Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Diabetes Sci Technol ; 12(4): 847-853, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29415555

RESUMO

Glycemic control is the mainstay of preventing diabetes complications at the expense of increased risk of hypoglycemia. Severe hypoglycemia negatively impacts the quality of life of patients with type 1 diabetes and can lead to morbidity and mortality. Currently available glucagon emergency kits are effective at treating hypoglycemia when correctly used, however use is complicated especially by untrained persons. Better formulations and devices for glucagon treatment of hypoglycemia are needed, specifically stable liquid glucagon. Out of the scope of this review, other potential uses of stable liquid glucagon include congenital hyperinsulinism, post-bariatric surgery hypoglycemia, and insulinoma induced hypoglycemia. In the 35 years since Food and Drug Administration (FDA) approval of the first liquid stable human recombinant insulin, we continue to wait for the glucagon counterpart. For mild hypoglycemia, a commercially available liquid stable glucagon would enable more widespread implementation of mini-dose glucagon use as well as glucagon in dual hormone closed-loop systems. This review focuses on the current and upcoming pharmaceutical uses of glucagon in the treatment of type 1 diabetes with an outlook on stable liquid glucagon preparations that will hopefully be available for use in patients in the near future.


Assuntos
Diabetes Mellitus Tipo 1 , Glucagon/administração & dosagem , Glucagon/química , Hipoglicemia/tratamento farmacológico , Humanos
2.
Stem Cells ; 27(11): 2703-11, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19785038

RESUMO

We previously characterized human islet-derived precursor cells (hIPCs) as a specific type of mesenchymal stem cell capable of differentiating to insulin (INS)- and glucagon (GCG)-expressing cells. However, during proliferative expansion, INS transcript becomes undetectable and then cannot be induced, a phenomenon consistent with silencing of the INS gene. We explored this possibility by determining whether ectopic expression of transcription factors known to induce transcription of this gene in beta cells, pancreatic and duodenal homeobox factor 1 (Pdx1), V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa), and neurogenic differentiation 1 (Neurod1), would activate INS gene expression in long-term hIPC cultures. Coexpression of all three transcription factors had little effect on INS mRNA levels but unexpectedly increased GCG mRNA at least 100,000-fold. In contrast to the endogenous promoter, an exogenous rat INS promoter was activated by expression of Pdx1 and Mafa in hIPCs. Chromatin immunoprecipitation (ChIP) assays using antibodies directed at posttranslationally modified histones show that regions of the INS and GCG genes have similar levels of activation-associated modifications but the INS gene has higher levels of repression-associated modifications. Furthermore, the INS gene was found to be less accessible to micrococcal nuclease digestion than the GCG gene. Lastly, ChIP assays show that exogenously expressed Pdx1 and Mafa bind at very low levels to the INS promoter and at 20- to 25-fold higher levels to the GCG promoter in hIPCs. We conclude that the INS gene in hIPCs is modified epigenetically ("silenced") so that it is resistant to activation by transcription factors.


Assuntos
Inativação Gênica/fisiologia , Glucagon/genética , Insulina/genética , Células-Tronco Mesenquimais/metabolismo , Pâncreas/citologia , Adenoviridae/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Linhagem Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Citometria de Fluxo , Vetores Genéticos/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Humanos , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Fatores de Transcrição Maf Maior/fisiologia , Células-Tronco Mesenquimais/citologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Reação em Cadeia da Polimerase , Ligação Proteica , Ratos , Transativadores/genética , Transativadores/metabolismo , Transativadores/fisiologia
3.
Mol Cell Endocrinol ; 270(1-2): 87-93, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17363142

RESUMO

We previously presented evidence that proliferative human islet precursor cells may be derived in vitro from adult islets by epithelial-to-mesenchymal transition (EMT) and show here that similar fibroblast-like cells can be derived from mouse islets. These mouse cell populations exhibited changes in gene expression consistent with EMT. Both C-peptide and insulin mRNAs were undetectable in expanded cultures of mouse islet-derived precursor cells (mIPCs). After expansion, mIPCs could be induced to migrate into clusters and differentiate into hormone-expressing islet-like aggregates. Although early morphological changes suggesting EMT were observed by time-lapse microscopy when green fluorescent protein-labeled beta cells were placed in culture, the expanded precursor cell population was not fluorescent. Using two mouse models in which beta cells were permanently made either to express alkaline phosphatase or to have a deleted M(3) muscarinic receptor, we provide evidence that mIPCs in long term culture are not derived from beta cells.


Assuntos
Glândulas Endócrinas/citologia , Células Epiteliais/citologia , Células Secretoras de Insulina/citologia , Mesoderma/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , DNA/metabolismo , Regulação da Expressão Gênica , Genoma , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Muscarínico M3/deficiência , Receptor Muscarínico M3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA