Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(7): e2319682121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319972

RESUMO

Cancer invasion and metastasis are known to be potentiated by the expression of aquaporins (AQPs). Likewise, the expression levels of AQPs have been shown to be prognostic for survival in patients and have a role in tumor growth, edema, angiogenesis, and tumor cell migration. Thus, AQPs are key players in cancer biology and potential targets for drug development. Here, we present the single-particle cryo-EM structure of human AQP7 at 3.2-Å resolution in complex with the specific inhibitor compound Z433927330. The structure in combination with MD simulations shows that the inhibitor binds to the endofacial side of AQP7. In addition, cancer cells treated with Z433927330 show reduced proliferation. The data presented here serve as a framework for the development of AQP inhibitors.


Assuntos
Aquaporinas , Neoplasias , Humanos , Aquaporinas/metabolismo , Aquaporina 1/metabolismo
2.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065616

RESUMO

We have performed 280 µs of unbiased molecular dynamics (MD) simulations to investigate the effects of 12 different cancer mutations on Kelch-like ECH-associated protein 1 (KEAP1) (G333C, G350S, G364C, G379D, R413L, R415G, A427V, G430C, R470C, R470H, R470S and G476R), one of the frequently mutated proteins in lung cancer. The aim was to provide structural insight into the effects of these mutants, including a new class of ANCHOR (additionally NRF2-complexed hypomorph) mutant variants. Our work provides additional insight into the structural dynamics of mutants that could not be analyzed experimentally, painting a more complete picture of their mutagenic effects. Notably, blade-wise analysis of the Kelch domain points to stability as a possible target of cancer in KEAP1. Interestingly, structural analysis of the R470C ANCHOR mutant, the most prevalent missense mutation in KEAP1, revealed no significant change in structural stability or NRF2 binding site dynamics, possibly indicating an covalent modification as this mutant's mode of action.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/genética , Mutação de Sentido Incorreto/genética , Sítios de Ligação/genética , Linhagem Celular Tumoral , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica/genética , Estabilidade Proteica
3.
J Chem Theory Comput ; 17(5): 3145-3156, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33861593

RESUMO

The nuclear factor erythroid 2-related factor 2 (Nrf2)-ARE transcriptional response pathway plays a critical role in protecting the cell from oxidative stresses via the upregulation of cytoprotective genes. Aberrant activation of Nrf2 in cancer cells can confer this cytoprotectivity, thereby reducing the efficacy of both chemotherapeutics and radiotherapies. Key to this antioxidant pathway is the interaction between Nrf2 and CREB binding protein (CBP), mediated by the Neh4 and Neh5 domains of Nrf2. Disruption of this interaction via small-molecule therapeutics could negate the effects of aberrant Nrf2 upregulation. Due to the disordered nature of these domains, there remains no three-dimensional structure of Neh4 or Neh5, making structure-based drug design a challenge. Here, we performed 48 µs of unbiased molecular dynamics (MD) simulations with the Amber99SB*-ILDNP and CHARMM36m force fields and circular dichroism (CD) spectropolarimetry experiments to elucidate the free-state structures of these domains; no previous data regarding their conformational landscapes exists. There are two main findings: First, we find Neh5 to be markedly more disordered than Neh4, which has nine residues in the middle of the domain showing α-helical propensity, thus pointing to Neh4 and Neh5 having different binding mechanisms. Second, the two force fields show strong differences for the glutamic acid-rich Neh5 peptide but are in reasonable agreement for Neh4, which has no glutamic acid. The CHARMM36m force field agrees more closely with the CD results.


Assuntos
Dicroísmo Circular/métodos , Fator 2 Relacionado a NF-E2/química , Humanos , Cadeias de Markov , Simulação de Dinâmica Molecular , Probabilidade , Conformação Proteica , Domínios Proteicos , Reprodutibilidade dos Testes
4.
Front Mol Biosci ; 8: 794646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35083279

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of both upper and lower motor neurons in the brain and spinal cord. ALS is associated with protein misfolding and inclusion formation involving RNA-binding proteins, including TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS). The 125-kDa Matrin3 is a highly conserved nuclear DNA/RNA-binding protein that is implicated in many cellular processes, including binding and stabilizing mRNA, regulating mRNA nuclear export, modulating alternative splicing, and managing chromosomal distribution. Mutations in MATR3, the gene encoding Matrin3, have been identified as causal in familial ALS (fALS). Matrin3 lacks a prion-like domain that characterizes many other ALS-associated RNA-binding proteins, including TDP-43 and FUS, however, our bioinformatics analyses and preliminary studies document that Matrin3 contains long intrinsically disordered regions that may facilitate promiscuous interactions with many proteins and may contribute to its misfolding. In addition, these disordered regions in Matrin3 undergo numerous post-translational modifications, including phosphorylation, ubiquitination and acetylation that modulate the function and misfolding of the protein. Here we discuss the disordered nature of Matrin3 and review the factors that may promote its misfolding and aggregation, two elements that might explain its role in ALS pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA