Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(9): 11930-11943, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38390631

RESUMO

Optical temperature sensors based on self-referenced readout schemes such as the emission ratio and the decay time are crucial for a wide range of applications, with the former often preferred due to simplicity of instrumentation. This work describes a new group of dually emitting dyes, platinum(II) pincer complexes, that can be used directly for ratiometric temperature sensing without an additional reference material. They consist of Pt(II) metal center surrounded by a pyridinedipyrrolide ligand (PDP) and a terminal ligand (benzonitrile, pyridine, 1-butylimidazol or carbon monoxide). Upon excitation with blue light, these complexes exhibit green to orange emission, with quantum yields in anoxic toluene at 25 °C ranging from 13% to 86% and decay times spanning from 8.5 to 97 µs. The emission is attributed to simultaneous thermally activated delayed fluorescence (TADF) and phosphorescence processes on the basis of photophysical investigations and DFT calculations. Rather uniquely, simple manipulations in substituents of the PDP ligand and alteration of the terminal ligand allow fine-tuning of the ratio between TADF and phosphorescence from almost 100% TADF emission (Pt(MesPDPC6F5(BN)) to over 80% of phosphorescence (Pt(PhPDPPh(BuIm)). Apart from ratiometric capabilities, the complexes also are useful as decay time-based temperature indicators with temperature coefficients exceeding 1.5% K-1 in most cases. Immobilization of the dyes into oxygen-impermeable polyacrylonitrile produces temperature sensing materials that can be read out with an ordinary RGB camera or a smartphone. In addition, Pt(PhPDPPh)Py can be incorporated into biocompatible RL100 nanoparticles suitable for cellular nanothermometry, as we demonstrate with temperature measurements in multicellular colon cancer spheroids.

2.
Anal Bioanal Chem ; 409(18): 4449-4458, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28547183

RESUMO

Acid digestion is usually required for metal determination in food samples. However, this step is usually performed in batch mode which is time consuming, labor intensive, and may lead to sample contamination. Flow digestion can overcome these limitations. In this work, the performance of a high-pressure microwave-assisted flow digestion system with a large volume reactor was evaluated for liquid samples high in sugar and fat (fruit juice and milk). The digestions were carried out in a coiled perfluoroalkoxy (PFA) tube reactor (13.5 mL) installed inside an autoclave pressurized with 40 bar nitrogen. The system was operated at 500 W microwave power and 5.0 mL min-1 carrier flow rate. Digestion conditions were optimized with phenylalanine, as this substance is known to be difficult to digest completely. The combinations of HCl or H2O2 with HNO3 increased the digestion efficiency of phenylalanine, and the residual carbon content (RCC) was around 50% when 6.0% V/V HCl or H2O2 was used in combination with 32% V/V HNO3. Juice samples were digested with 3.7 mol L-1 HNO3 and 0.3 mol L-1 HCl, and the RCC was 16 and 29% for apple and mango juices, respectively. Concentrated HNO3 (10.5 mol L-1) was successfully applied for digesting milk samples, and the RCCs were 23 and 25% for partially skimmed and whole milk, respectively. Accuracy and precision of the flow digestion procedure were compared with reference digestions using batch mode closed vessel microwave-assisted digestion and no statistically significant differences were encountered at the 95% confidence level. Graphical abstract Application of a high-pressure microwave-assisted flow digestion system for fruit juice and milk sample preparation.


Assuntos
Técnicas de Química Analítica/instrumentação , Análise de Alimentos/instrumentação , Sucos de Frutas e Vegetais/análise , Leite/química , Animais , Análise de Alimentos/métodos , Ácido Clorídrico , Malus , Mangifera , Micro-Ondas , Ácido Nítrico , Fenilalanina/química , Pressão
3.
PLoS One ; 11(7): e0159879, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27459513

RESUMO

This study investigated the effect of biodegradable Mg and Mg alloys on selected properties of MC3T3-E1 cells elicited by direct cell/material interaction. The chemical composition and morphology of the surface of Mg and Mg based alloys (Mg2Ag and Mg10Gd) were analysed by scanning electron microscopy (SEM) and EDX, following corrosion in cell culture medium for 1, 2, 3 and 8 days. The most pronounced difference in surface morphology, namely crystal formation, was observed when Pure Mg and Mg2Ag were immersed in cell medium for 8 days, and was associated with an increase in atomic % of oxygen and a decrease of surface calcium and phosphorous. Crystal formation on the surface of Mg10Gd was, in contrast, negligible at all time points. Time-dependent changes in oxygen, calcium and phosphorous surface content were furthermore not observed for Mg10Gd. MC3T3-E1 cell viability was reduced by culture on the surfaces of corroded Mg, Mg2Ag and Mg10Gd in a corrosion time-independent manner. Cells did not survive when cultured on 3 day pre-corroded Pure Mg and Mg2Ag, indicating crystal formation to be particular detrimental in this regard. Cell viability was not affected when cells were cultured on non-corroded Mg and Mg alloys for up to 12 days. These results suggest that corrosion associated changes in surface morphology and chemical composition significantly hamper cell viability and, thus, that non-corroded surfaces are more conducive to cell survival. An analysis of the differentiation potential of MC3T3-E1 cells cultured on non-corroded samples based on measurement of Collagen I and Runx2 expression, revealed a down-regulation of these markers within the first 6 days following cell seeding on all samples, despite persistent survival and proliferation. Cells cultured on Mg10Gd, however, exhibited a pronounced upregulation of collagen I and Runx2 between days 8 and 12, indicating an enhancement of osteointegration by this alloy that could be valuable for in vivo orthopedic applications.


Assuntos
Implantes Absorvíveis/efeitos adversos , Ligas/efeitos adversos , Diferenciação Celular , Corrosão , Magnésio/química , Osteoblastos/efeitos dos fármacos , Ligas/química , Animais , Linhagem Celular , Sobrevivência Celular , Colágeno/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Gadolínio/química , Camundongos , Osteoblastos/metabolismo , Osteoblastos/ultraestrutura , Prata/química
4.
Anal Chem ; 88(14): 7352-7, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27306111

RESUMO

An innovative interface between the torch and the entrance optics for inductively coupled plasma optical emission spectrometry (ICP-OES) is proposed. This system is capable of collecting all argon which was initially supplied to the torch, cooling and cleaning it and feeding most of the argon back to the outer gas port of the torch. Thereby, the total argon consumption could be reduced from 14 to 1.4 L min(-1) using a standard torch and without restricting the rf power. The excitation- and rotational temperature of the plasma were identical when comparing the traditional setup with the enclosed plasma interface. However, the limits of detection (LOD) and limits of quantification (LOQ) of 27 elements investigated were degraded about 5-fold, though this fact can be expected to stem from a change of the observed zone in the plasma caused by the slight overpressure of 2000 Pa within the interface. Though the enclosed plasma interface was located close to the load coil, the rf power coupled to the interface was well below 1 W and no rf arcing was observed for two different rf generator designs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA