RESUMO
BACKGROUND: Recurrence rates of intrahepatic cholangiocarcinoma (iCCA) after curative hepatectomy are as high as 50% to 70%, and about half of these recurrences occur within 2 years. This systematic review aims to define prognostic factors (PFs) for early recurrence (ER, within 24 months) and 24-month disease-free survival (DFS) after curative-intent iCCA resections. METHODS: Systematic searching was performed from database inception to 14 January 2021. Duplicate independent review and data extraction were performed. Data on 13 predefined PFs were collected. Meta-analysis was performed on PFs for ER and summarized using forest plots. The Quality in Prognostic Factor Studies tool was used for risk-of-bias assessment. RESULTS: The study enrolled 10 studies comprising 4158 patients during an accrual period ranging from 1990 to 2016. In the risk-of-bias assessment of patients who experienced ER after curative-intent iCCA resection, six studies were rated as low risk and four as moderate risk (49.6%; 95% confidence interval [CI], 49.2-50.0). Nine studies were pooled for meta-analysis. Of the postoperative PFs, multiple tumors, microvascular invasion, macrovascular invasion, lymph node metastasis, and R1 resection were associated with an increased hazard for ER or a reduced 24-month DFS, and the opposite was observed for receipt of adjuvant chemo/radiation therapy. Of the preoperative factors, cirrhosis, sex, HBV status were not associated with ER or 24-month DFS. CONCLUSION: The findings from this systematic review could allow for improved surveillance, prognostication, and treatment decision-making for patients with resectable iCCAs. Further well-designed prospective studies are needed to explore prognostic factors for iCCA ER with a focus on preoperative variables.
RESUMO
This study assessed the effectiveness of surgical sympathetic denervation of the common hepatic artery (CHADN) in improving glucose tolerance. CHADN eliminated norepinephrine content in the liver and partially decreased it in the pancreas and the upper gut. We assessed oral glucose tolerance at baseline and after 4 weeks of high-fat high-fructose (HFHF) feeding. Dogs were then randomized to sham surgery (SHAM) (n = 9) or CHADN surgery (n = 11) and retested 2.5 or 3.5 weeks later while still on the HFHF diet. CHADN improved glucose tolerance by â¼60% in part because of enhanced insulin secretion, as indicated by an increase in the insulinogenic index. In a subset of dogs (SHAM, n = 5; CHADN, n = 6), a hyperinsulinemic-hyperglycemic clamp was used to assess whether CHADN could improve hepatic glucose metabolism independent of a change in insulin release. CHADN reduced the diet-induced defect in net hepatic glucose balance by 37%. In another subset of dogs (SHAM, n = 4; CHADN, n = 5) the HFHF diet was continued for 3 months postsurgery and the improvement in glucose tolerance caused by CHADN continued. In conclusion, CHADN has the potential to enhance postprandial glucose clearance in states of diet-induced glucose intolerance.
Assuntos
Dieta Hiperlipídica , Açúcares da Dieta , Intolerância à Glucose/metabolismo , Artéria Hepática/inervação , Fígado/metabolismo , Norepinefrina/metabolismo , Simpatectomia , Animais , Cães , Frutose , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Masculino , Pâncreas/metabolismo , Distribuição Aleatória , Trato Gastrointestinal Superior/metabolismoRESUMO
Ultra-small gold nanoparticles, surface functionalised with a 50 : 50 ratio of a thiolated α-galactose derivative and a thiolated hexaethylene glycol amine, are toxic to HSC-3 oral squamous carcinoma cells. Differences in nanoparticle toxicity were found to be related to the synthesis duration, with 1 h reaction nanoparticles being less toxic than 5 h reaction nanoparticles. The ligand density decreased with longer reaction time, although the size, charge and ligand ratio remained similar. The concentration of sodium borohydride in the reaction decreased logarithmically over 5 h but remained within a concentration range sufficient to desorb weakly bound ligands, possibly explaining the observed gradual decrease in ligand density. Nanoparticle toxicity was abrogated by inhibition of either caspase 3/7 or caspase 8, but not by inhibition of caspase 9, consistent with extrinsic apoptosis. Electron microscopic analysis of cellular uptake demonstrated predominantly cytoplasmic localization. However, when energy-dependent transport was inhibited, by lowering the temperature to 4 °C, a remarkable adhesion of nanoparticles to filopodia was observed. Inhibition of filopodial assembly with a fascin inhibitor prevented nanoparticle adhesion to HSC-3 cells at 4 °C, while fascin inhibition at 37 °C resulted in less cytoplasmic uptake. More adhesion to HSC-3 filopodia was seen with the higher toxicity 5 h reaction time nanoparticles than with the 1 h nanoparticles. By including two further cell types (HaCaT keratinocytes and hCMEC/D3 endothelial cells), a pattern of increasing toxicity with filopodial binding of 5 h reaction nanoparticles became apparent.
RESUMO
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide with poor prognosis and limited options for treatment. Life expectancy after diagnosis is short; the currently available treatments are not well tolerated and have limited clinical benefit. There is a clear unmet clinical need for the development of new treatments. In this study, ultrasmall, 2 nm gold core nanoparticles (MidaCore) conjugated with the potent maytansine analogue DM1 (MTC-100038) were assessed as a systemic nanomedicine for the treatment of hepatocellular carcinoma. The platform improved overall tolerability of DM1, permitting â¼3-fold higher levels of drug to be administered compared to free drug. Dose for dose, MTC-100038 also facilitated delivery of â¼2.0-fold higher ( p = 0.039) levels of DM1 to the tumor compared to free DM1. MTC-100038 produced significant efficacy (tumor growth index â¼102%; p = <0.0001), in several murine xenograft models of HCC, and was superior to both free DM1 and the current standard of care, sorafenib. Furthermore, MTC-100038 displayed potent (nM) in vitro activity in various HCC primary patient derived cell lines and across various other different cancer cell types. These data demonstrate the potential of MidaCore nanoparticles to enhance tumor delivery of cytotoxic drugs and indicate MTC-100038 is worthy of further investigation as a potential treatment for HCC and other cancer types.
Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Ouro/química , Neoplasias Hepáticas/tratamento farmacológico , Maitansina/administração & dosagem , Nanopartículas Metálicas/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Portadores de Fármacos , Feminino , Humanos , Maitansina/análogos & derivados , Nanopartículas Metálicas/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Two nanometre gold nanoparticles (AuNPs), bearing sugar moieties and/or thiol-polyethylene glycol-amine (PEG-amine), were synthesised and evaluated for their in vitro toxicity and ability to radiosensitise cells with 220 kV and 6 MV X-rays, using four cell lines representing normal and cancerous skin and breast tissues. Acute 3 h exposure of cells to AuNPs, bearing PEG-amine only or a 50:50 ratio of alpha-galactose derivative and PEG-amine resulted in selective uptake and toxicity towards cancer cells at unprecedentedly low nanomolar concentrations. Chemotoxicity was prevented by co-administration of N-acetyl cysteine antioxidant, or partially prevented by the caspase inhibitor Z-VAD-FMK. In addition to their intrinsic cancer-selective chemotoxicity, these AuNPs acted as radiosensitisers in combination with 220 kV or 6 MV X-rays. The ability of AuNPs bearing simple ligands to act as cancer-selective chemoradiosensitisers at low concentrations is a novel discovery that holds great promise in developing low-cost cancer nanotherapeutics.
Assuntos
Inibidores de Caspase/química , Inibidores de Caspase/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de TransmissãoRESUMO
Dogs consuming a hypercaloric high-fat and -fructose diet (52 and 17% of total energy, respectively) or a diet high in either fructose or fat for 4 wk exhibited blunted net hepatic glucose uptake (NHGU) and glycogen deposition in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery. The effect of a hypercaloric diet containing neither fructose nor excessive fat has not been examined. Dogs with an initial weight of ≈25 kg consumed a chow and meat diet (31% protein, 44% carbohydrate, and 26% fat) in weight-maintaining (CTR; n = 6) or excessive (Hkcal; n = 7) amounts for 4 wk (cumulative weight gain 0.0 ± 0.3 and 1.5 ± 0.5 kg, respectively, P < 0.05). They then underwent clamp studies with infusions of somatostatin and intraportal insulin (4× basal) and glucagon (basal). The hepatic glucose load was doubled with peripheral (Pe) glucose infusion for 90 min (P1) and intraportal glucose at 4 mg·kg(-1)·min(-1) plus Pe glucose for the final 90 min (P2). NHGU was blunted (P < 0.05) in Hkcal during both periods (mg·kg(-1)·min(-1); P1: 1.7 ± 0.2 vs. 0.3 ± 0.4; P2: 3.6 ± 0.3 vs. 2.3 ± 0.4, CTR vs. Hkcal, respectively). Terminal hepatic glucokinase catalytic activity was reduced nearly 50% in Hkcal vs. CTR (P < 0.05), although glucokinase protein did not differ between groups. In Hkcal vs. CTR, liver glycogen was reduced 27% (P < 0.05), with a 91% increase in glycogen phosphorylase activity (P < 0.05) but no significant difference in glycogen synthase activity. Thus, Hkcal impaired NHGU and glycogen synthesis compared with CTR, indicating that excessive energy intake, even if the diet is balanced and nutritious, negatively impacts hepatic glucose metabolism.
Assuntos
Glucose/farmacocinética , Hiperfagia/metabolismo , Fígado/metabolismo , Animais , Glicemia/metabolismo , Peptídeo C/sangue , Doença Crônica , Cães , Ingestão de Alimentos , Técnica Clamp de Glucose , Insulina/metabolismo , Masculino , Aumento de PesoRESUMO
Livestock manure contains natural steroid hormones, with the most potent being 17ß-estradiol. The transport of steroid hormones from agricultural fields to adjacent water bodies can result in 17ß-estradiol environmental contamination impacting aquatic organisms. Sorption coefficients are useful input into models that estimate risk of water contamination. The feasibility of applying near-infrared spectroscopy (NIRS) for determining sorption coefficients of 17ß-estradiol in soil was investigated for two irregular undulating to hummocky terrain landscapes in Manitoba and Saskatchewan, Canada. A total of 609 soil samples in 140 soil profiles were collected from several horizons to a depth of 1 m. Air-dried and sieved (2 mm) soil samples were analyzed for soil organic carbon (SOC), soil pH, and soil texture. Sorption coefficients of 17ß-estradiol were determined by a batch equilibrium process. Spectral data were collected from soil samples (25 g) using two instruments, the 45VISNIR Zeiss Corona (wavelength range 700-1690 nm) and the Foss NIRSystems 6500 (wavelength range 1100-2500 nm). Regardless of the site and instrument, the predictive models were excellent for both SOC and 17ß-estradiol sorption coefficients. The data thus generated can be used as input parameters in fate models for efficient risk assessments and decision-making programs for environmental safety where soils are at risk of receiving inputs of 17ß-estradiol. Calibration results for soil pH were also adequate with Corona outperforming the Foss instrument. Soil texture predictions were relatively unsuccessful regardless of the instrument and site.
Assuntos
Estradiol/análise , Estradiol/química , Solo/química , Espectroscopia de Luz Próxima ao Infravermelho , Adsorção , Canadá , Concentração de Íons de Hidrogênio , Risco , Poluentes do Solo/análise , Poluição da ÁguaRESUMO
We have explored the uptake of different hydrophilic mono- and dual-ligand gold nanoparticles in colorectal cancer cells in vitro and find that the rate of uptake is dependent on the structural organization of the ligands on the surface of the particles rather than their charge or chemical properties. Gold nanoparticles with 50%PEG-NH(2)/50% glucose are taken up eighteen fold faster than nanoparticles carrying only PEG-NH(2) or glucose. Glutathione-coated gold particles are by far the most efficiently internalized; however, glucose-glutathione dual-ligand nanoparticles are taken up at a thirty fold reduced rate. We found furthermore that the rates are influenced by the cell density and concentration of glucose in the growth medium. Rather than being internalized through a conventional receptor-mediated mechanism the particles appear to be taken up by the cells via an energy-independent diffusion across the cell membrane through pre-existing pores or openings in the lipid bi-layer created by ligands on the gold nanoparticles.