Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
ACS Nano ; 18(24): 15831-15844, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38844421

RESUMO

We have evolved the nanopore-forming macrolittin peptides from the bee venom peptide melittin using successive generations of synthetic molecular evolution. Despite their sequence similarity to the broadly membrane permeabilizing cytolytic melittin, the macrolittins have potent membrane selectivity. They form nanopores in synthetic bilayers made from 1-palmitoyl, 2-oleoyl-phosphatidylcholine (POPC) at extremely low peptide concentrations and yet have essentially no cytolytic activity against any cell membrane, even at high concentration. Here, we explore the structural determinants of macrolittin nanopore stability in POPC bilayers using atomistic molecular dynamics simulations and experiments on macrolittins and single-site variants. Simulations of macrolittin nanopores in POPC bilayers show that they are stabilized by an extensive, cooperative hydrogen bond network comprised of the many charged and polar side chains interacting with each other via bridges of water molecules and lipid headgroups. Lipid molecules with unusual conformations participate in the H-bond network and are an integral part of the nanopore structure. To explore the role of this H-bond network on membrane selectivity, we swapped three critical polar residues with the nonpolar residues found in melittin. All variants have potency, membrane selectivity, and cytotoxicity that were intermediate between a cytotoxic melittin variant called MelP5 and the macrolittins. Simulations showed that the variants had less organized H-bond networks of waters and lipids with unusual structures. The membrane-spanning, cooperative H-bond network is a critical determinant of macrolittin nanopore stability and membrane selectivity. The results described here will help guide the future design and optimization of peptide nanopore-based applications.


Assuntos
Meliteno , Simulação de Dinâmica Molecular , Nanoporos , Fosfatidilcolinas , Meliteno/química , Fosfatidilcolinas/química , Bicamadas Lipídicas/química , Ligação de Hidrogênio , Peptídeos/química , Humanos
2.
ACS Omega ; 9(7): 8179-8187, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405535

RESUMO

Cyclic peptides that inhibit protein-protein interactions have significant advantages over linear peptides and small molecules for modulating cellular signaling networks in cancer and other diseases. However, the permeability barrier of the plasma membrane remains a formidable obstacle to the development of cyclic peptides into applicable drugs. Here, we test the ability of a family of synthetically evolved spontaneous membrane translocating peptides (SMTPs) to deliver phalloidin, a representative bioactive cyclic peptide, to the cytosol of human cells in culture. Phalloidin does not enter cells spontaneously, but if delivered to the cytosol, it inhibits actin depolymerization. We thus use a wound-healing cell mobility assay to assess the biological activity of phalloidin conjugated to three SMTPs that we previously discovered. All three SMTPs can deliver phalloidin to the cell cytosol, and one does so at concentrations as low as 3 µM. Delivery occurs despite the fact that the SMTPs were originally selected based on membrane translocation with no cargo other than a small fluorescent dye. These results show that SMTPs are viable delivery vehicles for cyclic peptides, although their efficiency is moderate. Further, these results suggest that one additional generation of synthetic molecular evolution could be used to optimize SMTPs for the efficient delivery of any bioactive cyclic peptide into cells.

3.
J Pept Sci ; 29(8): e3482, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36739581

RESUMO

Membrane-active peptides play an essential role in many living organisms and their immune systems and counter many infectious diseases. Many have dual or multiple mechanisms and can synergize with other molecules, like peptides, proteins, and small molecules. Although membrane-active peptides have been intensively studied in the past decades and more than 3500 sequences have been identified, only a few received approvals from the US Food and Drug Administration. In this review, we investigated all the peptide therapeutics that have entered the market or were subjected to preclinical and clinical studies to understand how they succeeded. With technological advancement (e.g., chemical modifications and pharmaceutical formulations) and a better understanding of the mechanism of action and the potential targets, we found at least five membrane-active peptide drugs that have entered preclinical/clinical phases and show promising results for cancer treatment. We summarized our findings in this review and provided insights into membrane-active anticancer peptide therapeutics.


Assuntos
Peptídeos , Proteínas , Estados Unidos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Composição de Medicamentos
4.
J Biol Chem ; 298(10): 102370, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970390

RESUMO

The receptor tyrosine kinase (RTK) EphA2 is expressed in epithelial and endothelial cells and controls the assembly of cell-cell junctions. EphA2 has also been implicated in many diseases, including cancer. Unlike most RTKs, which signal predominantly as dimers, EphA2 readily forms high-order oligomers upon ligand binding. Here, we investigated if a correlation exists between EphA2 signaling properties and the size of the EphA2 oligomers induced by multiple ligands, including the widely used ephrinA1-Fc ligand, the soluble monomeric m-ephrinA1, and novel engineered peptide ligands. We used fluorescence intensity fluctuation (FIF) spectrometry to characterize the EphA2 oligomer populations induced by the different ligands. Interestingly, we found that different monomeric and dimeric ligands induce EphA2 oligomers with widely different size distributions. Our comparison of FIF brightness distribution parameters and EphA2 signaling parameters reveals that the efficacy of EphA2 phosphorylation on tyrosine 588, an autophosphorylation response contributing to EphA2 activation, correlates with EphA2 mean oligomer size. However, we found that other characteristics, such as the efficacy of AKT inhibition and ligand bias coefficients, appear to be independent of EphA2 oligomer size. Taken together, this work highlights the utility of FIF in RTK signaling research and demonstrates a quantitative correlation between the architecture of EphA2 signaling complexes and signaling features.


Assuntos
Efrina-A1 , Receptor EphA2 , Células Endoteliais/metabolismo , Efrina-A1/química , Ligantes , Fosforilação , Receptor EphA2/metabolismo , Humanos
5.
Adv Sci (Weinh) ; 9(13): e2105506, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246961

RESUMO

Membrane-lytic peptides offer broad synthetic flexibilities and design potential to the arsenal of anticancer therapeutics, which can be limited by cytotoxicity to noncancerous cells and induction of drug resistance via stress-induced mutagenesis. Despite continued research efforts on membrane-perforating peptides for antimicrobial applications, success in anticancer peptide therapeutics remains elusive given the muted distinction between cancerous and normal cell membranes and the challenge of peptide degradation and neutralization upon intravenous delivery. Using triple-negative breast cancer as a model, the authors report the development of a new class of anticancer peptides. Through function-conserving mutations, the authors achieved cancer cell selective membrane perforation, with leads exhibiting a 200-fold selectivity over non-cancerogenic cells and superior cytotoxicity over doxorubicin against breast cancer tumorspheres. Upon continuous exposure to the anticancer peptides at growth-arresting concentrations, cancer cells do not exhibit resistance phenotype, frequently observed under chemotherapeutic treatment. The authors further demonstrate efficient encapsulation of the anticancer peptides in 20 nm polymeric nanocarriers, which possess high tolerability and lead to effective tumor growth inhibition in a mouse model of MDA-MB-231 triple-negative breast cancer. This work demonstrates a multidisciplinary approach for enabling translationally relevant membrane-lytic peptides in oncology, opening up a vast chemical repertoire to the arms race against cancer.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Camundongos , Peptídeos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
6.
Cell Rep ; 38(1): 110172, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986351

RESUMO

During the 2013-2016 West African (WA) Ebola virus (EBOV) outbreak, severe gastrointestinal symptoms were common in patients and associated with poor outcome. Delta peptide is a conserved product of post-translational processing of the abundant EBOV soluble glycoprotein (sGP). The murine ligated ileal loop model was used to demonstrate that delta peptide is a potent enterotoxin. Dramatic intestinal fluid accumulation follows injection of biologically relevant amounts of delta peptide into ileal loops, along with gross alteration of villous architecture and loss of goblet cells. Transcriptomic analyses show that delta peptide triggers damage response and cell survival pathways and downregulates expression of transporters and exchangers. Induction of diarrhea by delta peptide occurs via cellular damage and regulation of genes that encode proteins involved in fluid secretion. While distinct differences exist between the ileal loop murine model and EBOV infection in humans, these results suggest that delta peptide may contribute to EBOV-induced gastrointestinal pathology.


Assuntos
Ebolavirus/metabolismo , Enterotoxinas/toxicidade , Gastroenterite/virologia , Doença pelo Vírus Ebola/patologia , Proteínas do Envelope Viral/toxicidade , Animais , Diarreia/virologia , Feminino , Gastroenterite/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
7.
Nanoscale ; 13(28): 12185-12197, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34190297

RESUMO

Peptides that form nanoscale pores in lipid bilayers have potential applications in triggered release, but only if their selectivity for target synthetic membranes over bystander biomembranes can be optimized. Previously, we identified a novel family of α-helical pore-forming peptides called "macrolittins", which release macromolecular cargoes from phosphatidylcholine (PC) liposomes at concentrations as low as 1 peptide per 1000 lipids. In this work, we show that macrolittins have no measurable cytolytic activity against multiple human cell types even at high peptide concentration. This unprecedented selectivity for PC liposomes over cell plasma membranes is explained, in part, by the sensitivity of macrolittin activity to physical chemical properties of the bilayer hydrocarbon core. In the presence of cells, macrolittins release all vesicle-entrapped cargoes (proteins and small molecule drugs) which are then readily uptaken by cells. Triggered release occurs without any direct effect of the peptide on the cells, and without vesicle-vesicle or vesicle-cell interactions.


Assuntos
Bicamadas Lipídicas , Lipossomos , Membrana Celular , Humanos , Concentração de Íons de Hidrogênio , Peptídeos
8.
Cells ; 10(5)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922397

RESUMO

Hepatitis C virus (HCV) infection promotes autophagic degradation of viral replicative intermediates for sustaining replication and spread. The excessive activation of autophagy can induce cell death and terminate infection without proper regulation. A prior publication from this laboratory showed that an adaptive cellular response to HCV microbial stress inhibits autophagy through beclin 1 degradation. The mechanisms of how secretory and degradative autophagy are regulated during persistent HCV infection is unknown. This study was performed to understand the mechanisms of viral persistence in the absence of degradative autophagy, which is essential for virus survival. Using HCV infection of a CD63-green fluorescence protein (CD63-GFP), labeled stable transfected Huh-7.5 cell, we found that autophagy induction at the early stage of HCV infection increased the degradation of CD63-GFP that favored virus replication. However, the late-stage of persistent HCV infection showed impaired autophagic degradation, leading to the accumulation of CD63-GFP. We found that impaired autophagic degradation promoted the release of extracellular vesicles and exosomes. The impact of blocking the release of extracellular vesicles (EVs) on virus survival was investigated in persistently infected cells and sub-genomic replicon cells. Our study illustrates that blocking EV and exosome release severely suppresses virus replication without effecting host cell viability. Furthermore, we found that blocking EV release triggers interferon lambda 1 secretion. These findings suggest that the release of EVs is an innate immune escape mechanism that promotes persistent HCV infection. We propose that inhibition of extracellular vesicle release can be explored as a potential antiviral strategy for the treatment of HCV and other emerging RNA viruses.


Assuntos
Autofagia , Carcinoma Hepatocelular/complicações , Vesículas Extracelulares/patologia , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Neoplasias Hepáticas/complicações , Replicação Viral , Antivirais/farmacologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Exossomos , Vesículas Extracelulares/metabolismo , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Hepatite C/epidemiologia , Humanos , Neoplasias Hepáticas/patologia , Transdução de Sinais , Células Tumorais Cultivadas
9.
J Membr Biol ; 254(1): 75-96, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33564914

RESUMO

The use of designed antimicrobial peptides as drugs has been impeded by the absence of simple sequence-structure-function relationships and design rules. The likely cause is that many of these peptides permeabilize membranes via highly disordered, heterogeneous mechanisms, forming aggregates without well-defined tertiary or secondary structure. We suggest that the combination of high-throughput library screening with atomistic computer simulations can successfully address this challenge by tuning a previously developed general pore-forming peptide into a selective pore-former for different lipid types. A library of 2916 peptides was designed based on the LDKA template. The library peptides were synthesized and screened using a high-throughput orthogonal vesicle leakage assay. Dyes of different sizes were entrapped inside vesicles with varying lipid composition to simultaneously screen for both pore size and affinity for negatively charged and neutral lipid membranes. From this screen, nine different LDKA variants that have unique activity were selected, sequenced, synthesized, and characterized. Despite the minor sequence changes, each of these peptides has unique functional properties, forming either small or large pores and being selective for either neutral or anionic lipid bilayers. Long-scale, unbiased atomistic molecular dynamics (MD) simulations directly reveal that rather than rigid, well-defined pores, these peptides can form a large repertoire of functional dynamic and heterogeneous aggregates, strongly affected by single mutations. Predicting the propensity to aggregate and assemble in a given environment from sequence alone holds the key to functional prediction of membrane permeabilization.


Assuntos
Peptídeos Antimicrobianos/química , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Peptídeos
10.
Biophys J ; 120(4): 618-630, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33460594

RESUMO

Peptides that self-assemble into nanometer-sized pores in lipid bilayers could have utility in a variety of biotechnological and clinical applications if we can understand their physical chemical properties and learn to control their membrane selectivity. To empower such control, we have used synthetic molecular evolution to identify the pH-dependent delivery peptides, a family of peptides that assemble into macromolecule-sized pores in membranes at low peptide concentration but only at pH < ∼6. Further advancements will also require better selectivity for specific membranes. Here, we determine the effect of anionic headgroups and bilayer thickness on the mechanism of action of the pH-dependent delivery peptides by measuring binding, secondary structure, and macromolecular poration. The peptide pHD15 partitions and folds equally well into zwitterionic and anionic membranes but is less potent at pore formation in phosphatidylserine-containing membranes. The peptide also binds and folds similarly in membranes of various thicknesses, but its ability to release macromolecules changes dramatically. It causes potent macromolecular poration in vesicles made from phosphatidylcholine with 14 carbon acyl chains, but macromolecular poration decreases sharply with increasing bilayer thickness and does not occur at any peptide concentration in fluid bilayers made from phosphatidylcholine lipids with 20-carbon acyl chains. The effects of headgroup and bilayer thickness on macromolecular poration cannot be accounted for by the amount of peptide bound but instead reflect an inherent selectivity of the peptide for inserting into the membrane-spanning pore state. Molecular dynamics simulations suggest that the effect of thickness is due to hydrophobic match/mismatch between the membrane-spanning peptide and the bilayer hydrocarbon. This remarkable degree of selectivity based on headgroup and especially bilayer thickness is unusual and suggests ways that pore-forming peptides with exquisite selectivity for specific membranes can be designed or evolved.


Assuntos
Bicamadas Lipídicas , Peptídeos , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína
11.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907984

RESUMO

Numerous peptides inhibit the entry of enveloped viruses into cells. Some of these peptides have been shown to inhibit multiple unrelated viruses. We have suggested that such broad-spectrum antiviral peptides share a property called interfacial activity; they are somewhat hydrophobic and amphipathic, with a propensity to interact with the interfacial zones of lipid bilayer membranes. In this study, we further tested the hypothesis that such interfacial activity is a correlate of broad-spectrum antiviral activity. In this study, several families of peptides, selected for the ability to partition into and disrupt membrane integrity but with no known antiviral activity, were tested for the ability to inhibit multiple diverse enveloped viruses. These include Lassa pseudovirus, influenza virus, dengue virus type 2, herpes simplex virus 1, and nonenveloped human adenovirus 5. Various families of interfacially active peptides caused potent inhibition of all enveloped viruses tested at low and submicromolar concentrations, well below the range in which they are toxic to mammalian cells. These membrane-active peptides block uptake and fusion with the host cell by rapidly and directly interacting with virions, destabilizing the viral envelope, and driving virus aggregation and/or intervirion envelope fusion. We speculate that the molecular characteristics shared by these peptides can be exploited to enable the design, optimization, or molecular evolution of novel broad-spectrum antiviral therapeutics.IMPORTANCE New classes of antiviral drugs are needed to treat the ever-changing viral disease landscape. Current antiviral drugs treat only a small number of viral diseases, leaving many patients with established or emerging infections to be treated solely with supportive care. Recent antiviral peptide research has produced numerous membrane-interacting peptides that inhibit diverse enveloped viruses in vitro and in vivo Peptide therapeutics are becoming more common, with over 60 FDA-approved peptides for clinical use. Included in this class of therapeutics is enfuvirtide, a 36-residue peptide drug that inhibits HIV entry/fusion. Due to their broad-spectrum mechanism of action and enormous potential sequence diversity, peptides that inhibit virus entry could potentially fulfill the need for new antiviral therapeutics; however, a better understanding of their mechanism is needed for the optimization or evolution of sequence design to combat the wide landscape of viral disease.


Assuntos
Antivirais/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Internalização do Vírus/efeitos dos fármacos , Vírus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Orthomyxoviridae , Células Vero , Envelope Viral , Viroses/tratamento farmacológico
12.
J Phys Chem B ; 124(40): 8835-8843, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32892626

RESUMO

The synthetically evolved pH-dependent delivery (pHD) peptides are a unique family that bind to membranes, fold into α-helices, and form macromolecule-sized pores at low concentration at pH < 6. These peptides have potential applications in drug delivery and tumor targeting. Here, we show how pHD peptide activity can be modulated without changing the amino acid sequence. We increased the hydrophobicity of a representative peptide, pHD108 (GIGEVLHELAEGLPELQEWIHAAQQLGC-amide), by coupling hydrophobic acyl groups of 6-16 carbons and by forming dimers. Unlike the parent peptide, almost all variants showed activity at pH 7. This was due to strong partitioning into phosphatidylcholine vesicle bilayers and induced helix formation. The dimer maintained some pH sensitivity while being the most active peptide studied in this work, with macromolecular poration occurring at 1:2000 peptide:lipid at pH 5. These results confirm that membrane binding, rather than pH, is the determining factor in activity, while also showing that acylation and dimerization are viable methods to modulate pHD108 activity. We propose a possible toroidal pore architecture with peptides in a parallel or mixed parallel/antiparallel orientation without strong electrostatic interactions between peptides in the pore as evidenced by a lack of dependence of activity on either pH or salt concentration.


Assuntos
Bicamadas Lipídicas , Peptídeos , Acilação , Dimerização , Concentração de Íons de Hidrogênio
13.
Biochem Biophys Res Commun ; 524(3): 730-735, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32035620

RESUMO

Post-translational modifications (PTMs) play pivotal roles in controlling the stability and activity of the tumor suppressor p53 in response to distinct stressors. Here we report an unexpected finding of a short chain fatty acid modification of p53 in human cells. Crotonic acid (CA) treatment induces p53 crotonylation, but surprisingly reduces its protein, but not mRNA level, leading to inhibition of p53 activity in a dose dependent fashion. Surprisingly this crotonylation targets serine 46, instead of any predicted lysine residues, of p53, as detected in TCEP-probe labeled crotonylation and anti-crotonylated peptide antibody reaction assays. This is further confirmed by substitution of serine 46 with alanine, which abolishes p53 crotonylation in vitro and in cells. CA increases p53-dependent glycolytic activity, and augments cancer cell proliferation in response to metabolic or DNA damage stress. Since serine 46 is only found in human p53, our studies unveil an unconventional PTM unique for human p53, impairing its activity in response to CA. Because CA is likely produced by the gut microbiome, our results also predict that this type of PTM might play a role in early human colorectal neoplasia development by negating p53 activity without mutation of this tumor suppressor gene.


Assuntos
Crotonatos/metabolismo , Processamento de Proteína Pós-Traducional , Serina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Crotonatos/química , Glucose/deficiência , Glicólise , Humanos , Lisina/metabolismo , Mitocôndrias/metabolismo , Proteína Supressora de Tumor p53/química
14.
J Am Chem Soc ; 141(16): 6706-6718, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30916949

RESUMO

Using synthetic molecular evolution, we previously discovered a family of peptides that cause macromolecular poration in synthetic membranes at low peptide concentration in a way that is triggered by acidic pH. To understand the mechanism of action of these "pHD peptides", here we systematically explored structure-function relationships through measurements of the effect of pH and peptide concentration on membrane binding, peptide structure, and the formation of macromolecular-sized pores in membranes. Both AFM and functional assays demonstrate the peptide-induced appearance of large pores in bilayers. Pore formation has a very steep pH dependence and is also dependent on peptide concentration. In vesicles, 50% leakage of 40 kDa dextrans occurs at 1 bound peptide per 1300 lipids or only 75 peptides per vesicle, an observation that holds true across a wide range of acidic pH values. The major role of pH is to regulate the amount of peptide bound per vesicle. The physical chemistry and sequence of the pHD peptides affect their potency and pH dependence; therefore, the sequence-structure-function relationships described here can be used for the future design and optimization of membrane permeabilizing peptides for specific applications.


Assuntos
Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Concentração de Íons de Hidrogênio , Peptídeos/química , Fosfatidilcolinas/química , Estrutura Secundária de Proteína
15.
Chem Rev ; 119(9): 6040-6085, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30624911

RESUMO

Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Permeabilidade da Membrana Celular , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice
16.
J Am Chem Soc ; 140(20): 6441-6447, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29694775

RESUMO

Pore-forming peptides with novel functions have potential utility in many biotechnological applications. However, the sequence-structure-function relationships of pore forming peptides are not understood well enough to empower rational design. Therefore, in this work, we used synthetic molecular evolution to identify a novel family of peptides that are highly potent and cause macromolecular poration in synthetic lipid vesicles at low peptide concentration and at neutral pH. These unique 26-residue peptides, which we call macrolittins, release macromolecules from lipid bilayer vesicles made from zwitterionic PC lipids at peptide to lipid ratios as low as 1:1000, a property that is almost unprecedented among known membrane permeabilizing peptides. The macrolittins exist as membrane-spanning α-helices. They cause dramatic bilayer thinning and form large pores in planar supported bilayers. The high potency of these peptides is likely due to their ability to stabilize bilayer edges by a process that requires specific electrostatic interactions between peptides.


Assuntos
Bicamadas Lipídicas/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Permeabilidade/efeitos dos fármacos , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Biblioteca de Peptídeos , Fosfolipídeos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia
17.
Peptides ; 104: 35-40, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29654809

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring cationic peptide with potent immunosuppressant and cytoprotective activities. We now show that full length PACAP38 and to a lesser extent, the truncated form PACAP27, and the closely related vasoactive intestinal peptide (VIP) and secretin had antimicrobial activity against the Gram-negative bacteria Escherichia coli in the radial diffusion assay. PACAP38 was more potent than either the bovine neutrophil antimicrobial peptide indolicidin or the synthetic antimicrobial peptide ARVA against E. coli. PACAP38 also had activity against the Gram-positive bacteria Staphylococcus aureus in the same assay with comparable potency to indolicidin and ARVA. In the more stringent broth dilution assay, PACAP38 had moderate sterilizing activity against E. coli, and potent sterilizing activity against the Gram-negative bacteria Pseudomonas aeruginosa. PACAP27, VIP and secretin were much less active than PACAP38 in this assay. PACAP38 also had some activity against the Gram-positive bacteria Bacillus cereus in the broth dilution assay. Many exopeptidase-resistant analogs of PACAP38, including both receptor agonists and antagonists, had antimicrobial activities equal to, or better than PACAP38, in both assays. PACAP38 made the membranes of E. coli permeable to SYTOX Green, suggesting a classical membrane lytic mechanism. These data suggest that analogs of PACPAP38 with a wide range of useful biological activities can be made by judicious substitutions in the sequence.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Membrana Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Hemólise/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Peptídeo Intestinal Vasoativo/química , Peptídeo Intestinal Vasoativo/farmacologia
18.
J Virol ; 91(16)2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28539454

RESUMO

The Ebola virus (EBOV) genome encodes a partly conserved 40-residue nonstructural polypeptide, called the delta peptide, that is produced in abundance during Ebola virus disease (EVD). The function of the delta peptide is unknown, but sequence analysis has suggested that delta peptide could be a viroporin, belonging to a diverse family of membrane-permeabilizing small polypeptides involved in replication and pathogenesis of numerous viruses. Full-length and conserved C-terminal delta peptide fragments permeabilize the plasma membranes of nucleated cells of rodent, dog, monkey, and human origin; increase ion permeability across confluent cell monolayers; and permeabilize synthetic lipid bilayers. Permeabilization activity is completely dependent on the disulfide bond between the two conserved cysteines. The conserved C-terminal portion of the peptide is biochemically stable in human serum, and most serum-stable fragments have full activity. Taken together, the evidence strongly suggests that Ebola virus delta peptide is a viroporin and that it may be a novel, targetable aspect of Ebola virus disease pathology.IMPORTANCE During the unparalleled West African outbreak of Ebola virus disease (EVD) that began in late 2013, the lack of effective countermeasures resulted in chains of serial infection and a high mortality rate among infected patients. A better understanding of disease pathology is desperately needed to develop better countermeasures. We show here that the Ebola virus delta peptide, a conserved nonstructural protein produced in large quantities by infected cells, has the characteristics of a viroporin. This information suggests a critical role for the delta peptide in Ebola virus disease pathology and as a possible target for novel countermeasures.

19.
J Am Chem Soc ; 139(2): 937-945, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28001058

RESUMO

pH-triggered membrane-permeabilizing peptides could be exploited in a variety of applications, such as to enable cargo release from endosomes for cellular delivery, or as cancer therapeutics that selectively permeabilize the plasma membranes of malignant cells. Such peptides would be especially useful if they could enable the movement of macromolecules across membranes, a rare property in membrane-permeabilizing peptides. Here we approach this goal by using an orthogonal high-throughput screen of an iterative peptide library to identify peptide sequences that have the following two properties: (i) little synthetic lipid membrane permeabilization at physiological pH 7 at high peptide concentration and (ii) efficient formation of macromolecule-sized defects in synthetic lipid membranes at acidic pH 5 and low peptide concentration. The peptides we selected are remarkably potent macromolecular sized pore-formers at pH 5, while having little or no activity at pH 7, as intended. The action of these peptides likely relies on tight coupling between membrane partitioning, α-helix formation, and electrostatic repulsions between acidic side chains, which collectively drive a sharp pH-triggered transition between inactive and active configurations with apparent pKa values of 5.5-5.8. This work opens new doors to developing applications that utilize peptides with membrane-permeabilizing activities that are triggered by physiologically relevant decreases in pH.


Assuntos
Bicamadas Lipídicas/química , Modelos Biológicos , Peptídeos/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Biblioteca de Peptídeos , Porosidade
20.
Surg Infect (Larchmt) ; 17(1): 32-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26431266

RESUMO

BACKGROUND: Adequate skin preparation is essential to preventing surgical site infection. Many products are available, each with specific manufacturers' directions. This lack of standardization may lead to incorrect use of the agents and affect the bacterial load reduction. We hypothesize that a lack of adherence to utilization protocols for surgical skin antiseptics affects bacterial load reduction. METHODS: Thirty subjects who routinely perform surgical skin preparation were recruited from four hospitals. Participants completed a questionnaire of both demographics and familiarity with two of the most common skin prep formulas: Chlorhexidine gluconate-isopropyl alcohol (CHG-IPA) and povidone-iodine (PVI) scrub and paint. Randomly selecting one formula, subjects performed skin preparation for ankle surgery on a healthy standardized patient. This was repeated using the second formula on the opposite ankle. Performance was recorded and reviewed by two independent evaluators using standardized dichotomous checklists created against the manufacturer's recommended application. Swabs of the patients' first interweb space and medial malleolus were obtained before, 1 min after, and 30 min after prep, and plated on Luria Bertani agar. Bacterial loads were measured in colony forming units (CFUs) for each anatomical site. Data was analyzed using a univariate linear regression. RESULTS: Subjects had an average of 12.7 ± 2.2 y operating room experience and 8.8 ± 1.5 y of skin prep experience. Despite this, no participant performed 100% of the manufacturers' steps correctly. All essential formula-specific steps were performed 90% of the time for CHG-IPA and 33.3% for PVI (p = 0.0001). No correlation was found between experience or familiarity and number of correct steps for either formula. Average reduction in CFUs was not different between CHG-IPA and PVI at 30 min for all anatomical sites (75.2 ± 5.4% vs. 73.7 ± 4.5%, p = 0.7662). Bacterial reductions at 30 min following skin prep were not substantially correlated with operator experience, protocol compliance, or total prep time for either formula. CONCLUSION: This study demonstrates existing problems with infection prevention as those tasked with pre-operative skin preparation do so with tremendous incongruence according to manufacturer guidelines. No effect on bacterial load was identified, however with a larger sample size this may be noted. Standardization of the prep solutions as well as simplification and education of the correct techniques may enhance protocol compliance.


Assuntos
Antissepsia/métodos , Bactérias/isolamento & purificação , Carga Bacteriana/efeitos dos fármacos , Fidelidade a Diretrizes , Cuidados Pré-Operatórios/métodos , Pele/microbiologia , Infecção da Ferida Cirúrgica/prevenção & controle , Adulto , Contagem de Colônia Microbiana , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA