Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ocul Surf ; 28: 322-335, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34102309

RESUMO

The conjunctiva can be damaged by numerous diseases with scarring, loss of tissue and dysfunction. Depending on extent of damage, restoration of function may require a conjunctival graft. A wide variety of biological and synthetic substrates have been tested in the search for optimal conditions for ex vivo culture of conjunctival epithelial cells as a route toward tissue grafts. Each substrate has specific advantages but also disadvantages related to their unique physical and biological characteristics, and identification and development of an improved substrate remains a priority. To achieve the goal of mimicking and restoring a biological material, requires information from the material. Specifically, extracellular matrix (ECM) derived from conjunctival tissue. Knowledge of the composition and structure of native ECM and identifying contributions of individual components to its function would enable using or mimicking those components to develop improved biological substrates. ECM is comprised of two components: basement membrane secreted predominantly by epithelial cells containing laminins and type IV collagens, which directly support epithelial and goblet cell adhesion differentiation and growth and, interstitial matrix secreted by fibroblasts in lamina propria, which provides mechanical and structural support. This review presents current knowledge on anatomy, composition of conjunctival ECM and related conjunctival disorders. Requirements of potential substrates for conjunctival tissue engineering and transplantation are discussed. Biological and synthetic substrates and their components are described in an accompanying review.


Assuntos
Doenças da Túnica Conjuntiva , Matriz Extracelular , Humanos , Matriz Extracelular/metabolismo , Células Epiteliais/metabolismo , Túnica Conjuntiva/metabolismo , Doenças da Túnica Conjuntiva/metabolismo , Células Caliciformes
2.
Invest Ophthalmol Vis Sci ; 63(1): 11, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994769

RESUMO

Purpose: To determine the amoebicidal activity of functionalized poly-epsilon-lysine hydrogels (pɛK+) against Acanthamoeba castellanii. Methods: A. castellanii trophozoites and cysts were grown in the presence of pɛK solution (0-2.17 mM), pɛK or pɛK+ hydrogels, or commercial hydrogel contact lens (CL) for 24 hours or 7 days in PBS or Peptone-Yeast-Glucose (PYG) media (nutrient-deplete or nutrient-replete cultures, respectively). Toxicity was determined using propidium iodide and imaged using fluorescence microscopy. Ex vivo porcine corneas were inoculated with A. castellanii trophozoites ± pɛK, pɛK+ hydrogels or commercial hydrogel CL for 7 days. Corneal infection was assessed by periodic acid-Schiff staining and histologic analysis. Regrowth of A. castellanii from hydrogel lenses and corneal discs at 7 days was assessed using microscopy and enumeration. Results: The toxicity of pɛK+ hydrogels resulted in the death of 98.52% or 83.31% of the trophozoites at 24 hours or 7 days, respectively. The toxicity of pɛK+ hydrogels resulted in the death of 70.59% or 82.32% of the cysts in PBS at 24 hours or 7 days, respectively. Cysts exposed to pɛK+ hydrogels in PYG medium resulted in 75.37% and 87.14% death at 24 hours and 7 days. Ex vivo corneas infected with trophozoites and incubated with pɛK+ hydrogels showed the absence of A. castellanii in the stroma, with no regrowth from corneas or pɛK+ hydrogel, compared with infected-only corneas and those incubated in presence of commercial hydrogel CL. Conclusions: pɛK+ hydrogels demonstrated pronounced amoebicidal and cysticidal activity against A. castellanii. pɛK+ hydrogels have the potential for use as CLs that could minimize the risk of CL-associated Acanthamoeba keratitis.


Assuntos
Ceratite por Acanthamoeba/tratamento farmacológico , Acanthamoeba castellanii/efeitos dos fármacos , Amebicidas/farmacologia , Córnea/parasitologia , Infecções Oculares Parasitárias/tratamento farmacológico , Hidrogéis/farmacologia , Polilisina/farmacologia , Ceratite por Acanthamoeba/parasitologia , Amebicidas/toxicidade , Animais , Células Cultivadas , Soluções para Lentes de Contato/farmacologia , Modelos Animais de Doenças , Epitélio Corneano/efeitos dos fármacos , Infecções Oculares Parasitárias/parasitologia , Humanos , Hidrogéis/toxicidade , Microscopia de Fluorescência , Polilisina/toxicidade , Suínos , Trofozoítos/efeitos dos fármacos
3.
Ocul Surf ; 22: 15-26, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34119712

RESUMO

The conjunctiva is the largest component of the ocular surface. It can be damaged by various pathological processes leading to scarring, loss of tissue and dysfunction. Depending on the amount of damage, restoration of function may require a conjunctival graft. Numerous studies have investigated biological and synthetic substrates in the search for optimal conditions for the ex vivo culture of conjunctival epithelial cells that can be used as tissue grafts for transplantation. These substrates have advantages and disadvantages that are specific to the characteristics of each material; the development of an improved material remains a priority. This review is the second of a two-part review in The Ocular Surface. In the first review, the structure and function of the conjunctiva was evaluated with a focus on the extracellular matrix and the basement membrane, and biological and mechanical characteristics of the ideal substrate with recommendations for further studies. In this review the types of biological and synthetic substrates used for conjunctival transplantation are discussed including substrates based on the extracellular matrix. .


Assuntos
Túnica Conjuntiva , Matriz Extracelular , Transplante de Células , Células Epiteliais
4.
J Tissue Eng Regen Med ; 15(1): 49-62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33180364

RESUMO

The aim of this study was to evaluate whether the surface modification of expanded polytetrafluoroethylene (ePTFE) using an n-heptylamine (HA) plasma polymer would allow for functional epithelial monolayer formation suitable for subretinal transplant into a non-dystrophic rat model. Freshly isolated iris pigment epithelial (IPE) cells from two rat strains (Long Evans [LE] and Dark Agouti [DA]) were seeded onto HA, fibronectin-coated n-heptylamine modified (F-HA) and unmodified ePFTE and fibronectin-coated tissue culture (F-TCPS) substrates. Both F-HA ePTFE and F-TCPS substrates enabled functional monolayer formation with both strains of rat. Without fibronectin coating, only LE IPE formed a monolayer on HA-treated ePTFE. Functional assessment of both IPE strains on F-HA ePTFE demonstrated uptake of POS that increased significantly with time that was greater than control F-TCPS. Surgical optimization using Healon GV and mixtures of Healon GV: phosphate buffered saline (PBS) to induce retinal detachment demonstrated that only Healon GV:PBS allowed F-HA ePTFE substrates to be successfully transplanted into the subretinal space of Royal College of Surgeons rats, where they remained flat beneath the neural retina for up to 4 weeks. No apparent substrate-induced inflammatory response was observed by fundus microscopy or immunohistochemical analysis, indicating the potential of this substrate for future clinical applications.


Assuntos
Células Imobilizadas , Células Epiteliais , Gases em Plasma , Politetrafluoretileno , Degeneração Retiniana , Epitélio Pigmentado da Retina , Animais , Células Imobilizadas/metabolismo , Células Imobilizadas/transplante , Células Epiteliais/metabolismo , Células Epiteliais/transplante , Gases em Plasma/química , Gases em Plasma/farmacologia , Politetrafluoretileno/química , Politetrafluoretileno/farmacologia , Ratos , Ratos Long-Evans , Degeneração Retiniana/metabolismo , Degeneração Retiniana/cirurgia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/transplante
5.
Invest Ophthalmol Vis Sci ; 61(3): 44, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32232343

RESUMO

Purpose: To determine the composition of extracellular matrix (ECM) proteins secreted by a conjunctival epithelial cell line and to identify components that aid conjunctival epithelial cell culture. Methods: Human conjunctival epithelial cell line (HCjE-Gi) cells were cultured in serum-free media and their ECM isolated using ammonium hydroxide. Growth characteristics were evaluated for fresh HCjE-Gi cells plated onto ECMs obtained from 3- to 28-day cell cultures. Mass spectrometry was used to characterize the ECM composition over 42 culture days. Cell adhesion and growth on pre-adsorbed fibronectin and α-2-HS-glycoprotein (α-2-HS-GP) were investigated. Results: Day 3 ECM provided the best substrate for cell growth compared to ECM obtained from 5- to 28-day cell cultures. Mass spectrometry identified a predominantly laminin 332 matrix throughout the time course, with progressive changes to matrix composition over time: proportional decreases in matrix-bound growth factors and increases in proteases. Fibronectin and α-2-HS-GP were 5- and 200-fold enriched as a proportion of the early ECM relative to the late ECM, respectively. Experiments on these proteins in isolation demonstrated that fibronectin supported rapid cell adhesion, whereas fibronectin and α-2-HS-GP both supported enhanced cell growth compared to tissue culture polystyrene. Conclusions: These data reveal α-2-HS-GP as a candidate protein to enhance the growth of conjunctival epithelial cells and raise the possibility of exploiting these findings for targeted improvement to synthetic tissue engineered conjunctival substrates.


Assuntos
Túnica Conjuntiva/metabolismo , Proteínas da Matriz Extracelular/metabolismo , alfa-2-Glicoproteína-HS/metabolismo , Biomarcadores/metabolismo , Adesão Celular/fisiologia , Contagem de Células , Linhagem Celular , Proliferação de Células/fisiologia , Túnica Conjuntiva/citologia , Meios de Cultura Livres de Soro , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Espectrometria de Massas
6.
J Mater Sci Mater Med ; 30(9): 102, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31485761

RESUMO

Dysfunction of the corneal endothelium (CE) resulting from progressive cell loss leads to corneal oedema and significant visual impairment. Current treatments rely upon donor allogeneic tissue to replace the damaged CE. A donor cornea shortage necessitates the development of biomaterials, enabling in vitro expansion of corneal endothelial cells (CECs). This study investigated the use of a synthetic peptide hydrogel using poly-ε-lysine (pεK), cross-linked with octanedioic-acid as a potential substrate for CECs expansion and CE grafts. PεK hydrogel properties were optimised to produce a substrate which was thin, transparent, porous and robust. A human corneal endothelial cell line (HCEC-12) attached and grew on pεK hydrogels as confluent monolayers after 7 days, whereas primary porcine CECs (pCECs) detached from the pεK hydrogel. Pre-adsorption of collagen I, collagen IV and fibronectin to the pεK hydrogel increased pCEC adhesion at 24 h and confluent monolayers formed at 7 days. Minimal cell adhesion was observed with pre-adsorbed laminin, chondroitin sulphate or commercial FNC coating mix (fibronectin, collagen and albumin). Functionalisation of the pεK hydrogel with synthetic cell binding peptide H-Gly-Gly-Arg-Gly-Asp-Gly-Gly-OH (RGD) or α2ß1 integrin recognition sequence H-Asp-Gly-Glu-Ala-OH (DGEA) resulted in enhanced pCEC adhesion with the RGD peptide only. pCECs grown in culture at 5 weeks on RGD pεK hydrogels showed zonula occludins 1 staining for tight junctions and expression of sodium-potassium adenosine triphosphase, suggesting a functional CE. These results demonstrate the pεK hydrogel can be tailored through covalent binding of RGD to provide a surface for CEC attachment and growth. Thus, providing a synthetic substrate with a therapeutic application for the expansion of allogenic CECs and replacement of damaged CE.


Assuntos
Proliferação de Células , Transplante de Córnea , Células Endoteliais/fisiologia , Endotélio Corneano/transplante , Hidrogéis/síntese química , Polilisina/química , Alicerces Teciduais/química , Animais , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Transplante de Córnea/métodos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Endotélio Corneano/citologia , Endotélio Corneano/fisiologia , Regeneração Tecidual Guiada/instrumentação , Regeneração Tecidual Guiada/métodos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Teste de Materiais , Polilisina/farmacologia , Suínos
7.
J Polym Sci A Polym Chem ; 56(8): 938-946, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29610546

RESUMO

Complicated cases of retinal detachment can be treated with silicone oil tamponades. There is the potential for silicone oil tamponades to have adjunctive drug releasing behaviour within the eye, however the lipophilic nature of silicone oil limits the number of drugs that are suitable, and drug release from the hydrophobic reservoir is uncontrolled. Here, a radiometric technique was developed to accurately measure drug solubility in silicone oil and measure release into culture media. All-trans retinoic acid (atRA), a lipophilic drug known to act as an anti-proliferative within the eye, was used throughout this work. Chain-end modification of polydimethylsiloxane with atRA produced a polydimethylsiloxane retinoate (PDMS-atRA), which was used as an additive to silicone oil to modify the solvent environment within the silicone oil and the distribution coefficient. Blends of PDMS-atRA and silicone oil containing different concentrations of free atRA were produced. The presence of PDMS-atRA in silicone oil had a positive effect on atRA solubility and the longevity of release in vitro. The drug release period was independent of atRA starting concentration and dependent on the PDMS-atRA concentration in the blend. A clinically relevant release period of atRA over 7 weeks from a silicone oil blend with PDMS-atRA was observed. © 2018 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 938-946.

8.
J Tissue Eng Regen Med ; 12(2): e973-e982, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28112872

RESUMO

This study was performed to develop a method to decellularize human conjunctiva and to characterize the tissue in terms of its deoxyribose nucleic acid (DNA) content, tensile strength, collagen denaturation, basement membrane, extracellular matrix components and its potential to support conjunctival epithelial growth. Human conjunctival tissues were subjected to a decellularization process involving hypotonic detergent and nuclease buffers. Variations in sodium dodecyl sulfate concentration (0.05-0.5%, w/v) were tested to determine the appropriate concentration of detergent buffer. DNA quantification, collagen denaturation, cytotoxicity and tensile strength were investigated. Human conjunctival cell growth by explant culture on the decellularized tissue substrate was assessed after 28 days in culture. Samples were fixed and paraffin embedded for immunohistochemistry including conjunctival epithelial cell markers and extracellular matrix proteins. Conjunctival tissue from 20 eyes of 10 donors (age range 65-92 years) was used. Decellularization of human conjunctiva was achieved to 99% or greater DNA removal (p < 0.001) with absence of nuclear staining. This was reproducible at the lowest concentration of sodium dodecyl sulfate (0.05% w/v). No collagen denaturation (p = 0.74) and no difference in tensile strength parameters was demonstrated following decellularization. No significant difference was noted in the immunolocalization of collagen IV, laminin and fibronectin, or in the appearance of periodic acid-Schiff-stained basement membranes following decellularization. The decellularized tissue did not exhibit any cytotoxicity and explant culture resulted in the growth of stratified conjunctival epithelium. Allogeneic decellularized human conjunctiva can be successfully decellularized using the described protocol. It represents a novel substrate to support the expansion of conjunctival epithelium for ocular surface cellular replacement therapies. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Túnica Conjuntiva/citologia , Células Epiteliais/citologia , Engenharia Tecidual/métodos , Morte Celular , Linhagem Celular , Proliferação de Células , DNA/metabolismo , Humanos , Hidroxiprolina/metabolismo , Resistência à Tração
9.
Acta Ophthalmol ; 95(5): e385-e392, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27775235

RESUMO

PURPOSE: Emulsification is related to complications arising from silicone oil (SO) tamponade. Currently, there is no widely accepted method for testing the propensity of SO to emulsify that are physiologically realistic and quantitative. METHODS: We compared different ways of inducing emulsification namely vortex mixing, sonication and homogenization. Silicone oil (SO) emulsification was quantitatively assessed using the Coulter counter and laser light scattering. The in vitro results are compared with the droplet size distribution profile of vitreous clinical washout. Conventional SO was compared with two novel SO blends with high-molecular-weight (HMW) additives (SOHMW2000 and SOHMW5000 ). RESULTS: Of the three methods for inducing emulsification, homogenization generated the most consistent emulsion samples with the smallest variance. The results from the Coulter counter measurement correlated strongly with the laser light scattering measurement within the range of 1 to 30 µm. The droplet size distribution profiles from human eyes were similar to that of emulsions generated in vitro by homogenization. The human size distribution profile was within the range of values obtained by the in vitro experiment. Compared to the conventional SO, the emulsion droplet counts for the new SO blends were significantly lower (SOHMW2000 and SOHMW5000 were 79% (±17%) and 49% (±18%) of the SO2000 and SO5000 , respectively; p = 0.03 and p = 0.002). CONCLUSION: Emulsion generated in vitro by homogenization has similar droplet size profile as human eyes filled with SO. Using this method to induce emulsion, SO blends with HMW additives demonstrated less propensity to emulsification with lower droplet counts compared to conventional SO with similar shear viscosity.


Assuntos
Emulsões/química , Tamponamento Interno , Óleos de Silicone/química , Humanos , Viscosidade , Cirurgia Vitreorretiniana
10.
J Control Release ; 244(Pt A): 41-51, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27845192

RESUMO

In a number of cases of retinal detachment, treatment may require the removal of the vitreous humour within the eye and replacement with silicone oil to aid healing of the retina. The insertion of silicone oil offers the opportunity to also deliver drugs to the inside of the eye; however, drug solubility in silicone oil is poor and release from this hydrophobic drug reservoir is not readily controlled. Here, we have designed a range of statistical graft copolymers that incorporate dimethylsiloxane and ethylene glycol repeat units within the side chains, allowing short chains of oligo(ethylene glycol) to be solubilised within silicone oil and provide hydrogen bond acceptor sites to interact with acid functional drug molecules. Our hypothesis included the potential for such interactions to be able to delay/control drug release and for polymer architecture and composition to play a role in the silicone oil miscibility of the targeted polymers. This strategy has been successfully demonstrated using both ibuprofen and all-trans retinoic acid; drugs with anti-inflammatory and anti-proliferation activity. After the copolymers were shown to be non-toxic to retinal pigment epithelial cells, studies of drug release using radiochemical approaches showed that the presence of 10v/v% of a linear graft copolymer could extend ibuprofen release over three-fold (from 3days to >9days) whilst the release of all-trans retinoic from the silicone oil phase was extended to >72days. These timescales are highly clinically relevant showing the potential to tune drug delivery during the healing process and offer an efficient means to improve patient outcomes.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Antineoplásicos/administração & dosagem , Ibuprofeno/administração & dosagem , Óleos de Silicone/química , Tretinoína/administração & dosagem , Vitreorretinopatia Proliferativa/tratamento farmacológico , Administração Oftálmica , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Dimetilpolisiloxanos/química , Portadores de Fármacos , Liberação Controlada de Fármacos , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ibuprofeno/química , Ibuprofeno/farmacologia , Polietilenoglicóis/química , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Solventes , Tretinoína/química , Tretinoína/farmacologia
11.
Adv Healthc Mater ; 5(16): 2013-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27276231

RESUMO

A peptide hydrogel with an antimicrobial activity is developed as a bandage contact lens. The antimicrobial activity is enhanced with the addition of the biomolecules penicillin G or poly-ε-lysine and is positive against Staphylococcus aureus and Escherichia coli. The lens is also noncytotoxic toward a human corneal epithelial cell line and as a consequence is of great potential as a drug-eluting bandage lens replacing conventional corneal ulcer treatment.


Assuntos
Antibacterianos , Escherichia coli/crescimento & desenvolvimento , Hidrogéis , Penicilina G , Polilisina , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/farmacologia , Lentes de Contato , Córnea/microbiologia , Células Epiteliais/microbiologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Penicilina G/química , Penicilina G/farmacologia , Polilisina/química , Polilisina/farmacologia
12.
J Biomater Appl ; 30(2): 212-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25766038

RESUMO

PURPOSE: Developing new blends of heavier-than-water silicone oil tamponade agents containing high molecular weight polydimethylsiloxane polymer for use in vitreoretinal surgery. MATERIALS AND METHODS: The viscoelastic properties of heavier-than-water silicone oil blends (30.5% F6H8 + 69.5% polydimethylsiloxane) containing high molecular weight polymer additive at increasing concentrations were measured using a controlled-stress rheometer (TA Instruments Rheolyst AR 1000 N). Emulsification of the blends was induced using a sonication device and a pluronic surfactant as a strong emulsifier. The percentage emulsion area was photographed and measured using ImageJ software. In a second in vitro emulsification assessment, silicone oil blends were dispersed using a high shear homogenizer and the oil-in-water droplets were counted using a coulter counter particle analyser. RESULTS: The addition of the high molecular weight polymer increased shear viscosity and viscoelasticity of the oil blends, which were measureable and to some extent predictable. The in vitro emulsification models produced contradictory results. This demonstrates the difficulty of designing and using in vitro models to evaluate the emulsification tendency of tamponade agents in vivo. CONCLUSION: Addition of a high molecular weight polymer to heavy silicone oil can increase the viscoelasticity. These findings might contribute to the development of emulsification resistant heavy silicone oils.


Assuntos
Emulsões , Polímeros/química , Óleos de Silicone/química , Peso Molecular , Reologia , Água/química
13.
J Vasc Surg ; 60(6): 1648-56.e1, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25454107

RESUMO

OBJECTIVE: Secure fixation of endovascular stent grafts is essential for successful endovascular aneurysm repair. Hemodynamic distraction forces are generated by blood pressure and blood flow and act against fixation force to encourage migration that may eventually lead to late stent graft failure. The aim of this in silico study was to determine which morphologic features were associated with greater distraction force. METHODS: Computer models of 54 in situ fenestrated stent grafts were constructed from postoperative computed tomography scans by use of image processing software. Computational fluid dynamic analysis was then performed by use of a commercial finite volume solver with boundary conditions representative of peak systole. Distraction force results were obtained for each component of the stent graft. Distraction force was correlated with lumen cross-sectional area (XSA) at the inlet and outlet of components and was compared between groups of components, depending on the magnitude of four predefined angles within the aortoiliac territory that we describe in detail. RESULTS: Median total resultant distraction force (RDF) acting on the fenestrated proximal bodies was 4.8 N (1.3-15.7 N); bifurcated distal bodies, 5.6N (1.0-8.0 N); and limb extensions, 1.7 N (0.6-8.4N). Inlet XSA exhibited strong, positive correlation with total RDF in proximal body and distal body components (Spearman correlation coefficient ρ, 0.883 and 0.802, respectively). Outlet XSA exhibited a similarly strong, positive correlation with total RDF in limb extension components (ρ, 0.822). Outlet angulation ≥ 45 degrees was associated with greater total RDF in the limb extension components only (P = .004). CONCLUSIONS: For a given blood pressure, XSA was the most important morphologic determinant of total RDF. Angulation within the aorta was not large enough to influence this, whereas iliac angulation affecting outlet angulation of limb extension components was associated with significantly greater total RDF.


Assuntos
Aorta Abdominal/cirurgia , Aneurisma da Aorta Abdominal/cirurgia , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Simulação por Computador , Procedimentos Endovasculares/instrumentação , Hemodinâmica , Modelos Cardiovasculares , Stents , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/fisiopatologia , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/fisiopatologia , Aortografia/métodos , Pressão Arterial , Velocidade do Fluxo Sanguíneo , Implante de Prótese Vascular/efeitos adversos , Procedimentos Endovasculares/efeitos adversos , Migração de Corpo Estranho/etiologia , Migração de Corpo Estranho/fisiopatologia , Humanos , Desenho de Prótese , Falha de Prótese , Estresse Mecânico , Tomografia Computadorizada por Raios X , Resultado do Tratamento
14.
Invest Ophthalmol Vis Sci ; 55(12): 8453-7, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25468885

RESUMO

PURPOSE: Currently there are various heavy silicone oil (HSO) tamponade agents available for treating inferior retinal diseases. Most of these HSO agents are either homogeneous liquids or a mixture of two components. Variations in their emulsification rates in vivo have been reported. In this study, we investigated their flow behaviors during eye-like movements. METHODS: A model eye chamber filled with various HSO agents was driven to perform eye-like movements. Five types of HSOs with different formulations together with 2 other tamponade agents were tested. Movements of various HSOs inside the chamber were captured by video recording and analyzed. RESULTS: Oxane HD has a larger movement and higher velocity relative to the eye chamber than the less viscous Densiron 68. The behavior of Densiron 68 is similar to that of homogeneous HSO 1.07 and HSO 1.20. Both Oxane HD and 11% silica fluid show very different behaviors compared to the other HSO agents. In addition, 11% silica fluid shows behavior similar to that of F6H8, a low-viscosity tamponade agent. CONCLUSIONS: The viscosity of HSO is not the sole parameter with which to determine the behavior of HSO during eye movements. Various HSOs that are manufactured by mixing different types of base SO and "heavy" additives show distinct flow behaviors. The solubility and stability of the heavy additives in the base SO alter its flow when subjected to eye movements, which may contribute to in vivo emulsification.


Assuntos
Movimentos Oculares/fisiologia , Óleos de Silicone/química , Fluorocarbonos/química , Humanos , Teste de Materiais , Modelos Biológicos , Viscosidade
15.
Invest Ophthalmol Vis Sci ; 54(12): 7284-92, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24130181

RESUMO

PURPOSE: The aim of this study was to produce a heavy tamponade with a specific gravity greater than 1.06 g/mL that was optically transparent, could be manufactured using simple processing, could be injected using standard clinical equipment, and would have appropriate biocompatibility. METHODS: Aerosil silica was added to a phenyl trimethicone and mixed via a roller, overhead stirring, and ultrasonics. The refractive index, visible absorbance, and shear viscosity were measured. The injectability of the solutions was evaluated using the Accurus Viscous Fluid Injection system. The tamponade efficiency was assessed using a model eye chamber and compared with that of Densiron 68, Oxane HD, and F6H8. The biocompatibility was evaluated in vitro and in vivo in rabbits. RESULTS: Tamponade agents were produced with specific gravities of 1.10, 1.11, 1.13, and 1.16 g/mL that had good optical clarity. Mixing using overhead stirring was sufficient to produce tamponade agents with shear viscosities in the range 1000 to 5000 mPa·s that were reproducible and stable during storage. The solutions were easier to inject using the Accurus Viscous Fluid Injection system than silicone oil 1000 mPa·s. The 11% silica solution had greater tamponade efficiency than Densiron 68 or Oxane HD. There was no evidence of cytotoxicity in vitro. Silica solution 11% induced cataract earlier than Polydimethylsiloxane 1000 (PDMS 1000). Silica solution 11% and phenyl trimethicone reduced the a-wave value at 1 week after vitrectomy, but recovery was observed at later time points. Silica solution 11% caused inner nuclear layer (INL) nuclei dropdown in inferior retina from 4 weeks postoperation. Polydimethylsiloxane 1000 induced a similar phenomenon in superior retina 12 weeks postoperation. CONCLUSIONS: We have produced a heavy tamponade with good clarity that has appropriate shear viscosity, injectibility, enhanced tamponade efficiency, and biocompatibility similar to that of PDMS 1000.


Assuntos
Tamponamento Interno/métodos , Óleos de Silicone/química , Cirurgia Vitreorretiniana/métodos , Animais , Teste de Materiais/métodos , Modelos Animais , Coelhos , Dióxido de Silício/administração & dosagem , Óleos de Silicone/administração & dosagem , Gravidade Específica , Espectrofotometria
16.
Regen Med ; 6(6): 767-82, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22050528

RESUMO

Visual loss may be caused by a variety of ocular diseases and places a significant burden on society. Replacing or regenerating epithelial structures in the eye has been demonstrated to recover visual loss in a number of such diseases. Several types of cells (e.g., embryonic stem cells, adult stem/progenitor/differentiated epithelial cells and induced pluripotent cells) have generated much interest and research into their potential in restoring vision in a variety of conditions: from ocular surface disease to age-related macular degeneration. While there has been some success in clinical transplantation of conjunctival and particularly corneal epithelium utilizing ocular stem cells, in particular, from the limbus, the replacement of the retinal pigment epithelium by utilizing stem cell sources has yet to reach the clinic. Advances in our understanding of all of these cell types, their differentiation and subsequent optimization of culture conditions and development of suitable substrates for their transplantation will enable us to overcome current clinical obstacles. This article addresses the current status of knowledge concerning the biology of stem cells, their progeny and the use of differentiated epithelial cells to replace ocular epithelial cells. It will highlight the clinical outcomes to date and their potential for future clinical use.


Assuntos
Células Epiteliais/transplante , Olho/patologia , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências , Animais , Oftalmopatias/terapia , Humanos , Procedimentos de Cirurgia Plástica , Epitélio Pigmentado da Retina/transplante
17.
Invest Ophthalmol Vis Sci ; 52(13): 9721-7, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22110069

RESUMO

PURPOSE: Emulsification is an inherent problem of silicone oil used in vitreoretinal surgery. It has been shown that silicone oil can be made more resistant to emulsification and easier to inject by adding high-molecular-weight components (5% or 10% 423-kDa polydimethylsiloxane [PDMS]) to normal 1000 mPa · s silicone oil. The authors hypothesize that this might also reduce the movement of oil within an eye. METHODS: A model eye chamber made of surface-modified poly(methyl methacrylate) was driven by a computer and a stepper motor to mimic saccadic eye movement. Seven silicone oils with different shear and extensional viscosities were tested. Two sets of eye movements were used: (amplitude 9°, angular velocity 390°/s, duration 50 ms) and (amplitude 90 °, angular velocity 360°/s, duration 300 ms). The movements were captured and analyzed by video recording. RESULTS: The angular velocity of an oil bubble relative to the eye chamber appears to form an exponential relationship with its shear viscosity. Depending on the thickness of the film of aqueous between the eye wall and the oil bubble, the shear rate was estimated to be between 6 and 14 × 10(4) s(-1). The addition of 10% of 423-kDa PDMS to 1000 mPa · s silicone oil significantly reduced the peak relative velocity compared with the base oil of 1000 mPa · s but not 5000 mPa · s. CONCLUSIONS: The addition of high molecular components to a base oil increases its extensional and shear viscosity. Although the extensional viscosity affected the ease with which the oil could be injected, the results showed that it was the shear viscosity that determined the relative velocity between the oil and the wall of the vitreous cavity, and thus the propensity to emulsify.


Assuntos
Dimetilpolisiloxanos/química , Movimentos Sacádicos/fisiologia , Óleos de Silicone/química , Viscosidade , Emulsões , Tamponamento Interno , Modelos Anatômicos , Cirurgia Vitreorretiniana
18.
Graefes Arch Clin Exp Ophthalmol ; 249(5): 671-5, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21191612

RESUMO

BACKGROUND: To investigate whether ocular axial length influences the tamponade efficacy of three commonly used agents: gas, silicone oil, and heavy silicone oil. METHODS: A series of filling experiments was conducted using 19-mm and 25-mm surface-modified spherical model eye chambers to mimic the vitreous cavity. For each agent, tamponade efficacy was assessed across a range of percentage fills, and comparison was made between the two model eye chambers. The behavior of each tamponade agent was quantified by measuring (1) the maximum height of the tamponade bubble, and calculating (2) the arc of retinal contact subtended by the tamponade bubble. RESULTS: Polynomial regression analysis found no statistically significant difference between the regression models for the different-sized model eye chambers for bubble height or arc of retinal contact subtended. This applied to all of the tamponade agents under investigation. CONCLUSIONS: Across the range of cavity sizes under investigation, no significant difference in tamponade efficacy (as reflected by the measured dimensions of the tamponade bubble) was identified.


Assuntos
Ar , Comprimento Axial do Olho/fisiologia , Modelos Anatômicos , Segmento Posterior do Olho/efeitos dos fármacos , Óleos de Silicone/administração & dosagem , Cicatrização/fisiologia , Humanos , Resultado do Tratamento
19.
Retina ; 30(2): 300-4, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19920769

RESUMO

PURPOSE: The purpose was to study the emulsification of silicone oil tamponade agents that cause clinical complications. This study aimed to increase the emulsification resistance of silicone oil 1,000 to be at least as resistant as silicone oil 5,000 while maintaining the shear viscosity <5,000 mPa/s to aid injection and removal. METHODS: High-molecular-weight (423 kDa) poly(dimethyl siloxane) was added to silicone oil 1,000 at 5% and 10% w/w concentration. The shear and extensional viscosity of 1,000 and 5,000, a 50:50 mixture of 1,000 and 5,000 and 5% and 10% w/w additive blends, respectively, of silicone oil were measured using capillary breakup extensional, rotational shear, and capillary extrusion rheometry. In vitro emulsification was assessed qualitatively after agitation using Pluronic F68 or a protein solution as the emulsion stabilizer. RESULTS: The addition of high-molecular-weight polymer increased the extensional viscosity of the blends at high strain rates to levels equal to or greater than silicone oil 5,000. In all cases, the shear viscosity of the blends was lower than that of silicone oil 5,000. The additive blends were qualitatively as emulsification-resistant as silicone oil 5,000. CONCLUSION: The addition of low concentrations of very-high-molecular-weight polymers of the same chemistry as the bulk oil has the potential to increase the emulsification resistance of the tamponade agents while maintaining ease of injection and removal.


Assuntos
Dimetilpolisiloxanos/química , Óleos de Silicone/química , Viscosidade , Emulsões
20.
Biomaterials ; 28(31): 4561-70, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17669486

RESUMO

Medical-grade polytetrafluoroethylene (PTFE), polydimethylsiloxane (PDMS), polyetherurethane (PEU) and ultrahigh molecular weight polyethylene (UHMWPE) were plasma treated with O2, Ar, N2 and NH3. Their surface properties were characterised using X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectroscopy (SSIMS), atomic force microscopy (AFM) and dynamic contact angle (DCA) analysis. Platelet adhesion, aggregation, activation and release of microparticles were determined after contact with whole blood in a cone and plate viscometer. Activation of the coagulation system was quantified in a static environment using a partial thromboplastin time (PTT) assay. The chemical compositions of the untreated surfaces were found to be very similar to those of the bulk material except for PEU, whose surface was comprised almost entirely of soft ether segments. For all materials, the different plasma treatments resulted in moderate etching with the incorporation of functional groups and removal of side groups: defluorination, dehydrogenation, cleavage of methyl side groups and soft segments for PTFE, UHMWPE, PDMS and PEU, respectively. Consequently, plasma treatment resulted in increased wettability in all cases. Blood contact with the virgin materials resulted in activation of platelets and the clotting cascade. Plasma treatment resulted in a significant reduction in platelet adhesion for all materials and all treatments. In the case of PTFE and PEU, the activation status of these cells was also reduced. Plasma treatment of all materials reduced fluid-phase CD62P expression. Platelet aggregate size correlated well with degree of aggregate formation, but many treatments increased the degree of aggregation, as was the case for microparticle shedding. There was no correlation between CD62P expression, aggregate formation and platelet microparticle (PMP) shedding. It is concluded that despite incorporation of the same chemical groups, the pattern of response to blood in vitro is not the same across different polymers.


Assuntos
Materiais Biocompatíveis/química , Coagulação Sanguínea/fisiologia , Plaquetas/citologia , Plaquetas/fisiologia , Ativação Plaquetária/fisiologia , Adulto , Células Cultivadas , Gases/química , Temperatura Alta , Humanos , Masculino , Teste de Materiais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA