Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Am J Respir Crit Care Med ; 208(2): 176-187, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37141109

RESUMO

Rationale: Extracellular histones, released into the surrounding environment during extensive cell death, promote inflammation and cell death, and these deleterious roles have been well documented in sepsis. Clusterin (CLU) is a ubiquitous extracellular protein that chaperones misfolded proteins and promotes their removal. Objectives: We investigated whether CLU could protect against the deleterious properties of histones. Methods: We assessed CLU and histone expression in patients with sepsis and evaluated the protective role of CLU against histones in in vitro assays and in vivo models of experimental sepsis. Measurements and Main Results: We show that CLU binds to circulating histones and reduces their inflammatory, thrombotic, and cytotoxic properties. We observed that plasma CLU levels decreased in patients with sepsis and that the decrease was greater and more durable in nonsurvivors than in survivors. Accordingly, CLU deficiency was associated with increased mortality in mouse models of sepsis and endotoxemia. Finally, CLU supplementation improved mouse survival in a sepsis model. Conclusions: This study identifies CLU as a central endogenous histone-neutralizing molecule and suggests that, in pathologies with extensive cell death, CLU supplementation may improve disease tolerance and host survival.


Assuntos
Antineoplásicos , Sepse , Animais , Camundongos , Histonas/metabolismo , Clusterina/metabolismo , Inflamação , Morte Celular , Sepse/tratamento farmacológico
2.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674497

RESUMO

There is a significant unmet need for therapeutics to treat ocular surface barrier damage, also called epitheliopathy, due to dry eye and related diseases. We recently reported that the natural tear glycoprotein CLU (clusterin), a molecular chaperone and matrix metalloproteinase inhibitor, seals and heals epitheliopathy in mice subjected to desiccating stress in a model of aqueous-deficient/evaporative dry eye. Here we investigated CLU sealing using a second model with features of ophthalmic preservative-induced dry eye. The ocular surface was stressed by topical application of the ophthalmic preservative benzalkonium chloride (BAC). Then eyes were treated with CLU and sealing was evaluated immediately by quantification of clinical dye uptake. A commercial recombinant form of human CLU (rhCLU), as well as an rhCLU form produced in our laboratory, designed to be compatible with U.S. Food and Drug Administration guidelines on current Good Manufacturing Practices (cGMP), were as effective as natural plasma-derived human CLU (pCLU) in sealing the damaged ocular surface barrier. In contrast, two other proteins found in tears: TIMP1 and LCN1 (tear lipocalin), exhibited no sealing activity. The efficacy and selectivity of rhCLU for sealing of the damaged ocular surface epithelial barrier suggests that it could be of therapeutic value in treating BAC-induced epitheliopathy and related diseases.


Assuntos
Clusterina , Síndromes do Olho Seco , Humanos , Animais , Camundongos , Clusterina/metabolismo , Olho/metabolismo , Síndromes do Olho Seco/induzido quimicamente , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/metabolismo , Conservantes Farmacêuticos , Compostos de Benzalcônio , Lágrimas/metabolismo , Soluções Oftálmicas/uso terapêutico
3.
Cells ; 11(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291126

RESUMO

Clusterin is a glycoprotein present at high concentrations in many extracellular fluids, including semen. Its increased expression accompanies disorders associated with extracellular amyloid fibril accumulation such as Alzheimer's disease. Clusterin is an extracellular molecular chaperone which prevents the misfolding and amorphous and amyloid fibrillar aggregation of a wide variety of unfolding proteins. In semen, amyloid fibrils formed from a 39-amino acid fragment of prostatic acid phosphatase, termed Semen-derived Enhancer of Virus Infection (SEVI), potentiate HIV infectivity. In this study, clusterin potently inhibited the in vitro formation of SEVI fibrils, along with dissociating them. Furthermore, clusterin reduced the toxicity of SEVI to pheochromocytoma-12 cells. In semen, clusterin may play an important role in preventing SEVI amyloid fibril formation, in dissociating SEVI fibrils and in mitigating their enhancement of HIV infection.


Assuntos
Amiloide , Clusterina , Infecções por HIV , HIV-1 , Fragmentos de Peptídeos , Proteínas Tirosina Fosfatases , Humanos , Amiloide/metabolismo , Clusterina/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Sêmen/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo
4.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374364

RESUMO

Evidence is presented herein supporting the potential of the natural homeostatic glycoprotein CLU (clusterin) as a novel therapeutic for the treatment of dry eye. This idea began with the demonstration that matrix metalloproteinase MMP9 is required for damage to the ocular surface in mouse dry eye. Damage was characterized by degradation of OCLN (occludin), a known substrate of MMP9 and a key component of the paracellular barrier. Following up on this finding, a yeast two-hybrid screen was conducted using MMP9 as the bait to identify other proteins involved. CLU emerged as a strong interacting protein that inhibits the enzymatic activity of MMP9. Previously characterized as a molecular chaperone, CLU is expressed prominently by epithelia at fluid-tissue interfaces and secreted into bodily fluids, where it protects cells and tissues against damaging stress. It was demonstrated that CLU also protects the ocular surface in mouse dry eye when applied topically to replace the natural protein depleted from the dysfunctional tears. CLU is similarly depleted from tears in human dry eye. The most novel and interesting finding was that CLU binds selectively to the damaged ocular surface. In this position, CLU protects against epithelial cell death and barrier proteolysis, and dampens the autoimmune response, while the apical epithelial cell layer is renewed. When present at high enough concentration, CLU also blocks staining by vital dyes used clinically to diagnose dry eye. None of the current therapeutics have this combination of properties to "protect, seal, and heal". Future work will be directed towards human clinical trials to investigate the therapeutic promise of CLU.


Assuntos
Clusterina/uso terapêutico , Síndromes do Olho Seco/tratamento farmacológico , Inibidores de Metaloproteinases de Matriz/farmacologia , Animais , Autoimunidade , Biomarcadores , Clusterina/metabolismo , Oftalmopatias/tratamento farmacológico , Glicoproteínas/metabolismo , Homeostase , Humanos , Inflamação , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Chaperonas Moleculares/metabolismo , Ocludina/metabolismo , Lágrimas/metabolismo , Técnicas do Sistema de Duplo-Híbrido
5.
Sci Rep ; 10(1): 14243, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859921

RESUMO

The first described and best known mammalian secreted chaperone, abundant in human blood, is clusterin. Recent independent studies are now exploring the potential use of clusterin as a therapeutic in a variety of disease contexts. In the past, the extensive post-translational processing of clusterin, coupled with its potent binding to essentially any misfolded protein, have meant that its expression as a fully functional recombinant protein has been very difficult. We report here the first rapid and high-yield system for the expression and purification of fully post-translationally modified and chaperone-active clusterin. Only 5-6 days is required from initial transfection to harvest of the protein-free culture medium containing the recombinant product. Purification to near-homogeneity can then be accomplished in a single affinity purification step and the yield for wild type human clusterin is of the order of 30-40 mg per litre of culture. We have also shown that this system can be used to quickly express and purify custom-designed clusterin mutants. These advances dramatically increase the feasibility of detailed structure-function analysis of the clusterin molecule and will facilitate identification of those specific regions responsible for the interactions of clusterin with receptors and other molecules.


Assuntos
Clusterina/genética , Clusterina/isolamento & purificação , Engenharia de Proteínas/métodos , Cromatografia de Afinidade/métodos , Processamento de Proteína Pós-Traducional/fisiologia , Proteômica/métodos , Proteínas Recombinantes/metabolismo , Transfecção/métodos
6.
Biochemistry ; 58(39): 4086-4095, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529970

RESUMO

TAR DNA-binding protein 43 (TDP-43) has been identified as the major constituent of the proteinaceous inclusions that are characteristic of most forms of amyotrophic lateral sclerosis (ALS) and ubiquitin positive frontotemporal lobar degeneration (FTLD). Wild type TDP-43 inclusions are a pathological hallmark of >95% of patients with sporadic ALS and of the majority of familial ALS cases, and they are also found in a significant proportion of FTLD cases. ALS is the most common form of motor neuron disease, characterized by progressive weakness and muscular wasting, and typically leads to death within a few years of diagnosis. To determine how the translocation and misfolding of TDP-43 contribute to ALS pathogenicity, it is crucial to define the dynamic behavior of this protein within the cellular environment. It is therefore necessary to develop cell models that allow the location of the protein to be defined. We report the use of TDP-43 with a tetracysteine tag for visualization using fluorogenic biarsenical compounds and show that this model displays features of ALS observed in other cell models. We also demonstrate that this labeling procedure enables live-cell imaging of the translocation of the protein from the nucleus into the cytosol.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Cisteína/química , Proteínas de Ligação a DNA/metabolismo , Fluoresceínas/química , Modelos Biológicos , Compostos Organometálicos/química , Sitios de Sequências Rotuladas , Sequência de Aminoácidos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Eletroporação , Corantes Fluorescentes , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Cinética , Imagem Óptica , Transporte Proteico , Imagem com Lapso de Tempo , Transfecção
7.
Acta Neuropathol Commun ; 7(1): 12, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691533

RESUMO

Sporadic cerebral amyloid angiopathy (CAA) is characterized by cerebrovascular amyloid-ß (Aß) deposition, which leads to lobar hemorrhage and dementia. Biological molecules affecting the development of CAA have not been fully characterized. In this study, we performed proteome analysis of biopsied leptomeningeal and cortical vessels obtained from 6 CAA patients and 5 non-CAA patients who underwent surgery for large lobar hemorrhages. We found that 6 proteins, including Aß, apolipoprotein E (apoE), clusterin (CLU), albumin, complement C4 and vitronectin were significantly upregulated in the vessels of CAA patients as compared to non-CAA patients. ApoE and CLU were found in all CAA patients. We next examined the effects of apoE and CLU on the early phase of Aß aggregation, using a simple yet powerful in vitro model of CAA, which recapitulates the intramural periarterial drainage pathway model. We found that physiological concentrations of apoE and CLU delayed the initiation time of amyloid growth kinetics in a concentration-dependent manner. These data indicate that apoE and CLU may act as extracellular chaperones to inhibit Aß amyloid deposition in CAA.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , Clusterina/metabolismo , Fragmentos de Peptídeos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/irrigação sanguínea , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Agregação Patológica de Proteínas , Proteoma
8.
Surg Endosc ; 32(11): 4527-4532, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29761273

RESUMO

BACKGROUND: Advances in 3D technology mean that both robotic surgical devices and surgical simulators can now incorporate stereoscopic viewing capabilities. While depth information may benefit robotic surgical performance, it is unclear whether 3D viewing also aids skill acquisition when learning from observing others. As observational learning plays a major role in surgical skills training, this study aimed to evaluate whether 3D viewing provides learning benefits in a robotically assisted surgical task. METHODS: 90 medical students were assigned to either (1) 2D or (2) 3D observation of a consultant surgeon performing a training task on the daVinci S robotic system, or (3) a no observation control, in a randomised parallel design. Subsequent performance and instrument movement metrics were assessed immediately following observation and at one-week retention. RESULTS: Both 2D and 3D groups outperformed no observation controls following the observation intervention (ps < 0.05), but there was no difference between 2D and 3D groups at any of the timepoints. There was also no difference in movement parameters between groups. CONCLUSIONS: While 3D viewing systems may have beneficial effects for surgical performance, these results suggest that depth information has limited utility during observational learning of surgical skills in novices. The task constraints and end goals may provide more important information for learning than the relative motion of surgical instruments in 3D space.


Assuntos
Competência Clínica , Simulação por Computador , Educação de Pós-Graduação em Medicina/métodos , Imageamento Tridimensional/métodos , Laparoscopia/educação , Procedimentos Cirúrgicos Robóticos/educação , Cirurgiões/educação , Feminino , Humanos , Aprendizagem , Masculino , Adulto Jovem
9.
PLoS One ; 12(11): e0188233, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29141046

RESUMO

BACKGROUND: Observational learning plays an important role in surgical skills training, following the traditional model of learning from expertise. Recent findings have, however, highlighted the benefit of observing not only expert performance but also error-strewn performance. The aim of this study was to determine which model (novice vs. expert) would lead to the greatest benefits when learning robotically assisted surgical skills. METHODS: 120 medical students with no prior experience of robotically-assisted surgery completed a ring-carrying training task on three occasions; baseline, post-intervention and at one-week follow-up. The observation intervention consisted of a video model performing the ring-carrying task, with participants randomly assigned to view an expert model, a novice model, a mixed expert/novice model or no observation (control group). Participants were assessed for task performance and surgical instrument control. RESULTS: There were significant group differences post-intervention, with expert and novice observation groups outperforming the control group, but there were no clear group differences at a retention test one week later. There was no difference in performance between the expert-observing and error-observing groups. CONCLUSIONS: Similar benefits were found when observing the traditional expert model or the error-strewn model, suggesting that viewing poor performance may be as beneficial as viewing expertise in the early acquisition of robotic surgical skills. Further work is required to understand, then inform, the optimal curriculum design when utilising observational learning in surgical training.


Assuntos
Competência Clínica , Procedimentos Cirúrgicos Robóticos/educação , Estudantes de Medicina , Adulto , Humanos , Masculino , Adulto Jovem
10.
Acta Neuropathol Commun ; 5(1): 81, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115989

RESUMO

It is now widely accepted in the field that the normally secreted chaperone clusterin is redirected to the cytosol during endoplasmic reticulum (ER) stress, although the physiological function(s) of this physical relocation remain unknown. We have examined in this study whether or not increased expression of clusterin is able to protect neuronal cells against intracellular protein aggregation and cytotoxicity, characteristics that are strongly implicated in a range of neurodegenerative diseases. We used the amyotrophic lateral sclerosis-associated protein TDP-43 as a primary model to investigate the effects of clusterin on protein aggregation and neurotoxicity in complementary in vitro, neuronal cell and Drosophila systems. We have shown that clusterin directly interacts with TDP-43 in vitro and potently inhibits its aggregation, and observed that in ER stressed neuronal cells, clusterin co-localized with TDP-43 and specifically reduced the numbers of cytoplasmic inclusions. We further showed that the expression of TDP-43 in transgenic Drosophila neurons induced ER stress and that co-expression of clusterin resulted in a dramatic clearance of mislocalized TDP-43 from motor neuron axons, partially rescued locomotor activity and significantly extended lifespan. We also showed that in Drosophila photoreceptor cells, clusterin co-expression gave ER stress-dependent protection against proteotoxicity arising from both Huntingtin-Q128 and mutant (R406W) human tau. We therefore conclude that increased expression of clusterin can provide an important defense against intracellular proteotoxicity under conditions that mimic specific features of neurodegenerative disease.


Assuntos
Clusterina/metabolismo , Clusterina/farmacologia , Proteínas de Ligação a DNA/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Síndromes Neurotóxicas/tratamento farmacológico , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Clusterina/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Estresse do Retículo Endoplasmático/genética , Olho/metabolismo , Olho/ultraestrutura , Hemolinfa/citologia , Humanos , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/metabolismo , Larva , Atividade Motora/genética , Atividade Motora/fisiologia , Neurônios Motores/ultraestrutura , Neuroblastoma/patologia , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/patologia , Agregados Proteicos/efeitos dos fármacos , Agregados Proteicos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
11.
Prion ; 11(3): 195-204, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28486039

RESUMO

Amyotrophic lateral sclerosis is a devastating neuromuscular degenerative disease characterized by a focal onset of motor neuron loss, followed by contiguous outward spreading of pathology including TAR DNA-binding protein of 43 kDa (TDP-43) aggregates. Previous work suggests that TDP-43 can move between cells. Here we used a novel flow cytometry technique (FloIT) to analyze TDP-43 inclusions and propagation. When cells were transfected to express either mutant G294A TDP-43 fused to GFP or wild type TDP-43fused to tomato red and then co-cultured, flow cytometry detected intact cells containing both fusion proteins and using FloIT detected an increase in the numbers of inclusions in lysates from cells expressing wild type TDP-43-tomato. Furthermore, in this same model, FloIT analyses detected inclusions containing both fusion proteins. These results imply the transfer of TDP-43 fusion proteins between cells and that this process can increase aggregation of wild-type TDP-43 by a mechanism involving co-aggregation with G294A TDP-43.


Assuntos
Proteínas de Ligação a DNA/química , Citometria de Fluxo/métodos , Corpos de Inclusão/química , Proteínas Mutantes/química , Agregados Proteicos , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Corpos de Inclusão/metabolismo , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(20): E3935-E3943, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28396410

RESUMO

Amyotrophic lateral sclerosis (ALS) is a heterogeneous degenerative motor neuron disease linked to numerous genetic mutations in apparently unrelated proteins. These proteins, including SOD1, TDP-43, and FUS, are highly aggregation-prone and form a variety of intracellular inclusion bodies that are characteristic of different neuropathological subtypes of the disease. Contained within these inclusions are a variety of proteins that do not share obvious characteristics other than coaggregation. However, recent evidence from other neurodegenerative disorders suggests that disease-affected biochemical pathways can be characterized by the presence of proteins that are supersaturated, with cellular concentrations significantly greater than their solubilities. Here, we show that the proteins that form inclusions of mutant SOD1, TDP-43, and FUS are not merely a subset of the native interaction partners of these three proteins, which are themselves supersaturated. To explain the presence of coaggregating proteins in inclusions in the brain and spinal cord, we observe that they have an average supersaturation even greater than the average supersaturation of the native interaction partners in motor neurons, but not when scores are generated from an average of other human tissues. These results suggest that inclusion bodies in various forms of ALS result from a set of proteins that are metastable in motor neurons, and thus prone to aggregation upon a disease-related progressive collapse of protein homeostasis in this specific setting.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Agregação Patológica de Proteínas/fisiopatologia , Nervos Espinhais/fisiopatologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/fisiologia , Neurônios Motores/metabolismo , Mutação , Agregados Proteicos/fisiologia , Agregação Patológica de Proteínas/metabolismo , Dobramento de Proteína , Proteína FUS de Ligação a RNA/metabolismo , Medula Espinal/metabolismo , Nervos Espinhais/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
13.
Expert Opin Ther Targets ; 21(2): 201-213, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27978767

RESUMO

INTRODUCTION: Clusterin (CLU) is a stress-activated, ATP-independent molecular chaperone, normally secreted from cells, that is up-regulated in Alzheimer disease and in many cancers. It plays important roles in protein homeostasis/proteostasis, inhibition of cell death pathways, and modulation of pro-survival signalling and transcriptional networks. Changes in the CLU gene locus are highly associated with Alzheimer disease, and many therapy-resistant cancers over-express CLU. The extensive post-translational processing and heterogeneous oligomerization of CLU have so far prevented any definitive structure determination. This in turn has meant that targeting CLU with small molecule inhibitors is challenging. Therefore, inhibiting CLU at the gene-expression level using siRNA or antisense is a valid approach to inhibit its function. Areas covered: This article reviews recent advances regarding the role of CLU in proteostasis, cellular trafficking, human diseases, and signalling pathways involved in oncogenesis. It addresses the rationale for CLU as a therapeutic target in cancer, and the current status of pre-clinical and clinical studies using CLU antisense inhibitor OGX011. Expert opinion: Discusses challenges facing the therapeutic targeting of CLU including rapid changes in the treatment landscape for prostate cancer with multiple new FDA approved drugs, selection of windows of intervention, and potential side effects when silencing CLU expression.


Assuntos
Clusterina/genética , Terapia de Alvo Molecular , Neoplasias/terapia , Animais , Desenho de Fármacos , Regulação da Expressão Gênica/genética , Humanos , Masculino , Neoplasias/genética , Neoplasias/patologia , RNA Interferente Pequeno/administração & dosagem , Transdução de Sinais , Tionucleotídeos/farmacologia
14.
Front Psychol ; 7: 1671, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27847484

RESUMO

The aim of this article is to present an integrative conceptual framework that depicts the effect of acute stress on the performance of visually guided motor skills. We draw upon seminal theories highlighting the importance of subjective interpretations of stress on subsequent performance and outline how models of disrupted attentional control might explain this effect through impairments in visuomotor control. We first synthesize and critically discuss empirical support for theories examining these relationships in isolation. We then outline our integrative framework that seeks to provide a more complete picture of the interacting influences of stress responses (challenge and threat) and attention in explaining how elevated stress may lead to different visuomotor performance outcomes. We propose a number of mechanisms that explain why evaluations of stress are related to attentional control, and highlight the emotion of anxiety as the most likely candidate to explain why negative reactions to stress lead to disrupted attention and poor visuomotor skill performance. Finally, we propose a number of feedback loops that explain why stress responses are often self-perpetuating, as well as a number of proposed interventions that are designed to help improve or maintain performance in real world performance environments (e.g., sport, surgery, military, and aviation).

15.
Nat Genet ; 48(11): 1339-1348, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27723760

RESUMO

Schwannomas are common peripheral nerve sheath tumors that can cause debilitating morbidities. We performed an integrative analysis to determine genomic aberrations common to sporadic schwannomas. Exome sequence analysis with validation by targeted DNA sequencing of 125 samples uncovered, in addition to expected NF2 disruption, recurrent mutations in ARID1A, ARID1B and DDR1. RNA sequencing identified a recurrent in-frame SH3PXD2A-HTRA1 fusion in 12/125 (10%) cases, and genomic analysis demonstrated the mechanism as resulting from a balanced 19-Mb chromosomal inversion on chromosome 10q. The fusion was associated with male gender predominance, occurring in one out of every six men with schwannoma. Methylation profiling identified distinct molecular subgroups of schwannomas that were associated with anatomical location. Expression of the SH3PXD2A-HTRA1 fusion resulted in elevated phosphorylated ERK, increased proliferation, increased invasion and in vivo tumorigenesis. Targeting of the MEK-ERK pathway was effective in fusion-positive Schwann cells, suggesting a possible therapeutic approach for this subset of tumors.


Assuntos
Metilação de DNA , Neoplasias da Orelha/genética , Mutação , Neurilemoma/genética , Neoplasias da Coluna Vertebral/genética , Vestíbulo do Labirinto , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Linhagem Celular Tumoral , Análise Mutacional de DNA , DNA de Neoplasias , Exoma , Feminino , Fusão Gênica , Genoma Humano , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Neoplásico , Análise de Sequência de DNA , Análise de Sequência de RNA , Serina Endopeptidases/genética
16.
Oncotarget ; 7(43): 69518-69535, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27588472

RESUMO

First-line cancer therapies such as alkylating agents and radiation have limited survival benefits for Glioblastoma (GBM) patients. Current research strongly supports the notion that inhibition of aberrant tumor metabolism holds promise as a therapeutic strategy when used in combination with radiation and chemotherapy. Hexokinase 2 (HK2) has been shown to be a key driver of altered metabolism in GBM, and presents an attractive therapeutic target. To date, no study has fully assessed the therapeutic value of targeting HK2 as a mechanism to sensitize cells to standard therapy, namely in the form of radiation and temozolomide (TMZ). Using cell lines and primary cultures of GBM, we showed that inducible knockdown of HK2 altered tumor metabolism, which could not be recapitulated by HK1 or HK3 loss. HK2 loss diminished both in vivo tumor vasculature as well as growth within orthotopic intracranial xenograft models of GBMs, and the survival benefit was additive with radiation and TMZ. Radio-sensitization following inhibition of HK2 was mediated by increased DNA damage, and could be rescued through constitutive activation of ERK signaling. This study supports HK2 as a potentially effective therapeutic target in GBM.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Hexoquinase/genética , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Quimiorradioterapia , Dano ao DNA , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Células HEK293 , Hexoquinase/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Temozolomida
17.
Exp Eye Res ; 147: 57-71, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27131907

RESUMO

The multifunctional protein clusterin (CLU) was first described in 1983 as a secreted glycoprotein present in ram rete testis fluid that enhanced aggregation ('clustering') of a variety of cells in vitro. It was also independently discovered in a number of other systems. By the early 1990s, CLU was known under many names and its expression had been demonstrated throughout the body, including in the eye. Its homeostatic activities in proteostasis, cytoprotection, and anti-inflammation have been well documented, however its roles in health and disease are still not well understood. CLU is prominent at fluid-tissue interfaces, and in 1996 it was demonstrated to be the most highly expressed transcript in the human cornea, the protein product being localized to the apical layers of the mucosal epithelia of the cornea and conjunctiva. CLU protein is also present in human tears. Using a preclinical mouse model for desiccating stress that mimics human dry eye disease, the authors recently demonstrated that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration in the tears. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to LGALS3 (galectin-3), a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. CLU depletion from the ocular surface epithelia is seen in a variety of inflammatory conditions in humans and mice that lead to squamous metaplasia and a keratinized epithelium. This suggests that CLU might have a specific role in maintaining mucosal epithelial differentiation, an idea that can now be tested using the mouse model for desiccating stress. Most excitingly, the new findings suggest that CLU could serve as a novel biotherapeutic for dry eye disease.


Assuntos
Clusterina/fisiologia , Córnea/metabolismo , Animais , Clusterina/genética , Clusterina/metabolismo , Túnica Conjuntiva/metabolismo , Modelos Animais de Doenças , Síndromes do Olho Seco/metabolismo , Epitélio Corneano/metabolismo , Humanos , Inflamação/metabolismo , Lágrimas/metabolismo
18.
Biol Chem ; 397(5): 401-15, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26812789

RESUMO

Living systems protect themselves from aberrant proteins by a network of chaperones. We have tested in vitro the effects of different concentrations, ranging from 0 to 16 µm, of two molecular chaperones, namely αB-crystallin and clusterin, and an engineered monomeric variant of transthyretin (M-TTR), on the morphology and cytotoxicity of preformed toxic oligomers of HypF-N, which represent a useful model of misfolded protein aggregates. Using atomic force microscopy imaging and static light scattering analysis, all were found to bind HypF-N oligomers and increase the size of the aggregates, to an extent that correlates with chaperone concentration. SDS-PAGE profiles have shown that the large aggregates were predominantly composed of the HypF-N protein. ANS fluorescence measurements show that the chaperone-induced clustering of HypF-N oligomers does not change the overall solvent exposure of hydrophobic residues on the surface of the oligomers. αB-crystallin, clusterin and M-TTR can diminish the cytotoxic effects of the HypF-N oligomers at all chaperone concentration, as demonstrated by MTT reduction and Ca2+ influx measurements. The observation that the protective effect is primarily at all concentrations of chaperones, both when the increase in HypF-N aggregate size is minimal and large, emphasizes the efficiency and versatility of these protein molecules.


Assuntos
Carboxil e Carbamoil Transferases/química , Clusterina/química , Proteínas de Escherichia coli/química , Cadeia B de alfa-Cristalina/química , Animais , Carboxil e Carbamoil Transferases/metabolismo , Linhagem Celular Tumoral , Clusterina/genética , Clusterina/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Camundongos , Pré-Albumina/química , Pré-Albumina/genética , Pré-Albumina/metabolismo , Agregados Proteicos , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
19.
J Robot Surg ; 9(4): 277-84, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26530839

RESUMO

While the benefits of robotic surgery for the patient have been relatively well established, little is known about the benefits for the surgeon. This study examined whether the advantages of robotically assisted laparoscopy (improved dexterity, a 3-dimensional view, reduction in tremors, etc.) enable the surgeon to better deal with stressful tasks. Subjective and objective (i.e. cardiovascular) responses to stress were assessed while surgeons performed on either a robotic or conventional laparoscopic system. Thirty-two surgeons were assigned to perform a surgical task on either a robotic system or a laparoscopic system, under three stress conditions. The surgeons completed self-report measures of stress before each condition. Furthermore, the surgeons' cardiovascular responses to stress were recorded prior to each condition. Finally, task performance was recorded throughout each condition. While both groups reported experiencing similar levels of stress, compared to the laparoscopic group, the robotic group displayed a more adaptive cardiovascular response to the stress conditions, reflecting a challenge state (i.e. higher blood flow and lower vascular resistance). Furthermore, despite no differences in completion time, the robotic group performed the tasks more accurately than the laparoscopic group across the stress conditions. These results highlight the benefits of using robotic technology during stressful situations. Specifically, the results show that stressful tasks can be performed more accurately with a robotic platform, and that surgeons' cardiovascular responses to stress are more favourable. Importantly, the 'challenge' cardiovascular response to stress displayed when using the robotic system has been associated with more positive long-term health outcomes in domains where stress is commonly experienced (e.g. lower cardiovascular disease risk).


Assuntos
Competência Clínica/estatística & dados numéricos , Laparoscopia/estatística & dados numéricos , Procedimentos Cirúrgicos Robóticos/estatística & dados numéricos , Estresse Psicológico/psicologia , Cirurgiões/psicologia , Cirurgiões/estatística & dados numéricos , Adulto , Análise de Variância , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise e Desempenho de Tarefas
20.
J Robot Surg ; 9(1): 67-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26530974

RESUMO

Technical surgical skills are said to be acquired quicker on a robotic rather than laparoscopic platform. However, research examining this proposition is scarce. Thus, this study aimed to compare the performance and learning curves of novices acquiring skills using a robotic or laparoscopic system, and to examine if any learning advantages were maintained over time and transferred to more difficult and stressful tasks. Forty novice participants were randomly assigned to either a robotic- or laparoscopic-trained group. Following one baseline trial on a ball pick-and-drop task, participants performed 50 learning trials. Participants then completed an immediate retention trial and a transfer trial on a two-instrument rope-threading task. One month later, participants performed a delayed retention trial and a stressful multi-tasking trial. The results revealed that the robotic-trained group completed the ball pick-and-drop task more quickly and accurately than the laparoscopic-trained group across baseline, immediate retention, and delayed retention trials. Furthermore, the robotic-trained group displayed a shorter learning curve for accuracy. The robotic-trained group also performed the more complex rope-threading and stressful multi-tasking transfer trials better. Finally, in the multi-tasking trial, the robotic-trained group made fewer tone counting errors. The results highlight the benefits of using robotic technology for the acquisition of technical surgical skills.


Assuntos
Competência Clínica/estatística & dados numéricos , Laparoscopia/educação , Procedimentos Cirúrgicos Robóticos/educação , Adulto , Feminino , Humanos , Curva de Aprendizado , Masculino , Análise e Desempenho de Tarefas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA