Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 6(2): e16887, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21365011

RESUMO

Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment.


Assuntos
Doenças dos Animais/epidemiologia , Antozoários/crescimento & desenvolvimento , Densidade Demográfica , Animais , Antozoários/classificação , Ecossistema , Meio Ambiente , Transtornos do Crescimento/epidemiologia , Atividades Humanas/estatística & dados numéricos , Humanos , Oceano Índico , Oceano Pacífico , Prevalência
2.
Environ Microbiol Rep ; 3(6): 651-60, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23761353

RESUMO

Understanding the effects of elevated seawater temperatures on each member of the coral holobiont (the complex comprised of coral polyps and associated symbiotic microorganisms, including Bacteria, viruses, Fungi, Archaea and endolithic algae) is becoming increasingly important as evidence accumulates that microbial members contribute to overall coral health, particularly during thermal stress. Here we use a metagenomic approach to identify metabolic and taxonomic shifts in microbial communities associated with the hard coral Acropora millepora throughout a natural thermal bleaching event at Magnetic Island (Great Barrier Reef). A direct comparison of metagenomic data sets from healthy versus bleached corals indicated major shifts in microbial associates during heat stress, including Bacteria, Archaea, viruses, Fungi and micro-algae. Overall, metabolism of the microbial community shifted from autotrophy to heterotrophy, including increases in genes associated with the metabolism of fatty acids, proteins, simple carbohydrates, phosphorus and sulfur. In addition, the proportion of virulence genes was higher in the bleached library, indicating an increase in microorganisms capable of pathogenesis following bleaching. These results demonstrate that thermal stress results in shifts in coral-associated microbial communities that may lead to deteriorating coral health.

3.
Oecologia ; 136(4): 524-31, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12802676

RESUMO

In colonial modular organisms, differences in module size and colony growth patterns among species have the potential to impose varying constraints on reproductive investment. Here, we compare reproductive output among seven morphologically different species of spawning reef corals, and analyse the relationship between reproductive output and module (polyp) size. Reproductive output ranged between 132 and 384 J cm(-2), with lipid constituting the key indicator of energy investment. Lipid decreased by 85-100%, whereas protein and carbohydrate were relatively invariant between pre- and post-spawning tissues in all species, representing 1-15% and <1%, respectively, of the energy investment to reproductive output. The ratio of energy content in reproductive to somatic tissues (gonadosomatic index, GSI) varied among species from 0.20 (Symphyllia recta) to 1.31 (Acropora tenuis), the latter being the highest value reported for any iteroparous marine invertebrate. Surprisingly, small-polyped species (Acropora, Montipora) had 2- to 6-fold higher GSIs than large-polyped ones (Lobophyllia, Symphyllia). Energy equivalents of tissues increased with the 1.50-1.76 power of polyp diameter for somatic tissues and with the 1.42-1.80 power of polyp diameter for reproductive output. In both cases, increases in energy equivalents with polyp diameter were less than the scaling exponent of 3 predicted for an isometric relationship between tissue volume (or mass) and polyp diameter, indicating significant constraints of space, design or physiological energetics with increasing polyp size. We hypothesise that such constraints have played a key role in the evolution of modularity in cnidarians.


Assuntos
Antozoários/anatomia & histologia , Antozoários/fisiologia , Constituição Corporal , Modelos Teóricos , Reprodução , Adaptação Fisiológica , Animais , Evolução Biológica , Metabolismo Energético , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA