Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Dev Cell ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38781975

RESUMO

The transcription factor EHF is highly expressed in the lactating mammary gland, but its role in mammary development and tumorigenesis is not fully understood. Utilizing a mouse model of Ehf deletion, herein, we demonstrate that loss of Ehf impairs mammary lobuloalveolar differentiation at late pregnancy, indicated by significantly reduced levels of milk genes and milk lipids, fewer differentiated alveolar cells, and an accumulation of alveolar progenitor cells. Further, deletion of Ehf increased proliferative capacity and attenuated prolactin-induced alveolar differentiation in mammary organoids. Ehf deletion also increased tumor incidence in the MMTV-PyMT mammary tumor model and increased the proliferative capacity of mammary tumor organoids, while low EHF expression was associated with higher tumor grade and poorer outcome in luminal A and basal human breast cancers. Collectively, these findings establish EHF as a non-redundant regulator of mammary alveolar differentiation and a putative suppressor of mammary tumorigenesis.

2.
Mitochondrion ; 76: 101882, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599302

RESUMO

Mitochondria are dynamic organelles that alter their morphological characteristics in response to functional needs. Therefore, mitochondrial morphology is an important indicator of mitochondrial function and cellular health. Reliable segmentation of mitochondrial networks in microscopy images is a crucial initial step for further quantitative evaluation of their morphology. However, 3D mitochondrial segmentation, especially in cells with complex network morphology, such as in highly polarized cells, remains challenging. To improve the quality of 3D segmentation of mitochondria in super-resolution microscopy images, we took a machine learning approach, using 3D Trainable Weka, an ImageJ plugin. We demonstrated that, compared with other commonly used methods, our approach segmented mitochondrial networks effectively, with improved accuracy in different polarized epithelial cell models, including differentiated human retinal pigment epithelial (RPE) cells. Furthermore, using several tools for quantitative analysis following segmentation, we revealed mitochondrial fragmentation in bafilomycin-treated RPE cells.


Assuntos
Células Epiteliais , Imageamento Tridimensional , Aprendizado de Máquina , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo , Imageamento Tridimensional/métodos , Epitélio Pigmentado da Retina/citologia , Processamento de Imagem Assistida por Computador/métodos , Linhagem Celular
3.
Cell Death Dis ; 15(3): 183, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429301

RESUMO

Metastatic BRAFV600E colorectal cancer (CRC) carries an extremely poor prognosis and is in urgent need of effective new treatments. While the BRAFV600E inhibitor encorafenib in combination with the EGFR inhibitor cetuximab (Enc+Cet) was recently approved for this indication, overall survival is only increased by 3.6 months and objective responses are observed in only 20% of patients. We have found that a limitation of Enc+Cet treatment is the failure to efficiently induce apoptosis in BRAFV600E CRCs, despite inducing expression of the pro-apoptotic protein BIM and repressing expression of the pro-survival protein MCL-1. Here, we show that BRAFV600E CRCs express high basal levels of the pro-survival proteins MCL-1 and BCL-XL, and that combining encorafenib with a BCL-XL inhibitor significantly enhances apoptosis in BRAFV600E CRC cell lines. This effect was partially dependent on the induction of BIM, as BIM deletion markedly attenuated BRAF plus BCL-XL inhibitor-induced apoptosis. As thrombocytopenia is an established on-target toxicity of BCL-XL inhibition, we also examined the effect of combining encorafenib with the BCL-XL -targeting PROTAC DT2216, and the novel BCL-2/BCL-XL inhibitor dendrimer conjugate AZD0466. Combining encorafenib with DT2216 significantly increased apoptosis induction in vitro, while combining encorafenib with AZD0466 was well tolerated in mice and further reduced growth of BRAFV600E CRC xenografts compared to either agent alone. Collectively, these findings demonstrate that combined BRAF and BCL-XL inhibition significantly enhances apoptosis in pre-clinical models of BRAFV600E CRC and is a combination regimen worthy of clinical investigation to improve outcomes for these patients.


Assuntos
Antineoplásicos , Apoptose , Carbamatos , Neoplasias Colorretais , Inibidores de Proteínas Quinases , Proteína bcl-X , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Apoptose/efeitos dos fármacos
4.
Am J Physiol Gastrointest Liver Physiol ; 325(6): G508-G517, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788331

RESUMO

High-fat (HF) diets (HFDs) and inflammation are risk factors for colon cancer; however, the underlying mechanisms remain to be fully elucidated. The transcriptional corepressor HDAC3 has recently emerged as a key regulator of intestinal epithelial responses to diet and inflammation with intestinal-specific Hdac3 deletion (Hdac3IKO) in mice increasing fatty acid oxidation genes and the rate of fatty acid oxidation in enterocytes. Hdac3IKO mice are also predisposed to experimentally induced colitis; however, whether this is driven by the intestinal metabolic reprogramming and whether this predisposes these mice to intestinal tumorigenesis is unknown. Herein, we examined the effects of intestinal-specific Hdac3 deletion on colitis-associated intestinal tumorigenesis in mice fed a standard (STD) or HFD. Hdac3IKO mice were highly prone to experimentally induced colitis, which was further enhanced by an HFD. Hdac3 deletion also accelerated intestinal tumor development, specifically when fed an HFD and most notably in the small intestine where lipid absorption is maximal. Expression of proteins involved in fatty acid metabolism and oxidation (SCD1, EHHADH) were elevated in the small intestine of Hdac3IKO mice fed an HFD, and these mice displayed increased levels of lipid peroxidation, DNA damage, and apoptosis in their villi, as well as extensive expansion of the stem cell and progenitor cell compartment. These findings reveal a novel role for Hdac3 in suppressing colitis and intestinal tumorigenesis, particularly in the context of consumption of an HFD, and reveal a potential mechanism by which HFDs may increase intestinal tumorigenesis by increasing fatty acid oxidation, DNA damage, and intestinal epithelial cell turnover.NEW & NOTEWORTHY We reveal a novel role for the transcriptional corepressor Hdac3 in suppressing colitis and intestinal tumorigenesis, particularly in the context of consumption of an HFD, and reveal a potential mechanism by which HFDs may increase intestinal tumorigenesis by increasing fatty acid oxidation, DNA damage, and intestinal epithelial cell turnover. We also identify a unique mouse model for investigating the complex interplay between diet, metabolic reprogramming, and tumor predisposition in the intestinal epithelium.


Assuntos
Colite , Neoplasias Intestinais , Animais , Camundongos , Carcinogênese/metabolismo , Proteínas Correpressoras/metabolismo , Colite/metabolismo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/metabolismo , Camundongos Endogâmicos C57BL
5.
Sci Immunol ; 8(88): eadf2163, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37801516

RESUMO

Intraepithelial lymphocytes (IELs), including αß and γδ T cells (T-IELs), constantly survey and play a critical role in maintaining the gastrointestinal epithelium. We show that cytotoxic molecules important for defense against cancer were highly expressed by T-IELs in the small intestine. In contrast, abundance of colonic T-IELs was dependent on the microbiome and displayed higher expression of TCF-1/TCF7 and a reduced effector and cytotoxic profile, including low expression of granzymes. Targeted deletion of TCF-1 in γδ T-IELs induced a distinct effector profile and reduced colon tumor formation in mice. In addition, TCF-1 expression was significantly reduced in γδ T-IELs present in human colorectal cancers (CRCs) compared with normal healthy colon, which strongly correlated with an enhanced γδ T-IEL effector phenotype and improved patient survival. Our work identifies TCF-1 as a colon-specific T-IEL transcriptional regulator that could inform new immunotherapy strategies to treat CRC.


Assuntos
Neoplasias Colorretais , Linfócitos Intraepiteliais , Camundongos , Humanos , Animais , Linfócitos Intraepiteliais/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta , Intestino Delgado , Epitélio
6.
Polymers (Basel) ; 14(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35631910

RESUMO

Marine origin polymers represent a sustainable and natural alternative to mammal counterparts regarding the biomedical application due to their similarities with proteins and polysaccharides present in extracellular matrix (ECM) in humans and can reduce the risks associated with zoonosis and overcoming social- and religious-related constraints. In particular, collagen-based biomaterials have been widely explored in tissue engineering scaffolding applications, where cryogels are of particular interest as low temperature avoids protein denaturation. However, little is known about the influence of the parameters regarding their behavior, i.e., how they can influence each other toward improving their physical and chemical properties. Factorial design of experiments (DoE) and response surface methodology (RSM) emerge as tools to overcome these difficulties, which are statistical tools to find the most influential parameter and optimize processes. In this work, we hypothesized that a design of experiments (DoE) model would be able to support the optimization of the collagen-chitosan-fucoidan cryogel manufacturing. Therefore, the parameters temperature (A), collagen concentration (B), and fucoidan concentration (C) were carefully considered to be applied to the Box-Behnken design (three factors and three levels). Data obtained on rheological oscillatory measurements, as well as on the evaluation of antioxidant concentration and adenosine triphosphate (ATP) concentration, showed that fucoidan concentration could significantly influence collagen-chitosan-fucoidan cryogel formation, creating a stable internal polymeric network promoted by ionic crosslinking bonds. Additionally, the effect of temperature significantly contributed to rheological oscillatory properties. Overall, the condition that allowed us to have better results, from an optimization point of view according to the DoE, were the gels produced at -80 °C and composed of 5% of collagen, 3% of chitosan, and 10% fucoidan. Therefore, the proposed DoE model was considered suitable for predicting the best parameter combinations needed to develop these cryogels.

7.
Cell Death Differ ; 29(11): 2288-2302, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35606410

RESUMO

Colorectal cancers (CRCs) often display histological features indicative of aberrant differentiation but the molecular underpinnings of this trait and whether it directly drives disease progression is unclear. Here, we identify co-ordinate epigenetic inactivation of two epithelial-specific transcription factors, EHF and CDX1, as a mechanism driving differentiation loss in CRCs. Re-expression of EHF and CDX1 in poorly-differentiated CRC cells induced extensive chromatin remodelling, transcriptional re-programming, and differentiation along the enterocytic lineage, leading to reduced growth and metastasis. Strikingly, EHF and CDX1 were also able to reprogramme non-colonic epithelial cells to express colonic differentiation markers. By contrast, inactivation of EHF and CDX1 in well-differentiated CRC cells triggered tumour de-differentiation. Mechanistically, we demonstrate that EHF physically interacts with CDX1 via its PNT domain, and that these transcription factors co-operatively drive transcription of the colonic differentiation marker, VIL1. Compound genetic deletion of Ehf and Cdx1 in the mouse colon disrupted normal colonic differentiation and significantly enhanced colorectal tumour progression. These findings thus reveal a novel mechanism driving epithelial de-differentiation and tumour progression in CRC.


Assuntos
Neoplasias Colorretais , Fatores de Transcrição , Animais , Camundongos , Neoplasias Colorretais/genética , Epigênese Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Occup Med (Lond) ; 72(6): 420-423, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35468208

RESUMO

Silicosis is a progressive and irreversible fibrotic occupational lung disease caused by inhalation of respirable crystalline silica (RCS). Recently, outbreaks have been reported in industries involving direct work with high silica-containing materials, such as artificial stone. Here, we describe an unexpected diagnosis made in an asymptomatic 33-year-old female worker employed for 4 years at a quarry for rhyodacite and rhyolite which contain 70% silicon dioxide. Chest computed tomography demonstrated small nodules in the upper lobes and larger ill-defined areas of opacity. Bronchoalveolar lavage revealed fine birefringent material within the cytoplasm of alveolar macrophages, representing silica. Transbronchial biopsies of lung parenchyma and endobronchial ultrasound-guided transbronchial needle aspiration of mediastinal lymph nodes did not reveal features of sarcoidosis, tuberculosis, or malignancy. As such, a diagnosis of accelerated silicosis was confirmed and represents the first reported case in a female worker at a rhyodacite and rhyolite quarry.


Assuntos
Exposição Ocupacional , Silicose , Adulto , Feminino , Humanos , Linfonodos , Mediastino/patologia , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Dióxido de Silício/efeitos adversos , Silicose/complicações , Silicose/diagnóstico
9.
PLoS One ; 17(3): e0254469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239671

RESUMO

Chediak-Higashi syndrome, caused by mutations in the Lysosome Trafficking Regulator (Lyst) gene, is a recessive hypopigmentation disorder characterized by albinism, neuropathies, neurodegeneration, and defective immune responses, with enlargement of lysosomes and lysosome-related organelles. Although recent studies have suggested that Lyst mutations impair the regulation of sizes of lysosome and lysosome-related organelle, the underlying pathogenic mechanism of Chediak-Higashi syndrome is still unclear. Here we show striking evidence that deficiency in LYST protein function leads to accumulation of photoreceptor outer segment phagosomes in retinal pigment epithelial cells, and reduces adhesion between photoreceptor outer segment and retinal pigment epithelial cells in a mouse model of Chediak-Higashi syndrome. In addition, we observe elevated levels of cathepsins, matrix metallopeptidase (MMP) 3 and oxidative stress markers in the retinal pigment epithelium of Lyst mutants. Previous reports showed that impaired degradation of photoreceptor outer segment phagosomes causes elevated oxidative stress, which could consequently lead to increases of cysteine cathepsins and MMPs in the extracellular matrix. Taken together, we conclude that the loss of LYST function causes accumulation of phagosomes in the retinal pigment epithelium and elevation of several extracellular matrix-remodeling proteases through oxidative stress, which may, in turn, reduce retinal adhesion. Our work reveals previously unreported pathogenic events in the retinal pigment epithelium caused by Lyst deficiency. The same pathogenic events may be conserved in other professional phagocytic cells, such as macrophages in the immune system, contributing to overall Chediak-Higashi syndrome pathology.


Assuntos
Peptídeo Hidrolases
10.
Sci Rep ; 12(1): 1238, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075138

RESUMO

The phase III MAX clinical trial randomised patients with metastatic colorectal cancer (mCRC) to receive first-line capecitabine chemotherapy alone or in combination with the anti-VEGF-A antibody bevacizumab (± mitomycin C). We utilised this cohort to examine whether single nucleotide polymorphisms (SNPs) in VEGF-A, VEGFR1, and VEGFR2 are predictive of efficacy outcomes with bevacizumab or the development of hypertension. Genomic DNA extracted from archival FFPE tissue for 325 patients (69% of the MAX trial population) was used to genotype 16 candidate SNPs in VEGF-A, VEGFR1, and VEGFR2, which were analysed for associations with efficacy outcomes and hypertension. The VEGF-A rs25648 'CC' genotype was prognostic for improved PFS (HR 0.65, 95% CI 0.49 to 0.85; P = 0.002) and OS (HR 0.70, 95% CI 0.52 to 0.94; P = 0.019). The VEGF-A rs699947 'AA' genotype was prognostic for shorter PFS (HR 1.32, 95% CI 1.002 to 1.74; P = 0.048). None of the analysed SNPs were predictive of bevacizumab efficacy outcomes. VEGFR2 rs11133360 'TT' was associated with a lower risk of grade ≥ 3 hypertension (P = 0.028). SNPs in VEGF-A, VEGFR1 and VEGFR2 did not predict bevacizumab benefit. However, VEGF-A rs25648 and rs699947 were identified as novel prognostic biomarkers and VEGFR2 rs11133360 was associated with less grade ≥ 3 hypertension.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Austrália/epidemiologia , Carcinoma/genética , Carcinoma/mortalidade , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Feminino , Humanos , Hipertensão/genética , Masculino , Pessoa de Meia-Idade , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único
11.
Virulence ; 12(1): 2214-2227, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34494942

RESUMO

An oral antiviral against SARS-CoV-2 that also attenuates inflammatory instigators of severe COVID-19 is not available to date. Herein, we show that the apoA-I mimetic peptide 4 F inhibits Spike mediated viral entry and has antiviral activity against SARS-CoV-2 in human lung epithelial Calu3 and Vero-E6 cells. In SARS-CoV-2 infected Calu3 cells, 4 F upregulated inducers of the interferon pathway such as MX-1 and Heme oxygenase 1 (HO-1) and downregulated mitochondrial reactive oxygen species (mito-ROS) and CD147, a host protein that mediates viral entry. 4 F also reduced associated cellular apoptosis and secretion of IL-6 in both SARS-CoV-2 infected Vero-E6 and Calu3 cells. Thus, 4 F attenuates in vitro SARS-CoV-2 replication, associated apoptosis in epithelial cells and secretion of IL-6, a major cytokine related to COVID-19 morbidity. Given established safety of 4 F in humans, clinical studies are warranted to establish 4 F as therapy for COVID-19.


Assuntos
Antivirais/farmacologia , Peptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Basigina/metabolismo , Citocinas/metabolismo , Células Epiteliais , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Inflamação , Interferons/metabolismo , Estresse Oxidativo/efeitos dos fármacos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
12.
Sci Rep ; 11(1): 17263, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446801

RESUMO

Dexamethasone (Dex) is a highly insoluble front-line drug used in cancer therapy. Data from clinical trials indicates that the pharmacokinetics of Dex vary considerably between patients and prolonging drug exposure rather than increasing absolute dose may improve efficacy. Non-toxic, fully biodegradable Dex loaded nanovectors (NV) were formulated, via simple direct hydration within 10 min, as a vehicle to extend exposure and distribution in vivo. Dex-NV were just as effective as the free drug against primary human leukemia cells in vitro and in vivo. Importantly, high levels of DMSO solvent were not required in the NV formulations. Broad distribution of NV was seen rapidly following inoculation into mice. NV accumulated in major organs, including bone marrow and brain, known sanctuary sites for ALL. The study describes a non-toxic, more easily scalable system for improving Dex solubility for use in cancer and can be applied to other medical conditions associated with inflammation.


Assuntos
Dexametasona/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Polímeros/química , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Antineoplásicos Hormonais/administração & dosagem , Antineoplásicos Hormonais/química , Antineoplásicos Hormonais/farmacocinética , Criança , Dexametasona/química , Dexametasona/farmacocinética , Liberação Controlada de Fármacos , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Resultado do Tratamento , Células Tumorais Cultivadas , Adulto Jovem
14.
Development ; 148(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34180969

RESUMO

Ets homologous factor (EHF) is a member of the epithelial-specific Ets (ESE) family of transcription factors. To investigate its role in development and epithelial homeostasis, we generated a series of novel mouse strains in which the Ets DNA-binding domain of Ehf was deleted in all tissues (Ehf-/-) or specifically in the gut epithelium. Ehf-/- mice were born at the expected Mendelian ratio, but showed reduced body weight gain, and developed a series of pathologies requiring most Ehf-/- mice to reach an ethical endpoint before reaching 1 year of age. These included papillomas in the facial skin, abscesses in the preputial glands (males) or vulvae (females), and corneal ulcers. Ehf-/-mice also displayed increased susceptibility to experimentally induced colitis, which was confirmed in intestinal-specific Ehf knockout mice. Gut-specific Ehf deletion also impaired goblet cell differentiation, induced extensive transcriptional reprogramming in the colonic epithelium and enhanced Apc-initiated adenoma development. The Ets DNA-binding domain of EHF is therefore essential for postnatal homeostasis of the epidermis and colonic epithelium, and its loss promotes colonic tumour development.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias do Colo/etiologia , Epiderme/metabolismo , Genes APC , Homeostase , Mucosa Intestinal/metabolismo , Fatores de Transcrição/genética , Animais , Reprogramação Celular/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Regulação da Expressão Gênica , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Masculino , Camundongos , Camundongos Knockout , Fatores de Transcrição/metabolismo
15.
Angew Chem Int Ed Engl ; 60(32): 17629-17637, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34036695

RESUMO

Biodegradable nanostructures displaying aggregation-induced emission (AIE) are desirable from a biomedical point of view, due to the advantageous features of loading capacity, emission brightness, and fluorescence stability. Herein, biodegradable polymers comprising poly (ethylene glycol)-block-poly(caprolactone-gradient-trimethylene carbonate) (PEG-P(CLgTMC)), with tetraphenylethylene pyridinium-TMC (PAIE) side chains have been developed, which self-assembled into well-defined polymersomes. The resultant AIEgenic polymersomes are intrinsically fluorescent delivery vehicles. The presence of the pyridinium moiety endows the polymersomes with mitochondrial targeting ability, which improves the efficiency of co-encapsulated photosensitizers and improves therapeutic index against cancer cells both in vitro and in vivo. This contribution showcases the ability to engineer AIEgenic polymersomes with structure inherent fluorescence and targeting capacity for enhanced photodynamic therapy.


Assuntos
Antineoplásicos/farmacologia , Plásticos Biodegradáveis/farmacologia , Corantes Fluorescentes/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Poliésteres/farmacologia , Polietilenoglicóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/farmacologia , Compostos de Benzilideno/efeitos da radiação , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/efeitos da radiação , Compostos de Boro/síntese química , Compostos de Boro/farmacologia , Compostos de Boro/efeitos da radiação , Linhagem Celular Tumoral , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/efeitos da radiação , Humanos , Luz , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/efeitos da radiação , Poliésteres/síntese química , Poliésteres/efeitos da radiação , Polietilenoglicóis/síntese química , Polietilenoglicóis/efeitos da radiação , Compostos de Piridínio/síntese química , Compostos de Piridínio/farmacologia , Compostos de Piridínio/efeitos da radiação
16.
Cancer Immunol Res ; 9(7): 735-747, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33906864

RESUMO

IL11 is a member of the IL6 family of cytokines and signals through its cognate receptor subunits, IL11RA and glycoprotein 130 (GP130), to elicit biological responses via the JAK/STAT signaling pathway. IL11 contributes to cancer progression by promoting the survival and proliferation of cancer cells, but the potential immunomodulatory properties of IL11 signaling during tumor development have thus far remained unexplored. Here, we have characterized a role for IL11 in regulating CD4+ T cell-mediated antitumor responses. Absence of IL11 signaling impaired tumor growth in a sporadic mouse model of colon cancer and syngeneic allograft models of colon cancer. Adoptive bone marrow transfer experiments and in vivo depletion studies demonstrated that the tumor-promoting activity of IL11 was mediated through its suppressive effect on host CD4+ T cells in the tumor microenvironment. Indeed, when compared with Il11ra-proficient CD4+ T cells associated with MC38 tumors, their Il11ra-deficient counterparts displayed elevated expression of mRNA encoding the antitumor mediators IFNγ and TNFα. Likewise, IL11 potently suppressed the production of proinflammatory cytokines (IFNγ, TNFα, IL6, and IL12p70) by CD4+ T cells in vitro, which we corroborated by RNAscope analysis of human colorectal cancers, where IL11RAhigh tumors showed less IFNG and CD4 expression than IL11RAlow tumors. Therefore, our results ascribe a tumor cell-extrinsic immunomodulatory role to IL11 during colon cancer development that could be amenable to an anticytokine-based therapy.See related Spotlight by van der Burg, p. 724.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Neoplasias do Colo/imunologia , Subunidade alfa de Receptor de Interleucina-11/metabolismo , Interleucina-11/metabolismo , Animais , Antígenos CD4/análise , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Colo/imunologia , Colo/patologia , Neoplasias do Colo/patologia , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Interferon gama/análise , Interferon gama/metabolismo , Subunidade alfa de Receptor de Interleucina-11/análise , Subunidade alfa de Receptor de Interleucina-11/genética , Camundongos , Camundongos Knockout , Neoplasias de Tecido Ósseo , Receptores de Interleucina-11/metabolismo , Microambiente Tumoral/imunologia
17.
Nat Commun ; 12(1): 2077, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824321

RESUMO

Aggregation-induced emission (AIE) has, since its discovery, become a valuable tool in the field of nanoscience. AIEgenic molecules, which display highly stable fluorescence in an assembled state, have applications in various biomedical fields-including photodynamic therapy. Engineering structure-inherent, AIEgenic nanomaterials with motile properties is, however, still an unexplored frontier in the evolution of this potent technology. Here, we present phototactic/phototherapeutic nanomotors where biodegradable block copolymers decorated with AIE motifs can transduce radiant energy into motion and enhance thermophoretic motility driven by an asymmetric Au nanoshell. The hybrid nanomotors can harness two photon near-infrared radiation, triggering autonomous propulsion and simultaneous phototherapeutic generation of reactive oxygen species. The potential of these nanomotors to be applied in photodynamic therapy is demonstrated in vitro, where near-infrared light directed motion and reactive oxygen species induction synergistically enhance efficacy with a high level of spatial control.


Assuntos
Luz , Nanopartículas/química , Fototerapia , Linhagem Celular Tumoral , Ouro/química , Células HeLa , Humanos , Movimento (Física) , Nanopartículas/ultraestrutura , Polímeros/química
18.
Mol Cancer Ther ; 20(4): 704-715, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33563752

RESUMO

Amplification or overexpression of the FGFR family of receptor tyrosine kinases occurs in a significant proportion of gastric cancers. Regorafenib is a multikinase inhibitor of angiogenic and oncogenic kinases, including FGFR, which showed activity in the randomized phase II INTEGRATE clinical trial in advanced gastric cancer. There are currently no biomarkers that predict response to this agent, and whether regorafenib is preferentially active in FGFR-driven cancers is unknown. Through screening 25 gastric cancer cell lines, we identified five cell lines that were exquisitely sensitive to regorafenib, four of which harbored amplification or overexpression of FGFR family members. These four cell lines were also sensitive to the FGFR-specific inhibitors, BGJ398, erdafitinib, and TAS-120. Regorafenib inhibited FGFR-driven MAPK signaling in these cell lines, and knockdown studies confirmed their dependence on specific FGFRs for proliferation. In the INTEGRATE trial cohort, amplification or overexpression of FGFRs 1-4 was detected in 8%-19% of cases, however, this was not associated with improved progression-free survival and no objective responses were observed in these cases. Further preclinical analyses revealed FGFR-driven gastric cancer cell lines rapidly reactivate MAPK/ERK signaling in response to FGFR inhibition, which may underlie the limited clinical response to regorafenib. Importantly, combination treatment with an FGFR and MEK inhibitor delayed MAPK/ERK reactivation and synergistically inhibited proliferation of FGFR-driven gastric cancer cell lines. These findings suggest that upfront combinatorial inhibition of FGFR and MEK may represent a more effective treatment strategy for FGFR-driven gastric cancers.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Transfecção , Resultado do Tratamento
19.
Cell Death Discov ; 6(1): 114, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33298868

RESUMO

Despite having one of the lowest survival rates of all cancers, there have been no new approved treatments for malignant pleural mesothelioma (MPM) in over a decade. Standard-of-care treatment relies on Cisplatin plus Pemetrexed chemotherapy. Here, we tested a suite of BH3-mimetic drugs targeting BCL-2 pro-survival proteins of the intrinsic apoptotic pathway. We found BCL-XL is the dominant pro-survival protein in a panel of cell lines in vitro, though potent, synergistic cell killing occurred with MCL-1 co-targeting. This correlates with high-level expression of BCL-XL and MCL-1 in cell lines and a large cohort of patient tumour samples. BCL-XL inhibition combined with Cisplatin also enhanced cell killing. In vivo BCL-XL inhibition was as effective as Cisplatin, and the combination enhanced tumour growth control and survival. Genetic ablation of MCL-1 also enhanced the effects of BCL-XL inhibitors, in vivo. Combined, these data provide a compelling rationale for the clinical investigation of BH3-mimetics targeting BCL-XL in MPM.

20.
Adv Biosyst ; 4(11): e2000101, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33166084

RESUMO

The extent to which biologic payloads can be effectively delivered to cells is a limiting factor in the development of new therapies. Limitations arise from the lack of pharmacokinetic stability of biologics in vivo. Encapsulating biologics in a protective delivery vector has the potential to improve delivery profile and enhance performance. Coacervate microdroplets are developed as cell-mimetic materials with established potential for the stabilization of biological molecules, such as proteins and nucleic acids. Here, the development of biodegradable coacervate microvectors (comprising synthetically modified amylose polymers) is presented, for the delivery of biologic payloads to cells. Amylose-based coacervate microdroplets are stable under physiological conditions (e.g., temperature and ionic strength), are noncytotoxic owing to their biopolymeric structure, spontaneously interacted with the cell membrane, and are able to deliver and release proteinaceous payloads beyond the plasma membrane. In particular, myoglobin, an oxygen storage and antioxidant protein, is successfully delivered into human mesenchymal stem cells (hMSCs) within 24 h. Furthermore, coacervate microvectors are implemented for the delivery of human bone morphogenetic protein 2 growth factor, inducing differentiation of hMSCs into osteoprogenitor cells. This study demonstrates the potential of coacervate microdroplets as delivery microvectors for biomedical research and the development of new therapies.


Assuntos
Proteína Morfogenética Óssea 2 , Diferenciação Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Células-Tronco Mesenquimais/metabolismo , Amilose/química , Biopolímeros/química , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacocinética , Proteína Morfogenética Óssea 2/farmacologia , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA