Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38854126

RESUMO

The efficiency of translation termination is determined by the nature of the stop codon as well as its context. In eukaryotes, recognition of the A-site stop codon and release of the polypeptide are mediated by release factors eRF1 and eRF3, respectively. Translation termination is modulated by other factors which either directly interact with release factors or bind to the E-site and modulate the activity of the peptidyl transferase center. Previous studies suggested that the Saccharomyces cerevisiae ABCF ATPase New1 is involved in translation termination and/or ribosome recycling, however, the exact function remained unclear. Here, we have applied 5PSeq, single-particle cryo-EM and readthrough reporter assays to provide insight into the biological function of New1. We show that the lack of New1 results in ribosomal stalling at stop codons preceded by a lysine or arginine codon and that the stalling is not defined by the nature of the C-terminal amino acid but rather by the identity of the tRNA isoacceptor in the P-site. Collectively, our results suggest that translation termination is inefficient when ribosomes have specific tRNA isoacceptors in the P-site and that the recruitment of New1 rescues ribosomes at these problematic termination contexts.

2.
Nucleic Acids Res ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811035

RESUMO

Ribosomes trapped on mRNAs during protein synthesis need to be rescued for the cell to survive. The most ubiquitous bacterial ribosome rescue pathway is trans-translation mediated by tmRNA and SmpB. Genetic inactivation of trans-translation can be lethal, unless ribosomes are rescued by ArfA or ArfB alternative rescue factors or the ribosome-associated quality control (RQC) system, which in Bacillus subtilis involves MutS2, RqcH, RqcP and Pth. Using transposon sequencing in a trans-translation-incompetent B. subtilis strain we identify a poorly characterized S4-domain-containing protein YlmH as a novel potential RQC factor. Cryo-EM structures reveal that YlmH binds peptidyl-tRNA-50S complexes in a position analogous to that of S4-domain-containing protein RqcP, and that, similarly to RqcP, YlmH can co-habit with RqcH. Consistently, we show that YlmH can assume the role of RqcP in RQC by facilitating the addition of poly-alanine tails to truncated nascent polypeptides. While in B. subtilis the function of YlmH is redundant with RqcP, our taxonomic analysis reveals that in multiple bacterial phyla RqcP is absent, while YlmH and RqcH are present, suggesting that in these species YlmH plays a central role in the RQC.

3.
Nat Commun ; 15(1): 2431, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503753

RESUMO

Nascent polypeptide chains can induce translational stalling to regulate gene expression. This is exemplified by the E. coli secretion monitor (SecM) arrest peptide that induces translational stalling to regulate expression of the downstream encoded SecA, an ATPase that co-operates with the SecYEG translocon to facilitate insertion of proteins into or through the cytoplasmic membrane. Here we present the structure of a ribosome stalled during translation of the full-length E. coli SecM arrest peptide at 2.0 Å resolution. The structure reveals that SecM arrests translation by stabilizing the Pro-tRNA in the A-site, but in a manner that prevents peptide bond formation with the SecM-peptidyl-tRNA in the P-site. By employing molecular dynamic simulations, we also provide insight into how a pulling force on the SecM nascent chain can relieve the SecM-mediated translation arrest. Collectively, the mechanisms determined here for SecM arrest and relief are also likely to be applicable for a variety of other arrest peptides that regulate components of the protein localization machinery identified across a wide range of bacteria lineages.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Elongação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , Peptídeos/metabolismo , Biossíntese de Proteínas , Fatores de Transcrição/metabolismo
4.
Nat Commun ; 15(1): 2432, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503735

RESUMO

Arrest peptides containing RAPP (ArgAlaProPro) motifs have been discovered in both Gram-positive and Gram-negative bacteria, where they are thought to regulate expression of important protein localization machinery components. Here we determine cryo-EM structures of ribosomes stalled on RAPP arrest motifs in both Bacillus subtilis and Escherichia coli. Together with molecular dynamics simulations, our structures reveal that the RAPP motifs allow full accommodation of the A-site tRNA, but prevent the subsequent peptide bond from forming. Our data support a model where the RAP in the P-site interacts and stabilizes a single hydrogen atom on the Pro-tRNA in the A-site, thereby preventing an optimal geometry for the nucleophilic attack required for peptide bond formation to occur. This mechanism to short circuit the ribosomal peptidyltransferase activity is likely to operate for the majority of other RAPP-like arrest peptides found across diverse bacterial phylogenies.


Assuntos
Peptidil Transferases , Peptidil Transferases/metabolismo , Antibacterianos/metabolismo , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/genética , Biossíntese de Proteínas , Ribossomos/metabolismo , Peptídeos/metabolismo , RNA de Transferência/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
5.
Mol Cell ; 84(4): 715-726.e5, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38183984

RESUMO

Rescuing stalled ribosomes often involves their splitting into subunits. In many bacteria, the resultant large subunits bearing peptidyl-tRNAs are processed by the ribosome-associated quality control (RQC) apparatus that extends the C termini of the incomplete nascent polypeptides with polyalanine tails to facilitate their degradation. Although the tailing mechanism is well established, it is unclear how the nascent polypeptides are cleaved off the tRNAs. We show that peptidyl-tRNA hydrolase (Pth), the known role of which has been to hydrolyze ribosome-free peptidyl-tRNA, acts in concert with RQC factors to release nascent polypeptides from large ribosomal subunits. Dislodging from the ribosomal catalytic center is required for peptidyl-tRNA hydrolysis by Pth. Nascent protein folding may prevent peptidyl-tRNA retraction and interfere with the peptide release. However, oligoalanine tailing makes the peptidyl-tRNA ester bond accessible for Pth-catalyzed hydrolysis. Therefore, the oligoalanine tail serves not only as a degron but also as a facilitator of Pth-catalyzed peptidyl-tRNA hydrolysis.


Assuntos
Hidrolases de Éster Carboxílico , Peptídeos , Ribossomos , Ribossomos/metabolismo , Peptídeos/genética , Bactérias/genética , Controle de Qualidade , Biossíntese de Proteínas
6.
Nat Chem Biol ; 19(9): 1072-1081, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36997646

RESUMO

The proline-rich antimicrobial peptide (PrAMP) drosocin is produced by Drosophila species to combat bacterial infection. Unlike many PrAMPs, drosocin is O-glycosylated at threonine 11, a post-translation modification that enhances its antimicrobial activity. Here we demonstrate that the O-glycosylation not only influences cellular uptake of the peptide but also interacts with its intracellular target, the ribosome. Cryogenic electron microscopy structures of glycosylated drosocin on the ribosome at 2.0-2.8-Å resolution reveal that the peptide interferes with translation termination by binding within the polypeptide exit tunnel and trapping RF1 on the ribosome, reminiscent of that reported for the PrAMP apidaecin. The glycosylation of drosocin enables multiple interactions with U2609 of the 23S rRNA, leading to conformational changes that break the canonical base pair with A752. Collectively, our study reveals novel molecular insights into the interaction of O-glycosylated drosocin with the ribosome, which provide a structural basis for future development of this class of antimicrobials.


Assuntos
Anti-Infecciosos , Glicopeptídeos , Processamento de Proteína Pós-Traducional , Animais , Antibacterianos/química , Drosophila/metabolismo , Glicopeptídeos/química , Glicosilação , Processamento de Proteína Pós-Traducional/genética
7.
Nucleic Acids Res ; 50(21): 12515-12526, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36370110

RESUMO

In Escherichia coli, the heat shock protein 15 (Hsp15) is part of the cellular response to elevated temperature. Hsp15 interacts with peptidyl-tRNA-50S complexes that arise upon dissociation of translating 70S ribosomes, and is proposed to facilitate their rescue and recycling. A previous structure of E. coli Hsp15 in complex with peptidyl-tRNA-50S complex reported a binding site located at the central protuberance of the 50S subunit. By contrast, recent structures of RqcP, the Hsp15 homolog in Bacillus subtilis, in complex with peptidyl-tRNA-50S complexes have revealed a distinct site positioned between the anticodon-stem-loop (ASL) of the P-site tRNA and H69 of the 23S rRNA. Here we demonstrate that exposure of E. coli cells to heat shock leads to a decrease in 70S ribosomes and accumulation of 50S subunits, thus identifying a natural substrate for Hsp15 binding. Additionally, we have determined a cryo-EM reconstruction of the Hsp15-50S-peptidyl-tRNA complex isolated from heat shocked E. coli cells, revealing that Hsp15 binds to the 50S-peptidyl-tRNA complex analogously to its B. subtilis homolog RqcP. Collectively, our findings support a model where Hsp15 stabilizes the peptidyl-tRNA in the P-site and thereby promotes access to the A-site for putative rescue factors to release the aberrant nascent polypeptide chain.


Assuntos
Escherichia coli , Proteínas de Choque Térmico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Ribossomos/metabolismo , RNA Ribossômico 23S/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo
8.
Nat Commun ; 13(1): 1860, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387982

RESUMO

PoxtA and OptrA are ATP binding cassette (ABC) proteins of the F subtype (ABCF). They confer resistance to oxazolidinone and phenicol antibiotics, such as linezolid and chloramphenicol, which stall translating ribosomes when certain amino acids are present at a defined position in the nascent polypeptide chain. These proteins are often encoded on mobile genetic elements, facilitating their rapid spread amongst Gram-positive bacteria, and are thought to confer resistance by binding to the ribosome and dislodging the bound antibiotic. However, the mechanistic basis of this resistance remains unclear. Here we refine the PoxtA spectrum of action, demonstrate alleviation of linezolid-induced context-dependent translational stalling, and present cryo-electron microscopy structures of PoxtA in complex with the Enterococcus faecalis 70S ribosome. PoxtA perturbs the CCA-end of the P-site tRNA, causing it to shift by ∼4 Šout of the ribosome, corresponding to a register shift of approximately one amino acid for an attached nascent polypeptide chain. We postulate that the perturbation of the P-site tRNA by PoxtA thereby alters the conformation of the attached nascent chain to disrupt the drug binding site.


Assuntos
Oxazolidinonas , Antibacterianos/farmacologia , Microscopia Crioeletrônica , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/genética , Linezolida/farmacologia , Oxazolidinonas/farmacologia , RNA de Transferência/genética
9.
Nat Commun ; 12(1): 4466, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294725

RESUMO

Macrolides and ketolides comprise a family of clinically important antibiotics that inhibit protein synthesis by binding within the exit tunnel of the bacterial ribosome. While these antibiotics are known to interrupt translation at specific sequence motifs, with ketolides predominantly stalling at Arg/Lys-X-Arg/Lys motifs and macrolides displaying a broader specificity, a structural basis for their context-specific action has been lacking. Here, we present structures of ribosomes arrested during the synthesis of an Arg-Leu-Arg sequence by the macrolide erythromycin (ERY) and the ketolide telithromycin (TEL). Together with deep mutagenesis and molecular dynamics simulations, the structures reveal how ERY and TEL interplay with the Arg-Leu-Arg motif to induce translational arrest and illuminate the basis for the less stringent sequence-specific action of ERY over TEL. Because programmed stalling at the Arg/Lys-X-Arg/Lys motifs is used to activate expression of antibiotic resistance genes, our study also provides important insights for future development of improved macrolide antibiotics.


Assuntos
Antibacterianos/farmacologia , Cetolídeos/farmacologia , Macrolídeos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Sítios de Ligação/genética , Microscopia Crioeletrônica , Resistência Microbiana a Medicamentos/genética , Eritromicina/química , Eritromicina/farmacologia , Genes Bacterianos , Cetolídeos/química , Cetolídeos/farmacocinética , Macrolídeos/química , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Insercional , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Ribossomos/efeitos dos fármacos
10.
Nucleic Acids Res ; 49(14): 8355-8369, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34255840

RESUMO

In the cell, stalled ribosomes are rescued through ribosome-associated protein quality-control (RQC) pathways. After splitting of the stalled ribosome, a C-terminal polyalanine 'tail' is added to the unfinished polypeptide attached to the tRNA on the 50S ribosomal subunit. In Bacillus subtilis, polyalanine tailing is catalyzed by the NEMF family protein RqcH, in cooperation with RqcP. However, the mechanistic details of this process remain unclear. Here we demonstrate that RqcH is responsible for tRNAAla selection during RQC elongation, whereas RqcP lacks any tRNA specificity. The ribosomal protein uL11 is crucial for RqcH, but not RqcP, recruitment to the 50S subunit, and B. subtilis lacking uL11 are RQC-deficient. Through mutational mapping, we identify critical residues within RqcH and RqcP that are important for interaction with the P-site tRNA and/or the 50S subunit. Additionally, we have reconstituted polyalanine-tailing in vitro and can demonstrate that RqcH and RqcP are necessary and sufficient for processivity in a minimal system. Moreover, the in vitro reconstituted system recapitulates our in vivo findings by reproducing the importance of conserved residues of RqcH and RqcP for functionality. Collectively, our findings provide mechanistic insight into the role of RqcH and RqcP in the bacterial RQC pathway.


Assuntos
Bacillus subtilis/genética , DNA Helicases/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Peptídeos/genética , Peptídeos/metabolismo , RNA de Transferência , Subunidades Ribossômicas Maiores de Bactérias/genética
11.
Front Microbiol ; 12: 652980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815344

RESUMO

Ribosomes that become stalled on truncated or damaged mRNAs during protein synthesis must be rescued for the cell to survive. Bacteria have evolved a diverse array of rescue pathways to remove the stalled ribosomes from the aberrant mRNA and return them to the free pool of actively translating ribosomes. In addition, some of these pathways target the damaged mRNA and the incomplete nascent polypeptide chain for degradation. This review highlights the recent developments in our mechanistic understanding of bacterial ribosomal rescue systems, including drop-off, trans-translation mediated by transfer-messenger RNA and small protein B, ribosome rescue by the alternative rescue factors ArfA and ArfB, as well as Bacillus ribosome rescue factor A, an additional rescue system found in some Gram-positive bacteria, such as Bacillus subtilis. Finally, we discuss the recent findings of ribosome-associated quality control in particular bacterial lineages mediated by RqcH and RqcP. The importance of rescue pathways for bacterial survival suggests they may represent novel targets for the development of new antimicrobial agents against multi-drug resistant pathogenic bacteria.

12.
Mol Cell ; 81(1): 115-126.e7, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33259810

RESUMO

In all branches of life, stalled translation intermediates are recognized and processed by ribosome-associated quality control (RQC) pathways. RQC begins with the splitting of stalled ribosomes, leaving an unfinished polypeptide still attached to the large subunit. Ancient and conserved NEMF family RQC proteins target these incomplete proteins for degradation by the addition of C-terminal "tails." How such tailing can occur without the regular suite of translational components is, however, unclear. Using single-particle cryo-electron microscopy (EM) of native complexes, we show that C-terminal tailing in Bacillus subtilis is mediated by NEMF protein RqcH in concert with RqcP, an Hsp15 family protein. Our structures reveal how these factors mediate tRNA movement across the ribosomal 50S subunit to synthesize polypeptides in the absence of mRNA or the small subunit.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura
13.
Cell Rep ; 32(11): 108157, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937119

RESUMO

The stringent response enables metabolic adaptation of bacteria under stress conditions and is governed by RelA/SpoT Homolog (RSH)-type enzymes. Long RSH-type enzymes encompass an N-terminal domain (NTD) harboring the second messenger nucleotide (p)ppGpp hydrolase and synthetase activity and a stress-perceiving and regulatory C-terminal domain (CTD). CTD-mediated binding of Rel to stalled ribosomes boosts (p)ppGpp synthesis. However, how the opposing activities of the NTD are controlled in the absence of stress was poorly understood. Here, we demonstrate on the RSH-type protein Rel that the critical regulative elements reside within the TGS (ThrRS, GTPase, and SpoT) subdomain of the CTD, which associates to and represses the synthetase to concomitantly allow for activation of the hydrolase. Furthermore, we show that Rel forms homodimers, which appear to control the interaction with deacylated-tRNA, but not the enzymatic activity of Rel. Collectively, our study provides a detailed molecular view into the mechanism of stringent response repression in the absence of stress.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Pentafosfato/metabolismo , Hidrolases/metabolismo , Ligases/metabolismo , Proteínas de Bactérias/química , Biocatálise , Cristalografia por Raios X , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Relação Estrutura-Atividade
14.
Nat Commun ; 11(1): 4106, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796827

RESUMO

Alternative ribosome-rescue factor B (ArfB) rescues ribosomes stalled on non-stop mRNAs by releasing the nascent polypeptide from the peptidyl-tRNA. By rapid kinetics we show that ArfB selects ribosomes stalled on short truncated mRNAs, rather than on longer mRNAs mimicking pausing on rare codon clusters. In combination with cryo-electron microscopy we dissect the multistep rescue pathway of ArfB, which first binds to ribosomes very rapidly regardless of the mRNA length. The selectivity for shorter mRNAs arises from the subsequent slow engagement step, as it requires longer mRNA to shift to enable ArfB binding. Engagement results in specific interactions of the ArfB C-terminal domain with the mRNA entry channel, which activates peptidyl-tRNA hydrolysis by the N-terminal domain. These data reveal how protein dynamics translate into specificity of substrate recognition and provide insights into the action of a putative rescue factor in mitochondria.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Microscopia Crioeletrônica , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Ribossomos/ultraestrutura
15.
Nat Chem Biol ; 16(10): 1071-1077, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32601485

RESUMO

The increase in multi-drug resistant pathogenic bacteria is making our current arsenal of clinically used antibiotics obsolete, highlighting the urgent need for new lead compounds with distinct target binding sites to avoid cross-resistance. Here we report that the aromatic polyketide antibiotic tetracenomycin (TcmX) is a potent inhibitor of protein synthesis, and does not induce DNA damage as previously thought. Despite the structural similarity to the well-known translation inhibitor tetracycline, we show that TcmX does not interact with the small ribosomal subunit, but rather binds to the large subunit, within the polypeptide exit tunnel. This previously unappreciated binding site is located adjacent to the macrolide-binding site, where TcmX stacks on the noncanonical basepair formed by U1782 and U2586 of the 23S ribosomal RNA. Although the binding site is distinct from the macrolide antibiotics, our results indicate that like macrolides, TcmX allows translation of short oligopeptides before further translation is blocked.


Assuntos
Amycolatopsis/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Amycolatopsis/genética , Amycolatopsis/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Farmacorresistência Bacteriana , Escherichia coli , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mutação , Naftacenos/química , Naftacenos/farmacologia , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Conformação Proteica , Ribossomos/metabolismo
16.
PLoS Genet ; 16(3): e1008275, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32176689

RESUMO

Bacillus subtilis cells are well suited to study how bacteria sense and adapt to proteotoxic stress such as heat, since temperature fluctuations are a major challenge to soil-dwelling bacteria. Here, we show that the alarmones (p)ppGpp, well known second messengers of nutrient starvation, are also involved in the heat stress response as well as the development of thermo-resistance. Upon heat-shock, intracellular levels of (p)ppGpp rise in a rapid but transient manner. The heat-induced (p)ppGpp is primarily produced by the ribosome-associated alarmone synthetase Rel, while the small alarmone synthetases RelP and RelQ seem not to be involved. Furthermore, our study shows that the generated (p)ppGpp pulse primarily acts at the level of translation, and only specific genes are regulated at the transcriptional level. These include the down-regulation of some translation-related genes and the up-regulation of hpf, encoding the ribosome-protecting hibernation-promoting factor. In addition, the alarmones appear to interact with the activity of the stress transcription factor Spx during heat stress. Taken together, our study suggests that (p)ppGpp modulates the translational capacity at elevated temperatures and thereby allows B. subtilis cells to respond to proteotoxic stress, not only by raising the cellular repair capacity, but also by decreasing translation to concurrently reduce the protein load on the cellular protein quality control system.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Resposta ao Choque Térmico/genética , Ligases/genética , Regulação Bacteriana da Expressão Gênica/genética
17.
ChemMedChem ; 14(24): 2025-2033, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31692278

RESUMO

Proline-rich antimicrobial peptides (PrAMPs) are promising agents to combat multi-drug resistant pathogens due to a high antimicrobial activity, yet low cytotoxicity. A library of derivatives of the PrAMP Bac5(1-17) was synthesized and screened to identify which residues are relevant for its activity. In this way, we discovered that two central motifs -PIRXP- cannot be modified, while residues at N- and C- termini tolerated some variations. We found five Bac5(1-17) derivatives bearing 1-5 substitutions, with an increased number of arginine and/or tryptophan residues, exhibiting improved antimicrobial activity and broader spectrum of activity while retaining low cytotoxicity toward eukaryotic cells. Transcription/translation and bacterial membrane permeabilization assays showed that these new derivatives still retained the ability to strongly inhibit bacterial protein synthesis, but also acquired permeabilizing activity to different degrees. These new Bac5(1-17) derivatives therefore show a dual mode of action which could hinder the selection of bacterial resistance against these molecules.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Peptídeos/farmacologia , Prolina/farmacologia , Antibacterianos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptídeos/química , Prolina/química , Relação Estrutura-Atividade
18.
Nat Commun ; 10(1): 5397, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776341

RESUMO

Rescue of the ribosomes from dead-end translation complexes, such as those on truncated (non-stop) mRNA, is essential for the cell. Whereas bacteria use trans-translation for ribosome rescue, some Gram-negative species possess alternative and release factor (RF)-dependent rescue factors, which enable an RF to catalyze stop-codon-independent polypeptide release. We now discover that the Gram-positive Bacillus subtilis has an evolutionarily distinct ribosome rescue factor named BrfA. Genetic analysis shows that B. subtilis requires the function of either trans-translation or BrfA for growth, even in the absence of proteotoxic stresses. Biochemical and cryo-electron microscopy (cryo-EM) characterization demonstrates that BrfA binds to non-stop stalled ribosomes, recruits homologous RF2, but not RF1, and induces its transition into an open active conformation. Although BrfA is distinct from E. coli ArfA, they use convergent strategies in terms of mode of action and expression regulation, indicating that many bacteria may have evolved as yet unidentified ribosome rescue systems.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Ribossomos/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Microrganismos Geneticamente Modificados , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Biossíntese de Proteínas , Conformação Proteica , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/genética
19.
Adv Exp Med Biol ; 1117: 73-89, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30980354

RESUMO

While antimicrobial peptides (AMPs) are well-known for their disruptive effects on bacterial membranes, the mechanism of many intracellular AMPs is still being elucidated. In the recent years, it has been demonstrated that the subclass of proline-rich AMPs (PrAMPs) can pass through the bacterial membrane and kill bacteria by inhibiting protein synthesis. PrAMPs are a product of the innate immune system and are secreted in response to bacterial infection. So far PrAMPs have been identified in many arthropods, such as beetles, wasps, and flies, as well as some mammals, such as sheep, cows, and goats. PrAMPs show high potency against Gram-negative bacteria, while exhibiting low toxicity in eukaryotes, suggesting that they may represent a promising avenue for the development of future antimicrobial agents to combat the increase of multidrug-resistant bacterial pathogens. Structural and biochemical data have revealed the PrAMP binding sites on the ribosome as well as insight into their mechanisms of action. While the binding site of all so far investigated PrAMPs is situated within nascent polypeptide exit tunnel, the mechanism of action is distinct between class I and II PrAMPs. Specifically, class I PrAMPs, such as Bac7, Onc112, pyrrhocoricin, and metalnikowin, block the delivery of aa-tRNA by EF-Tu to the ribosomal A-site, whereas the class II PrAMPs, such as apidaecin 1b and Api137, act during translation termination and inhibit protein synthesis by trapping of release factors on the 70S ribosome following hydrolysis of the nascent polypeptide chain.


Assuntos
Peptídeos Catiônicos Antimicrobianos/fisiologia , Biossíntese de Proteínas , Ribossomos/química , Animais , Insetos , Mamíferos , Prolina
20.
Angew Chem Int Ed Engl ; 58(25): 8581-8584, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30969469

RESUMO

Natural products represent a rich source of antibiotics that address versatile cellular targets. The deconvolution of their targets via chemical proteomics is often challenged by the introduction of large photocrosslinkers. Here we applied elegaphenone, a largely uncharacterized natural product antibiotic bearing a native benzophenone core scaffold, for affinity-based protein profiling (AfBPP) in Gram-positive and Gram-negative bacteria. This study utilizes the alkynylated natural product scaffold as a probe to uncover intriguing biological interactions with the transcriptional regulator AlgP. Furthermore, proteome profiling of a Pseudomonas aeruginosa AlgP transposon mutant provided unique insights into the mode of action. Elegaphenone enhanced the elimination of intracellular P. aeruginosa in macrophages exposed to sub-inhibitory concentrations of the fluoroquinolone antibiotic norfloxacin.


Assuntos
Antibacterianos/farmacologia , Benzofenonas/farmacologia , Produtos Biológicos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Benzofenonas/síntese química , Benzofenonas/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Norfloxacino/antagonistas & inibidores , Norfloxacino/química , Norfloxacino/farmacologia , Pseudomonas aeruginosa/citologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA