Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731867

RESUMO

Interleukin-4 (IL4) is a Th2 cytokine that can signal through two different receptors, one of which-the type II receptor-is overexpressed by various cancer cells. Previously, we have shown that type II IL4 receptor signaling increases proliferation and metastasis in mouse models of breast cancer, as well as increasing glucose and glutamine metabolism. Here, we expand on those findings to determine mechanistically how IL4 signaling links glucose metabolism and histone acetylation to drive proliferation in the context of triple-negative breast cancer (TNBC). We used a combination of cellular, biochemical, and genomics approaches to interrogate TNBC cell lines, which represent a cancer type where high expression of the type II IL4 receptor is linked to reduced survival. Our results indicate that type II IL4 receptor activation leads to increased glucose uptake, Akt and ACLY activation, and histone acetylation in TNBC cell lines. Inhibition of glucose uptake through the deletion of Glut1 ablates IL4-induced proliferation. Additionally, pharmacological inhibition of histone acetyltransferase P300 attenuates IL4-mediated gene expression and proliferation in vitro. Our work elucidates a role for type II IL4 receptor signaling in promoting TNBC progression, and highlights type II IL4 signaling, as well as histone acetylation, as possible targets for therapy.


Assuntos
Proliferação de Células , Epigênese Genética , Receptores de Interleucina-4 , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Acetilação , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Interleucina-4/metabolismo , Interleucina-4/genética , Receptores de Interleucina-4/metabolismo , Receptores de Interleucina-4/genética , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
2.
Methods Mol Biol ; 2294: 143-150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33742399

RESUMO

Metastasis is a multistep process that involves responses to extrinsic and intrinsic signals at every step. It is thus only truly appreciated in the context of a whole organism. Nevertheless, in vitro studies can be used to facilitate understanding of the possible factors contributing to any phenotype that is associated with metastatic competence. The use of migration assays-where monolayers of cells migrate to cover gaps or "wounds"-has been described for decades to identify signaling pathways that regulate motile competence and to screen for ways of interfering with this ability. Here we depict the combination of such an assay with assessment of indicators of carbon metabolism using commercially available assays. This enables identification of changes in cellular metabolism associated with actively migrating cells.


Assuntos
Ensaios de Migração Celular/métodos , Movimento Celular , Glicólise , Análise do Fluxo Metabólico/métodos , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo
3.
Clin Exp Metastasis ; 36(3): 211-224, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31073762

RESUMO

Metabolic alterations are established as a hallmark of cancer. Such hallmark changes in cancer metabolism are characterized by reprogramming of energy-producing pathways and increases in the generation of biosynthetic intermediates to meet the needs of rapidly proliferating tumor cells. Various metabolic phenotypes such as aerobic glycolysis, increased glutamine consumption, and lipolysis have also been associated with the process of metastasis. However, in addition to the energy and biosynthetic alterations, a number of secondary functions of enzymes and metabolites are emerging that specifically contribute to metastasis. Here, we describe atypical intracellular roles of metabolic enzymes, extracellular functions of metabolic enzymes, roles of metabolites as signaling molecules, and epigenetic regulation mediated by altered metabolism, all of which can affect metastatic progression. We highlight how some of these mechanisms are already being exploited for therapeutic purposes, and discuss how others show similar potential.


Assuntos
Metabolismo Energético/fisiologia , Metástase Neoplásica/patologia , Neoplasias/patologia , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Progressão da Doença , Ácidos Graxos/metabolismo , Glucose/metabolismo , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA