via monocarboxylate transporters (MCTs) to promote HMGB1 lactylation via a p300/CBP-dependent mechanism. We also observed that lactate stimulates HMGB1 acetylation by Hippo/YAP-mediated suppression of deacetylase SIRT1 and ß-arrestin2-mediated recruitment of acetylases p300/CBP to the nucleus via G protein-coupled receptor 81 (GPR81). The lactylated/acetylated HMGB1 is released from macrophages via exosome secretion which increases endothelium permeability. In vivo reduction of lactate production and/or inhibition of GPR81-mediated signaling decreases circulating exosomal HMGB1 levels and improves survival outcome in polymicrobial sepsis. Our results provide the basis for targeting lactate/lactate-associated signaling to combat sepsis.
Assuntos
Proteína HMGB1 , Sepse , Acetilação , Proteína HMGB1/metabolismo , Humanos , Ácido Láctico , Macrófagos/metabolismoRESUMO
Bacterial infections are a common and deadly threat to vulnerable patients. Alternative strategies to fight infection are needed. ß-Glucan, an immunomodulator derived from the fungal cell wall, provokes resistance to infection by inducing trained immunity, a phenomenon that persists for weeks to months. Given the durability of trained immunity, it is unclear which leukocyte populations sustain this effect. Macrophages have a life span that surpasses the duration of trained immunity. Thus, we sought to define the contribution of differentiated macrophages to trained immunity. Our results show that ß-glucan protects mice from Pseudomonas aeruginosa infection by augmenting recruitment of innate leukocytes to the site of infection and facilitating local clearance of bacteria, an effect that persists for more than 7 d. Adoptive transfer of macrophages, trained using ß-glucan, into naive mice conferred a comparable level of protection. Trained mouse bone marrow-derived macrophages assumed an antimicrobial phenotype characterized by enhanced phagocytosis and reactive oxygen species production in parallel with sustained enhancements in glycolytic and oxidative metabolism, increased mitochondrial mass, and membrane potential. ß-Glucan induced broad transcriptomic changes in macrophages consistent with early activation of the inflammatory response, followed by sustained alterations in transcripts associated with metabolism, cellular differentiation, and antimicrobial function. Trained macrophages constitutively secreted CCL chemokines and robustly produced proinflammatory cytokines and chemokines in response to LPS challenge. Induction of the trained phenotype was independent of the classic ß-glucan receptors Dectin-1 and TLR-2. These findings provide evidence that ß-glucan induces enhanced protection from infection by driving trained immunity in macrophages.
Assuntos
Memória Imunológica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , beta-Glucanas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Feminino , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Neutrophil-macrophage interplay is a fine-tuning mechanism that regulates the innate immune response during infection and inflammation. Cell surface receptors play an essential role in neutrophil and macrophage functions. The same receptor can provide different outcomes within diverse leukocyte subsets in different inflammatory conditions. Understanding the variety of responses mediated by one receptor is critical for the development of anti-inflammatory treatments. In this study, we evaluated the role of a leukocyte adhesive receptor, integrin αD ß2 , in the development of acute inflammation. αD ß2 is mostly expressed on macrophages and contributes to the development of chronic inflammation. In contrast, we found that αD -knockout dramatically increases mortality in the cecal ligation and puncture sepsis model and LPS-induced endotoxemia. This pathologic outcome of αD -deficient mice is associated with a reduced number of monocyte-derived macrophages and an increased number of neutrophils in their lungs. However, the tracking of adoptively transferred fluorescently labeled wild-type (WT) and αD-/- monocytes in WT mice during endotoxemia demonstrated only a moderate difference between the recruitment of these two subsets. Moreover, the rescue experiment, using i.v. injection of WT monocytes to αD -deficient mice followed by LPS challenge, showed only slightly reduced mortality. Surprisingly, the injection of WT neutrophils to the bloodstream of αD-/- mice markedly increased migration of monocyte-derived macrophage to lungs and dramatically improves survival. αD -deficient neutrophils demonstrate increased necrosis/pyroptosis. αD ß2 -mediated macrophage accumulation in the lungs promotes efferocytosis that reduced mortality. Hence, integrin αD ß2 implements a complex defense mechanism during endotoxemia, which is mediated by macrophages via a neutrophil-dependent pathway.
Assuntos
Endotoxemia/imunologia , Cadeias alfa de Integrinas/metabolismo , Neutrófilos/metabolismo , Sepse/imunologia , Transferência Adotiva , Animais , Ceco/patologia , Contagem de Células , Movimento Celular , Citocinas/sangue , Modelos Animais de Doenças , Endotoxemia/sangue , Endotoxemia/complicações , Cadeias alfa de Integrinas/deficiência , Ligadura , Lipopolissacarídeos , Pulmão/patologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Monócitos/patologia , Necrose , Neutrófilos/patologia , Fagocitose , Punções , Piroptose , Sepse/sangue , Sepse/complicações , Análise de Sobrevida , Regulação para CimaRESUMO
An 8-year-old male intact miniature poodle presented for blindness, obtundation, tetraparesis, and vestibular signs. Magnetic resonance imaging, radiography, and ultrasound revealed a left piriform lobe lesion, right cerebellar and left brainstem lesions, and hydrocephalus and bilateral calvarial defects. Histopathology confirmed a choroid plexus carcinoma with meningeal and intraventricular metastases. The calvarial defect did not show evidence of necrosis, osteoclastic resorption, inflammation or neoplastic infiltration, reflecting a quiescent calvarial atrophy or dysplasia. These novel findings supported inclusion of bone atrophy secondary to chronic increased intracranial pressure as a differential diagnosis for large calvarial defects in dogs with choroid plexus carcinoma.
Assuntos
Carcinoma/veterinária , Neoplasias do Plexo Corióideo/veterinária , Doenças do Cão/diagnóstico por imagem , Imageamento por Ressonância Magnética/veterinária , Imagem Multimodal/veterinária , Crânio/patologia , Ultrassonografia/veterinária , Animais , Carcinoma/diagnóstico por imagem , Neoplasias do Plexo Corióideo/diagnóstico por imagem , Cães , Masculino , Crânio/diagnóstico por imagem , Ultrassonografia/métodosRESUMO
The study of Unsinger and colleagues provide important insights into OX40 mediated immunotherapy as a potential approach for the treatment of sepsis induced immune suppression.
Assuntos
Receptores OX40 , Sepse , Anticorpos , Humanos , Imunoterapia , Sepse/terapia , Linfócitos TRESUMO
Neglected parasitic diseases remain a major public health issue worldwide, especially in tropical and subtropical areas. Human parasite diversity is very large, ranging from protozoa to worms. In most cases, more effective and new drugs are urgently needed. Previous studies indicated that the gold(I) drug auranofin (Ridaura®) is effective against several parasites. Among new gold(I) complexes, the phosphole-containing gold(I) complex {1-phenyl-2,5-di(2-pyridyl)phosphole}AuCl (abbreviated as GoPI) is an irreversible inhibitor of both purified human glutathione and thioredoxin reductases. GoPI-sugar is a novel 1-thio-ß-d-glucopyranose 2,3,4,6-tetraacetato-S-derivative that is a chimera of the structures of GoPI and auranofin, designed to improve stability and bioavailability of GoPI. These metal-ligand complexes are of particular interest because of their combined abilities to irreversibly target the essential dithiol/selenol catalytic pair of selenium-dependent thioredoxin reductase activity, and to kill cells from breast and brain tumors. In this work, screening of various parasites-protozoans, trematodes, and nematodes-was undertaken to determine the in vitro killing activity of GoPI-sugar compared to auranofin. GoPI-sugar was found to efficiently kill intramacrophagic Leishmania donovani amastigotes and adult filarial and trematode worms.
Assuntos
Anti-Helmínticos , Antineoplásicos , Antiprotozoários , Auranofina , Complexos de Coordenação , Ouro , Helmintíase/tratamento farmacológico , Neoplasias/tratamento farmacológico , Infecções por Protozoários/tratamento farmacológico , Animais , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antiprotozoários/química , Antiprotozoários/farmacologia , Auranofina/química , Auranofina/farmacologia , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Avaliação de Medicamentos , Ouro/química , Ouro/farmacologia , Helmintíase/metabolismo , Helmintíase/patologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Infecções por Protozoários/metabolismo , Infecções por Protozoários/patologiaRESUMO
Invasive aspergillosis (IA) is a major opportunistic fungal infection in patients with haematological malignancies. Morbidity and mortality rates are high despite anti-fungal treatment, as the compromised status of immune system prevents the host from responding optimally to conventional therapy. This raises the consideration for immunotherapy as an adjunctive treatment. In this study, we evaluated the utility of expanded human NK cells as treatment against Aspergillus fumigatus infection in vitro and in vivo. The NK cells were expanded and activated by K562 cells genetically modified to express 4-1BB ligand and membrane-bound interleukin-15 (K562-41BBL-mbIL-15) as feeders. The efficacy of these cells was investigated in A. fumigatus killing assays in vitro and as adoptive cellular therapy in vivo. The expanded NK cells possessed potent killing activity at low effector-to-target ratio of 2:1. Fungicidal activity was morphotypal-dependent and most efficacious against A. fumigatus conidia. Fungicidal activity was mediated by dectin-1 receptors on the expanded NK cells leading to augmented release of perforin, resulting in enhanced direct cytolysis. In an immunocompromised mice pulmonary aspergillosis model, we showed that NK cell treatment significantly reduced fungal burden, hence demonstrating the translational potential of expanded NK cells as adjunctive therapy against IA in immunocompromised patients.