Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heart Rhythm ; 7(8): 1104-10, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20385252

RESUMO

BACKGROUND: Skeletal muscle sodium channel (Nav1.4) expression in border zone myocardium increases action potential upstroke velocity in depolarized isolated tissue. Because resting membrane potential in the 1-week canine infarct is reduced, we hypothesized that conduction velocity (CV) is greater in Nav1.4 dogs compared with in control dogs. OBJECTIVE: The purpose of this study was to measure CV in the infarct border zone border in dogs with and without Nav1.4 expression. METHODS: Adenovirus was injected in the infarct border zone in 34 dogs. The adenovirus incorporated the Nav1.4- and a green fluorescent protein (GFP) gene (Nav1.4 group, n = 16) or only GFP (n = 18). After 1 week, upstroke velocity and CV were measured by sequential microelectrode recordings at 4 and 7 mM [K(+)] in superfused epicardial slabs. High-density in vivo epicardial activation mapping was performed in a subgroup (8 Nav1.4, 6 GFP) at three to four locations in the border zone. Microscopy and antibody staining confirmed GFP or Nav1.4 expression. RESULTS: Infarct sizes were similar between groups (30.6% +/- 3% of left ventricle mass, mean +/- standard error of the mean). Longitudinal CV was greater in Nav1.4 than in GFP sites (58.5 +/- 1.8 vs. 53.3 +/- 1.2 cm/s, 20 and 15 sites, respectively; P <.05). Transverse CV was not different between the groups. In tissue slabs, dV/dt(max) was higher and CV was greater in Nav1.4 than in control at 7 mM [K(+)] (P <.05). Immunohistochemical Nav1.4 staining was seen at the longitudinal ends of the myocytes. CONCLUSION: Nav1.4 channels in myocardium surviving 1 week infarction increases longitudinal but not transverse CV, consistent with the increased dV/dt(max) and with the cellular localization of Nav1.4.


Assuntos
Sistema de Condução Cardíaco/fisiopatologia , Músculo Esquelético/fisiologia , Infarto do Miocárdio/fisiopatologia , Canais de Sódio/biossíntese , Potenciais de Ação , Animais , Modelos Animais de Doenças , Cães
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA