Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 73: 103203, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823208

RESUMO

Vascular smooth muscle cells (VSMCs), known for their remarkable lifelong phenotypic plasticity, play a pivotal role in vascular pathologies through their ability to transition between different phenotypes. Our group discovered that the deficiency of the mitochondrial protein Poldip2 induces VSMC differentiation both in vivo and in vitro. Further comprehensive biochemical investigations revealed Poldip2's specific interaction with the mitochondrial ATPase caseinolytic protease chaperone subunit X (CLPX), which is the regulatory subunit for the caseinolytic protease proteolytic subunit (ClpP) that forms part of the ClpXP complex - a proteasome-like protease evolutionarily conserved from bacteria to humans. This interaction limits the protease's activity, and reduced Poldip2 levels lead to ClpXP complex activation. This finding prompted the hypothesis that ClpXP complex activity within the mitochondria may regulate the VSMC phenotype. Employing gain-of-function and loss-of-function strategies, we demonstrated that ClpXP activity significantly influences the VSMC phenotype. Notably, both genetic and pharmacological activation of ClpXP inhibits VSMC plasticity and fosters a quiescent, differentiated, and anti-inflammatory VSMC phenotype. The pharmacological activation of ClpP using TIC10, currently in phase III clinical trials for cancer, successfully replicates this phenotype both in vitro and in vivo and markedly reduces aneurysm development in a mouse model of elastase-induced aortic aneurysms. Our mechanistic exploration indicates that ClpP activation regulates the VSMC phenotype by modifying the cellular NAD+/NADH ratio and activating Sirtuin 1. Our findings reveal the crucial role of mitochondrial proteostasis in the regulation of the VSMC phenotype and propose the ClpP protease as a novel, actionable target for manipulating the VSMC phenotype.


Assuntos
Endopeptidase Clp , Mitocôndrias , Músculo Liso Vascular , Miócitos de Músculo Liso , Fenótipo , Sirtuína 1 , Animais , Humanos , Camundongos , Diferenciação Celular , Endopeptidase Clp/metabolismo , Endopeptidase Clp/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética
2.
Free Radic Biol Med ; 195: 283-297, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596387

RESUMO

The polymerase delta interacting protein 2 (Poldip2) is a nuclear-encoded mitochondrial protein required for oxidative metabolism. Under hypoxia, Poldip2 expression is repressed by an unknown mechanism. Therefore, low levels of Poldip2 are required to maintain glycolytic metabolism. The Cellular Communication Network Factor 2 (CCN2, Connective tissue growth factor, CTGF) is a profibrogenic molecule highly expressed in cancer and vascular inflammation in advanced atherosclerosis. Because CCN2 is upregulated under hypoxia and is associated with glycolytic metabolism, we hypothesize that Poldip2 downregulation is responsible for the upregulation of profibrotic signaling under hypoxia. Here, we report that Poldip2 is repressed under hypoxia by a mechanism that requires the activation of the enhancer of zeste homolog 2 repressive complex (EZH2) downstream from the Cyclin-Dependent Kinase 2 (CDK2). Importantly, we found that Poldip2 repression is required for CCN2 expression downstream of metabolic inhibition of the ubiquitin-proteasome system (UPS)-dependent stabilization of the serum response factor. Pharmacological or gene expression inhibition of CDK2 under hypoxia reverses Poldip2 downregulation, the inhibition of the UPS, and the expression of CCN2, collagen, and fibronectin. Thus, our findings connect cell cycle regulation and proteasome activity to mitochondrial function and fibrotic responses under hypoxia.


Assuntos
Proteínas Nucleares , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Nucleares/metabolismo , Músculo Liso Vascular/metabolismo , Transdução de Sinais , Hipóxia/genética , Hipóxia/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo
3.
Cardiovasc Res ; 118(11): 2506-2518, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34528082

RESUMO

AIMS: Sepsis-induced lung injury is associated with significant morbidity and mortality. Previously, we showed that heterozygous deletion of polymerase δ-interacting protein 2 (Poldip2) was protective against sepsis-induced lung injury. Since endothelial barrier disruption is thought to be the main mechanism of sepsis-induced lung injury, we sought to determine if the observed protection was specifically due to the effect of reduced endothelial Poldip2. METHODS AND RESULTS: Endothelial-specific Poldip2 knock-out mice (EC-/-) and their wild-type littermates (EC+/+) were injected with saline or lipopolysaccharide (18 mg/kg) to model sepsis-induced lung injury. At 18 h post-injection mice, were euthanized and bronchoalveolar lavage (BAL) fluid and lung tissue were collected to assess leucocyte infiltration. Poldip2 EC-/- mice showed reduced lung leucocyte infiltration in BAL (0.21 ± 0.9×106 vs. 1.29 ± 1.8×106 cells/mL) and lung tissue (12.7 ± 1.8 vs. 23 ± 3.7% neutrophils of total number of cells) compared to Poldip2 EC+/+ mice. qPCR analysis of the lung tissue revealed a significantly dampened induction of inflammatory gene expression (TNFα 2.23 ± 0.39 vs. 4.15 ± 0.5-fold, IκBα 4.32 ± 1.53 vs. 8.97 ± 1.59-fold), neutrophil chemoattractant gene expression (CXCL1 68.8 ± 29.6 vs. 147 ± 25.7-fold, CXCL2 65 ± 25.6 vs. 215 ± 27.3-fold) and a marker of endothelial activation (VCAM1 1.25 ± 0.25 vs. 3.8 ± 0.38-fold) in Poldip2 EC-/- compared to Poldip2 EC+/+ lungs. An in vitro model using human pulmonary microvascular endothelial cells was used to assess the effect of Poldip2 knock-down on endothelial activation and permeability. TNFα-induced endothelial permeability and VE-cadherin disruption were significantly reduced with siRNA-mediated knock-down of Poldip2 (5 ± 0.5 vs. 17.5 ± 3-fold for permeability, 1.5 ± 0.4 vs. 10.9 ± 1.3-fold for proportion of disrupted VE-cadherin). Poldip2 knock-down altered expression of Rho-GTPase-related genes, which correlated with reduced RhoA activation by TNFα (0.94 ± 0.05 vs. 1.29 ± 0.01 of relative RhoA activity) accompanied by redistribution of active-RhoA staining to the centre of the cell. CONCLUSION: Poldip2 is a potent regulator of endothelial dysfunction during sepsis-induced lung injury, and its endothelium-specific inhibition may provide clinical benefit.


Assuntos
Lesão Pulmonar , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Sepse , Animais , Endotélio/metabolismo , Humanos , Pulmão/metabolismo , Lesão Pulmonar/genética , Camundongos , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Sepse/complicações , Sepse/genética , Sepse/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Cancer Lett ; 502: 133-142, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444690

RESUMO

The ability of tumor cells to adapt to changes in oxygen tension is essential for tumor development. Low oxygen concentration influences cellular metabolism and, thus, affects proliferation, migration, and invasion. A focal point of the cell's adaptation to hypoxia is the transcription factor HIF1α (hypoxia-inducible factor 1 alpha), which affects the expression of specific gene networks involved in cellular energetics and metabolism. This review illustrates the mechanisms by which HIF1α-induced metabolic adaptation promotes angiogenesis, participates in the escape from immune recognition, and increases cancer cell antioxidant capacity. In addition to hypoxia, metabolic inhibition of 2-oxoglutarate-dependent dioxygenases regulates HIF1α stability and transcriptional activity. This phenomenon, known as pseudohypoxia, is frequently used by cancer cells to promote glycolytic metabolism to support biomass synthesis for cell growth and proliferation. In this review, we highlight the role of the most important metabolic intermediaries that are at the center of cancer's biology, and in particular, the participation of these metabolites in HIF1α retrograde signaling during the establishment of pseudohypoxia. Finally, we will discuss how these changes affect both the development of cancers and their resistance to treatment.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias/genética , Estabilidade Proteica , Transdução de Sinais , Hipóxia Tumoral
5.
Mucosal Immunol ; 12(3): 668-678, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30745566

RESUMO

Junctional adhesion molecule-A (JAM-A) is a transmembrane glycoprotein expressed on leukocytes, endothelia, and epithelia that regulates biological processes including barrier function and immune responses. While JAM-A has been reported to facilitate tissue infiltration of leukocytes under inflammatory conditions, the contributions of leukocyte-expressed JAM-A in vivo remain unresolved. We investigated the role of leukocyte-expressed JAM-A in acute peritonitis induced by zymosan, lipopolysaccharide (LPS), or TNFα using mice with selective loss of JAM-A in myelomonocytic cells (LysM-Cre;Jam-afl/fl). Surprisingly, in LysM-Cre;Jam-afl/fl mice, loss of JAM-A did not affect neutrophil (PMN) recruitment into the peritoneum in response to zymosan, LPS, or TNFα although it was significantly reduced in Jam-aKO mice. In parallel, Jam-aKO peritoneal macrophages exhibited diminished CXCL1 chemokine production and decreased activation of NF-kB, whereas those from LysM-Cre;Jam-afl/fl mice were unaffected. Using Villin-Cre;Jam-afl/fl mice, targeted loss of JAM-A on intestinal epithelial cells resulted in increased intestinal permeability along with reduced peritoneal PMN migration as well as lower levels of CXCL1 and active NF-kB similar to that observed in Jam-aKO animals. Interestingly, in germ-free Villin-Cre;Jam-afl/fl mice, PMN recruitment was unaffected suggesting dependence on gut microbiota. Such observations highlight the functional link between a leaky gut and regulation of innate immune responses.


Assuntos
Moléculas de Adesão Celular/metabolismo , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Peritonite/imunologia , Receptores de Superfície Celular/metabolismo , Junções Íntimas/patologia , Animais , Moléculas de Adesão Celular/genética , Células Cultivadas , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/metabolismo , Infiltração de Neutrófilos , Peritonite/induzido quimicamente , Permeabilidade , Receptores de Superfície Celular/genética , Zimosan
6.
Proc Natl Acad Sci U S A ; 115(8): 1789-1794, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29434038

RESUMO

Although the addition of the prosthetic group lipoate is essential to the activity of critical mitochondrial catabolic enzymes, its regulation is unknown. Here, we show that lipoylation of the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase (αKDH) complexes is a dynamically regulated process that is inhibited under hypoxia and in cancer cells to restrain mitochondrial respiration. Mechanistically, we found that the polymerase-δ interacting protein 2 (Poldip2), a nuclear-encoded mitochondrial protein of unknown function, controls the lipoylation of the pyruvate and α-KDH dihydrolipoamide acetyltransferase subunits by a mechanism that involves regulation of the caseinolytic peptidase (Clp)-protease complex and degradation of the lipoate-activating enzyme Ac-CoA synthetase medium-chain family member 1 (ACSM1). ACSM1 is required for the utilization of lipoic acid derived from a salvage pathway, an unacknowledged lipoylation mechanism. In Poldip2-deficient cells, reduced lipoylation represses mitochondrial function and induces the stabilization of hypoxia-inducible factor 1α (HIF-1α) by loss of substrate inhibition of prolyl-4-hydroxylases (PHDs). HIF-1α-mediated retrograde signaling results in a metabolic reprogramming that resembles hypoxic and cancer cell adaptation. Indeed, we observe that Poldip2 expression is down-regulated by hypoxia in a variety of cell types and basally repressed in triple-negative cancer cells, leading to inhibition of lipoylation of the pyruvate and α-KDH complexes and mitochondrial dysfunction. Increasing mitochondrial lipoylation by forced expression of Poldip2 increases respiration and reduces the growth rate of cancer cells. Our work unveils a regulatory mechanism of catabolic enzymes required for metabolic plasticity and highlights the role of Poldip2 as key during hypoxia and cancer cell metabolic adaptation.


Assuntos
Hipóxia/enzimologia , Neoplasias/enzimologia , Proteínas Nucleares/metabolismo , Oxigênio/metabolismo , Animais , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Lipoilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ácido Tióctico/metabolismo
7.
PLoS One ; 8(11): e79657, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24236150

RESUMO

In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor ß (TGFß) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFß and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFß completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFß. TGFß had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFß on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFß. siRNA against Smad4 completely reversed the inhibitory effect of TGFß on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFß-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFß via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.


Assuntos
Ciclina D1/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Adolescente , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Proteólise , Transdução de Sinais/efeitos dos fármacos , Proteína Smad4/metabolismo , Transcrição Gênica
8.
Circ Res ; 111(1): 56-65, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22619279

RESUMO

RATIONALE: The type I subclass of coronins, a family of actin-binding proteins, regulates various actin-dependent cellular processes, including migration. However, the existence and role of coronins in vascular smooth muscle cell (VSMC) migration has yet to be determined. OBJECTIVE: The goal of the present study was to define the mechanism by which coronins regulate platelet-derived growth factor (PDGF)-induced VSMC migration. METHODS AND RESULTS: Coronin 1B (Coro1B) and 1C (Coro1C) were both found to be expressed in VSMCs at the mRNA and protein levels. Downregulation of Coro1B by siRNA increases PDGF-induced migration, while downregulation of Coro1C has no effect. We confirmed through kymograph analysis that the Coro1B-downregulation-mediated increase in migration is directly linked to increased lamellipodial protraction rate and protrusion distance in VSMC. In other cell types, coronins exert their effects on lamellipodia dynamics by an inhibitory interaction with the ARP2/3 complex, which is disrupted by the phosphorylation of Coro1B. We found that PDGF induces phosphorylation of Coro1B on serine-2 via PKCε, leading to a decrease in the interaction of Coro1B with the ARP2/3 complex. VSMCs transfected with a phosphodeficient S2A Coro1B mutant showed decreased migration in response to PDGF, suggesting that the phosphorylation of Coro1B is required for the promotion of migration by PDGF. In both the rat and mouse, Coro1B phosphorylation was increased in response to vessel injury in vivo. CONCLUSIONS: Our data suggest that phosphorylation of Coro1B and the subsequent reduced interaction with ARP2/3 complex participate in PDGF-induced VSMC migration, an important step in vascular lesion formation.


Assuntos
Movimento Celular , Proteínas dos Microfilamentos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Becaplermina , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Quimografia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Músculo Liso Vascular/patologia , Mutação , Miócitos de Músculo Liso/patologia , Neointima , Fosforilação , Proteína Quinase C-épsilon/metabolismo , Pseudópodes/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Serina , Transdução de Sinais , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA