Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Oncotarget ; 12(14): 1326-1338, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34262644

RESUMO

The five-year survival rate for metastatic pancreatic cancer is currently only 3%, which increases to 13% with local invasion only and to 39% with localized disease at diagnosis. Here we evaluated repurposed mebendazole, an approved anthelminthic drug, to determine how mebendazole might work at the different stages of pancreatic cancer formation and progression. We asked if mebendazole could prevent initiation of pancreatic intraepithelial neoplasia precursor lesions, interfere with stromal desmoplasia, or suppress tumor growth and liver metastasis. In both the Kras LSL.G12D/+; Pdx1-Cre (KC) mouse model of caerulein-induced inflammatory pancreatitis and the Kras LSL.G12D/+; Tp53 R172H/+; Pdx1-Cre (KPC) mouse model of advanced pancreatic cancer, mebendazole significantly reduced pancreas weight, dysplasia and intraepithelial neoplasia formation, compared to controls. Mebendazole significantly reduced trichrome-positive fibrotic connective tissue and α-SMA-positive activated pancreatic stellate cells that heralds fibrogenesis. In the aggressive KPC model, mebendazole significantly suppressed pancreatic tumor growth, both as an early and late intervention. Mebendazole reduced the overall incidence of pancreatic cancer and severity of liver metastasis in KPC mice. Using early models of pancreatic cancer, treatment with mebendazole resulted in less inflammation, decreased dysplasia, with the later stage model additionally showing a decreased tumor burden, less advanced tumors, and a reduction of metastasis. We conclude that mebendazole should be investigated further as a component of adjuvant therapy to slow progression and prevent metastasis, and well as for primary prevention in the highest risk patients.

2.
J Pathol ; 255(1): 72-83, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34124783

RESUMO

Chordomas are primary bone tumors that arise in the cranial base, mobile spine, and sacrococcygeal region, affecting patients of all ages. Currently, there are no approved agents for chordoma patients. Here, we evaluated the anti-tumor efficacy of small molecule inhibitors that target oncogenic pathways in chordoma, as single agents and in combination, to identify novel therapeutic approaches with the greatest translational potential. A panel of small molecule compounds was screened in vivo against patient-derived xenograft (PDX) models of chordoma, and potentially synergistic combinations were further evaluated using chordoma cell lines and xenograft models. Among the tested agents, inhibitors of EGFR (BIBX 1382, erlotinib, and afatinib), c-MET (crizotinib), and mTOR (AZD8055) significantly inhibited tumor growth in vivo but did not induce tumor regression. Co-inhibition of EGFR and c-MET using erlotinib and crizotinib synergistically reduced cell viability in chordoma cell lines but did not result in enhanced in vivo activity. Co-inhibition of EGFR and mTOR pathways using afatinib and AZD8055 synergistically reduced cell viability in chordoma cell lines. Importantly, this dual inhibition completely suppressed tumor growth in vivo, showing improved tumor control. Together, these data demonstrate that individual inhibitors of EGFR, c-MET, and mTOR pathways suppress chordoma growth both in vitro and in vivo. mTOR inhibition increased the efficacy of EGFR inhibition on chordoma growth in several preclinical models. The insights gained from our study potentially provide a novel combination therapeutic strategy for patients with chordoma. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Afatinib/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cordoma/patologia , Morfolinas/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Endocr Relat Cancer ; 27(3): 123-136, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846433

RESUMO

The most common thyroid malignancy is papillary thyroid cancer. While a majority respond to therapy and have a favorable prognosis, some papillary thyroid cancers persist. This subset may dedifferentiate to anaplastic thyroid cancer, an aggressive, highly invasive and rapidly fatal cancer. Thyroid cancer patients at risk for disease progression and metastasis need earlier, safer and more effective therapies. The purpose of this translational study was to determine if mebendazole could be repurposed to effectively treat thyroid cancer, in particular before metastasis. In vitro, mebendazole potently inhibited the growth of a panel of human papillary and anaplastic thyroid cancer cells. In papillary (B-CPAP) and anaplastic (8505c) cell lines, mebendazole increased the percentage of cells in G2/M cell cycle arrest and induced late stage apoptosis by activation of the caspase-3 pathway. In aggressive 8505c cells, mebendazole significantly repressed migratory and invasive potential in a wound healing and transwell invasion assay and inhibited expression of phosphorylated Akt and Stat3 and reduced Gli1. In vivo, mebendazole treatment resulted in significant orthotopic thyroid tumor regression (B-CPAP) and growth arrest (8505c), with treated tumors displaying reduced expression of the proliferation maker KI67 and less vascular epithelium as indicated by CD31+ immunohistochemistry. Most importantly, daily oral mebendazole prevented established thyroid tumors from metastasizing to the lung. Given the low toxicity and published anticancer mechanisms of mebendazole, this novel preclinical study of mebendazole in thyroid cancer has promising therapeutic implications for patients with treatment refractory papillary or anaplastic thyroid cancer.


Assuntos
Neoplasias Pulmonares/secundário , Mebendazol/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/prevenção & controle , Camundongos , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Glândula Tireoide/irrigação sanguínea , Neoplasias da Glândula Tireoide/patologia
4.
SLAS Technol ; 24(1): 28-40, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30289729

RESUMO

Glioblastoma (GBM) is a lethal brain cancer with a median survival time of approximately 15 months following treatment. Common in vitro GBM models for drug screening are adherent and do not recapitulate the features of human GBM in vivo. Here we report the genomic characterization of nine patient-derived, spheroid GBM cell lines that recapitulate human GBM characteristics in orthotopic xenograft models. Genomic sequencing revealed that the spheroid lines contain alterations in GBM driver genes such as PTEN, CDKN2A, and NF1. Two spheroid cell lines, JHH-136 and JHH-520, were utilized in a high-throughput drug screen for cell viability using a 1912-member compound library. Drug mechanisms that were cytotoxic in both cell lines were Hsp90 and proteasome inhibitors. JHH-136 was uniquely sensitive to topoisomerase 1 inhibitors, while JHH-520 was uniquely sensitive to Mek inhibitors. Drug combination screening revealed that PI3 kinase inhibitors combined with Mek or proteasome inhibitors were synergistic. However, animal studies to test these drug combinations in vivo revealed that Mek inhibition alone was superior to the combination treatments. These data show that these GBM spheroid lines are amenable to high-throughput drug screening and that this dataset may deliver promising therapeutic leads for future GBM preclinical studies.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Glioblastoma/patologia , Mutação , Esferoides Celulares/efeitos dos fármacos , Antineoplásicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Células Tumorais Cultivadas
5.
Nat Commun ; 9(1): 5410, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575736

RESUMO

Olfactory neuroblastoma (ONB) is a rare malignant neoplasm arising in the upper portion of the sinonasal cavity. To better understand the genetic bases for ONB, here we perform whole exome and whole genome sequencing as well as single nucleotide polymorphism array analyses in a series of ONB patient samples. Deletions involving the dystrophin (DMD) locus are found in 12 of 14 (86%) tumors. Interestingly, one of the remaining tumors has a deletion in LAMA2, bringing the number of ONBs with deletions of genes involved in the development of muscular dystrophies to 13 or 93%. This high prevalence implicates an unexpected functional role for genes causing hereditary muscular dystrophies in ONB.

6.
J Neurooncol ; 140(3): 529-538, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30414098

RESUMO

PURPOSE: Meningiomas are a frequent tumor of the central nervous system. Although mostly benign, approximately 5% present as atypical or malignant tumors. Treatments for atypical meningiomas include gross total resection and radiotherapy, but about 33% of patients have recurrent tumors, sometimes as a higher grade. Recently, the brain penetrant anthelmintic drug, mebendazole, has shown promise as an anticancer agent in rodent models of glioblastoma and medulloblastoma. METHODS: The half maximal inhibitory concentration (IC50) effect on colony formation, cell proliferation, and caspase-3/7 markers of apoptosis of mebendazole with and without radiation was measured in vitro. Mice intracranially implanted with KT21MG1 human meningioma were administered mebendazole alone or in combination with radiation. Survival benefit was evaluated, while tumors were investigated by immunohistochemical staining for apoptosis, cell proliferation, and vascular density. RESULTS: In vitro experiments on meningioma cell lines showed the IC50 for mebendazole in the range of 0.26-0.42 µM. Mebendazole alone induced cytotoxicity, however the combination had a greater reduction in colony formation and resulted in higher levels of cleaved caspase-3. The in vivo study showed both, mebendazole alone and the combination, to have a survival benefit with an increase in apoptosis, and decreases in tumor cell and vascular proliferation. CONCLUSION: These preclinical findings indicate that mebendazole alone or in combination with radiation can be considered for the treatment of malignant meningioma. The mechanism of action for this combination may include an increase in apoptosis, a reduction in proliferation and angiogenesis, or a combination of these effects.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Mebendazol/administração & dosagem , Neoplasias Meníngeas/tratamento farmacológico , Neoplasias Meníngeas/radioterapia , Meningioma/tratamento farmacológico , Meningioma/radioterapia , Animais , Anti-Helmínticos/administração & dosagem , Antineoplásicos/administração & dosagem , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Humanos , Concentração Inibidora 50 , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo
7.
Oncotarget ; 7(42): 68571-68584, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27612418

RESUMO

Inheritance of a gene mutation leads to the initiation of 5 to 10% of most cancers, including colon cancer cases. We developed a chemoprevention strategy using a novel combination of the non-steroidal anti-inflammatory (NSAID) sulindac plus the anthelminthic benzimidazole, mebendazole. This oral drug combination was effective in the ApcMin/+ mouse model of Familial Adenomatous Polyposis (FAP). Treatment with 35 mg/kg daily mebendazole reduced the number of intestinal adenomas by 56% (P = 0.0002), 160 ppm sulindac by 74% (P < 0.0001), and the combination by 90% (P < 0.0001). The combination significantly reduced microadenomas, polyp number and size in both the small intestines and colon when compared to untreated controls or sulindac alone. Mebendazole as a single agent decreased COX2 expression, blood vessel formation, VEGFR2 phosphorylation, and worked synergistically with sulindac to reduce overexpression of MYC, BCL2, and various pro-inflammatory cytokines. Given the low toxicity of mebendazole, these preclinical findings support the consideration of clinical trials for high risk cancer patients using mebendazole either alone or in combination. The findings have implications for populations with moderate and above risk for developing cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Colo/efeitos dos fármacos , Neoplasias do Colo/prevenção & controle , Ensaios Antitumorais Modelo de Xenoenxerto , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/prevenção & controle , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Linhagem Celular Tumoral , Colo/patologia , Neoplasias do Colo/patologia , Células HCT116 , Células HT29 , Humanos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Masculino , Mebendazol/administração & dosagem , Camundongos Endogâmicos C57BL , Camundongos Nus , Sulindaco/administração & dosagem
8.
Southeast Asian J Trop Med Public Health ; 45(6): 1264-70, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26466412

RESUMO

Mebendazole (MBZ) is an anthelmintic drug which inhibits tubulin polymerization and eventually causes apoptosis in target organisms. Antitumor activity of MBZ has been reported in various cancers. The aim of this study was to investigate the effect of MBZ on cholangiocarcinoma (CCA) cells in vitro and in vivo. MBZ reduced cell proliferation in the KKU-M213 cell line associated with a remarkable enhancement of caspase-3 gene expression and enzyme activity. Oral administration of MBZ slightly reduced the growth rate of subcutaneously xeno-grafted KKU-M213 in nude mice. The TUNEL assay showed an increase of apoptotic cell numbers in the xenograft tumor tissue of MBZ-treated mice. The data obtained in this study suggested that MBZ can suppress CCA cell proliferation via caspase-3 activated apoptosis. Further investigation of the antitumor effects of MBZ might support the use of MBZ as an alternative drug for CCA treatment.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/patologia , Mebendazol/farmacologia , Animais , Neoplasias dos Ductos Biliares , Ductos Biliares Intra-Hepáticos , Linhagem Celular Tumoral , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA