Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 597(23): 2975-2992, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37804069

RESUMO

We have previously identified a unique disulfide bond in the crystal structure of Arabidopsis cytosolic seryl-tRNA synthetase involving cysteines evolutionarily conserved in all green plants. Here, we discovered that both cysteines are important for protein stability, but with opposite effects, and that their microenvironment may promote disulfide bond formation in oxidizing conditions. The crystal structure of the C244S mutant exhibited higher rigidity and an extensive network of noncovalent interactions correlating with its higher thermal stability. The activity of the wild-type showed resistance to oxidation with H2 O2 , while the activities of cysteine-to-serine mutants were impaired, indicating that the disulfide link may enable the protein to function under oxidative stress conditions which can be beneficial for an efficient plant stress response.


Assuntos
Arabidopsis , Serina-tRNA Ligase , Serina-tRNA Ligase/química , Cisteína/genética , Cisteína/metabolismo , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Oxirredução , Dissulfetos
2.
Molecules ; 26(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494330

RESUMO

Synthesis of tetravalent thio- and selenogalactopyranoside-containing glycoclusters using azide-alkyne click strategy is presented. Prepared compounds are potential ligands of Pseudomonas aeruginosa lectin PA-IL. P. aeruginosa is an opportunistic human pathogen associated with cystic fibrosis, and PA-IL is one of its virulence factors. The interactions of PA-IL and tetravalent glycoconjugates were investigated using hemagglutination inhibition assay and compared with mono- and divalent galactosides (propargyl 1-thio- and 1-seleno-ß-d-galactopyranoside, digalactosyl diselenide and digalactosyl disulfide). The lectin-carbohydrate interactions were also studied by saturation transfer difference NMR technique. Both thio- and seleno-tetravalent glycoconjugates were able to inhibit PA-IL significantly better than simple d-galactose or their intermediate compounds from the synthesis.


Assuntos
Proteínas de Bactérias/química , Glicoconjugados , Lectinas/química , Pseudomonas aeruginosa/química , Glicoconjugados/síntese química , Glicoconjugados/química , Humanos , Ressonância Magnética Nuclear Biomolecular
3.
Chemistry ; 26(47): 10769-10780, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32208534

RESUMO

The molecular recognition of carbohydrates by proteins plays a key role in many biological processes including immune response, pathogen entry into a cell, and cell-cell adhesion (e.g., in cancer metastasis). Carbohydrates interact with proteins mainly through hydrogen bonding, metal-ion-mediated interaction, and non-polar dispersion interactions. The role of dispersion-driven CH-π interactions (stacking) in protein-carbohydrate recognition has been underestimated for a long time considering the polar interactions to be the main forces for saccharide interactions. However, over the last few years it turns out that non-polar interactions are equally important. In this study, we analyzed the CH-π interactions employing bioinformatics (data mining, structural analysis), several experimental (isothermal titration calorimetry (ITC), X-ray crystallography), and computational techniques. The Protein Data Bank (PDB) has been used as a source of structural data. The PDB contains over 12 000 protein complexes with carbohydrates. Stacking interactions are very frequently present in such complexes (about 39 % of identified structures). The calculations and the ITC measurement results suggest that the CH-π stacking contribution to the overall binding energy ranges from 4 up to 8 kcal mol-1 . All the results show that the stacking CH-π interactions in protein-carbohydrate complexes can be considered to be a driving force of the binding in such complexes.


Assuntos
Carboidratos/química , Carbono/química , Biologia Computacional , Hidrogênio/química , Proteínas/química , Ligação de Hidrogênio , Técnicas In Vitro , Ligação Proteica , Termodinâmica
4.
Biomolecules ; 9(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683947

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen associated with cystic fibrosis. This bacterium produces, among other virulence factors, a soluble d-galactose-specific lectin PA-IL (LecA). PA-IL plays an important role in the adhesion to the host cells and is also cytotoxic. Therefore, this protein is an interesting therapeutic target, suitable for inhibition by carbohydrate-based compounds. In the current study, ß-d-galactopyranoside-containing tri- and tetravalent glycoclusters were synthesized. Methyl gallate and pentaerythritol equipped with propargyl groups were chosen as multivalent scaffolds and the galactoclusters were built from the above-mentioned cores by coupling ethylene or tetraethylene glycol-bridges and peracetylated propargyl ß-d-galactosides using 1,3-dipolar azide-alkyne cycloaddition. The interaction between galactoside derivatives and PA-IL was investigated by several biophysical methods, including hemagglutination inhibition assay, isothermal titration calorimetry, analytical ultracentrifugation, and surface plasmon resonance. Their ability to inhibit the adhesion of P. aeruginosa to bronchial cells was determined by ex vivo assay. The newly synthesized multivalent galactoclusters proved to be significantly better ligands than simple d-galactose for lectin PA-IL and as a result, two representatives of the dendrimers were able to decrease adhesion of P. aeruginosa to bronchial cells to approximately 32% and 42%, respectively. The results may provide an opportunity to develop anti-adhesion therapy for the treatment of P. aeruginosa infection.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Galactose/farmacologia , Lectinas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/síntese química , Proteínas de Bactérias/genética , Galactose/síntese química , Galactose/química , Humanos , Lectinas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia
5.
Molecules ; 24(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216664

RESUMO

Series of multivalent α-l-fucoside containing glycoclusters and variously decorated l-fucosides were synthesized to find potential inhibitors of fucose-specific lectins and study the structure-binding affinity relationships. Tri- and tetravalent fucoclusters were built using copper-mediated azide-alkyne click chemistry. Series of fucoside monomers and dimers were synthesized using various methods, namely glycosylation, an azide-alkyne click reaction, photoinduced thiol-en addition, and sulfation. The interactions between compounds with six fucolectins of bacterial or fungal origin were tested using a hemagglutination inhibition assay. As a result, a tetravalent, α-l-fucose presenting glycocluster showed to be a ligand that was orders of magnitude better than a simple monosaccharide for tested lectins in most cases, which can nominate it as a universal ligand for studied lectins. This compound was also able to inhibit the adhesion of Pseudomonas aeruginosa cells to human epithelial bronchial cells. A trivalent fucocluster with a protected amine functional group also seems to be a promising candidate for designing glycoconjugates and chimeras.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lectinas/química , Lectinas/metabolismo , Fucose/química , Fucose/metabolismo , Hemaglutinação , Testes de Inibição da Hemaglutinação , Humanos , Ligação Proteica , Relação Estrutura-Atividade
6.
Carbohydr Res ; 437: 1-8, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27871013

RESUMO

The opportunistic Gram-negative bacterium Burkholderia cenocepacia causes lethal infections in cystic fibrosis patients. Multivalent mannoside derivatives were prepared as potential inhibitors of lectin BC2L-A, one of the virulence factors deployed by B. cenocepacia in the infection process. An (α1→2)-thio-linked mannobioside mimic bearing an azide functionalized aglycon was conjugated to different multivalent scaffolds such as propargylated calix[4]arenes, methyl gallate and pentaerythritol by azide-alkyne 1,3-dipolar cycloaddition. The interaction between the glycoclusters and the mannose binding BC2L-A lectin from B. cenocepacia was examined by isothermal microcalorimetry, surface plasmon resonance, inhibition of yeast agglutination and analytical ultracentrifugation.


Assuntos
Burkholderia cenocepacia/química , Lectina de Ligação a Manose/química , Manosídeos/química , Testes de Aglutinação , Calorimetria/métodos , Técnicas de Química Sintética , Ligantes , Lectina de Ligação a Manose/metabolismo , Lectina de Ligação a Manose/farmacologia , Manosídeos/síntese química , Manosídeos/metabolismo , Ressonância de Plasmônio de Superfície , Ultracentrifugação/métodos , Leveduras/efeitos dos fármacos
7.
Proteomics ; 16(24): 3126-3136, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27650323

RESUMO

The Aleuria aurantia lectin (AAL) derived from orange peel fungus contains five fucose-binding sites that recognizes fucose bound in α-1,2, α-1,3, α-1,4, and α-1,6 linkages to N-acetylglucosamine and galactose. Recently, we have created several recombinant AAL (rAAL) proteins that had altered binding affinity to fucose linkages. In this report, we further characterize the binding specificity of one of the mutated lectins, N224Q lectin. This lectin was characterized by lectin Western blotting, surface plasmon resonance, and glycan microarray and shown to have increased binding to fucosylated glycan. Subsequently, we used this lectin to identify secreted fucosylated glycoproteins from a fetal hepatic cell line. Proteomic analysis revealed several glycoproteins secreted by the fetal cell line that were bound by N224Q lectin. These findings were confirmed by subsequent proteomic analysis of human serum from control patients or patients with hepatocellular carcinoma. These represent candidate oncofetal markers for liver cancer.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fucose/metabolismo , Glicoproteínas/metabolismo , Lectinas/metabolismo , Neoplasias Hepáticas/metabolismo , Polissacarídeos/metabolismo , Ascomicetos/química , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/diagnóstico , Linhagem Celular , Células Cultivadas , Fucose/análise , Glicoproteínas/análise , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Lectinas/química , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/diagnóstico , Polissacarídeos/química , Ligação Proteica , Proteômica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
8.
PLoS Pathog ; 12(4): e1005555, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27058347

RESUMO

The immune mechanisms that recognize inhaled Aspergillus fumigatus conidia to promote their elimination from the lungs are incompletely understood. FleA is a lectin expressed by Aspergillus fumigatus that has twelve binding sites for fucosylated structures that are abundant in the glycan coats of multiple plant and animal proteins. The role of FleA is unknown: it could bind fucose in decomposed plant matter to allow Aspergillus fumigatus to thrive in soil, or it may be a virulence factor that binds fucose in lung glycoproteins to cause Aspergillus fumigatus pneumonia. Our studies show that FleA protein and Aspergillus fumigatus conidia bind avidly to purified lung mucin glycoproteins in a fucose-dependent manner. In addition, FleA binds strongly to macrophage cell surface proteins, and macrophages bind and phagocytose fleA-deficient (∆fleA) conidia much less efficiently than wild type (WT) conidia. Furthermore, a potent fucopyranoside glycomimetic inhibitor of FleA inhibits binding and phagocytosis of WT conidia by macrophages, confirming the specific role of fucose binding in macrophage recognition of WT conidia. Finally, mice infected with ΔfleA conidia had more severe pneumonia and invasive aspergillosis than mice infected with WT conidia. These findings demonstrate that FleA is not a virulence factor for Aspergillus fumigatus. Instead, host recognition of FleA is a critical step in mechanisms of mucin binding, mucociliary clearance, and macrophage killing that prevent Aspergillus fumigatus pneumonia.


Assuntos
Aspergillus fumigatus/imunologia , Lectinas/imunologia , Macrófagos/imunologia , Mucinas/imunologia , Aspergilose Pulmonar/imunologia , Adulto , Animais , Aspergillus fumigatus/patogenicidade , Western Blotting , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Imunofluorescência , Fucose/metabolismo , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/metabolismo , Humanos , Imunidade nas Mucosas/imunologia , Lectinas/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mucinas/metabolismo , Aspergilose Pulmonar/metabolismo , Esporos Fúngicos/imunologia
9.
Sensors (Basel) ; 15(1): 1945-53, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25602268

RESUMO

Antibodies against Pseudomonas aeruginosa (PA) lectin, PAIIL, which is a virulence factor mediating the bacteria binding to epithelium cells, were prepared in chickens and purified from egg yolks. To examine these antibodies as a prophylactic agent preventing the adhesion of PA we developed a well plate assay based on fluorescently labeled bacteria and immortalized epithelium cell lines derived from normal and cystic fibrosis (CF) human lungs. The antibodies significantly inhibited bacteria adhesion (up to 50%) in both cell lines. In agreement with in vivo data, our plate assay showed higher susceptibility of CF cells towards the PA adhesion as compared to normal epithelium. This finding proved the reliability of the developed experimental system.


Assuntos
Aderência Bacteriana , Bioensaio/métodos , Pseudomonas aeruginosa/citologia , Animais , Western Blotting , Calibragem , Galinhas , Células Epiteliais/citologia , Humanos , Lectinas/metabolismo , Espectrometria de Fluorescência , Coloração e Rotulagem , Fatores de Tempo
10.
PLoS One ; 8(12): e83077, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24340081

RESUMO

Aspergillus fumigatus is an important allergen and opportunistic pathogen. Similarly to many other pathogens, it is able to produce lectins that may be involved in the host-pathogen interaction. We focused on the lectin AFL, which was prepared in recombinant form and characterized. Its binding properties were studied using hemagglutination and glycan array analysis. We determined the specificity of the lectin towards l-fucose and fucosylated oligosaccharides, including α1-6 linked core-fucose, which is an important marker for cancerogenesis. Other biologically relevant saccharides such as sialic acid, d-mannose or d-galactose were not bound. Blood group epitopes of the ABH and Lewis systems were recognized, Le(Y) being the preferred ligand among others. To provide a correlation between the observed functional characteristics and structural basis, AFL was crystallized in a complex with methyl-α,L-selenofucoside and its structure was solved using the SAD method. Six binding sites, each with different compositions, were identified per monomer and significant differences from the homologous AAL lectin were found. Structure-derived peptides were utilized to prepare anti-AFL polyclonal antibodies, which suggested the presence of AFL on the Aspergillus' conidia, confirming its expression in vivo. Stimulation of human bronchial cells by AFL led to IL-8 production in a dose-dependent manner. AFL thus probably contributes to the inflammatory response observed upon the exposure of a patient to A. fumigatus. The combination of affinity to human epithelial epitopes, production by conidia and pro-inflammatory activity is remarkable and shows that AFL might be an important virulence factor involved in an early stage of A. fumigatus infection.


Assuntos
Aspergillus fumigatus/química , Fucose/química , Lectinas/química , Esporos Fúngicos/química , Sequência de Aminoácidos , Aspergilose/imunologia , Sítios de Ligação , Brônquios/citologia , Brônquios/microbiologia , Epitopos/química , Galactose/química , Genoma Fúngico , Hemaglutinação , Interações Hospedeiro-Patógeno , Humanos , Interleucina-8/metabolismo , Manose/química , Dados de Sequência Molecular , Ácido N-Acetilneuramínico/química , Oligossacarídeos/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Virulência/química
11.
Chemistry ; 19(25): 8153-62, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23616464

RESUMO

ß1,6-GlcNAc-transferase (C2GnT) is an important controlling factor of biological functions for many glycoproteins and its activity has been found to be altered in breast, colon, and lung cancer cells, in leukemia cells, in the lymhomonocytes of multiple sclerosis patients, leukocytes from diabetes patients, and in conditions causing an immune deficiency. The result of the action of C2GnT is the core 2 structure that is essential for the further elongation of the carbohydrate chains of O-glycans. The catalytic mechanism of this metal-ion-independent glycosyltransferase is of paramount importance and is investigated here by using quantum mechanical (QM) (density functional theory (DFT))/molecular modeling (MM) methods with different levels of theory. The structural model of the reaction site used in this report is based on the crystal structures of C2GnT. The entire enzyme-substrate system was subdivided into two different subsystems: the QM subsystem containing 206 atoms and the MM region containing 5914 atoms. Three predefined reaction coordinates were employed to investigate the catalytic mechanism. The calculated potential energy surfaces discovered the existence of a concerted SN 2-like mechanism. In this mechanism, a nucleophilic attack by O6 facilitated by proton transfer to the catalytic base and the separation of the leaving group all occur almost simultaneously. The transition state for the proposed reaction mechanism at the M06-2X/6-31G** (with diffuse functions on the O1', O5', OGlu , and O6 atoms) level was located at C1-O6=1.74 Šand C1-O1=2.86 Å. The activation energy for this mechanism was estimated to be between 20 and 29 kcal mol⁻¹, depending on the method used. These calculations also identified a low-barrier hydrogen bond between the nucleophile O6H and the catalytic base Glu320, and a hydrogen bond between the N-acetamino group and the glycosidic oxygen of the donor in the TS. It is proposed that these interactions contribute to a stabilization of TS and participate in the catalytic mechanism.


Assuntos
Biocatálise , N-Acetilglucosaminiltransferases/química , Humanos , Ligação de Hidrogênio , Íons/química , Metais/química , Modelos Químicos , Modelos Moleculares , N-Acetilglucosaminiltransferases/metabolismo , Estrutura Terciária de Proteína , Teoria Quântica , Especificidade por Substrato
12.
J Am Chem Soc ; 134(37): 15563-71, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22928765

RESUMO

In higher eukaryotes, a variety of proteins are post-translationally modified by adding O-linked N-acetylglucosamine (GlcNAc) residue to serine or threonine residues. Misregulation of O-GlcNAcylation is linked to a wide variety of diseases, such as diabetes, cancer, and neurodegenerative diseases, including Alzheimer's disease. GlcNAc transfer is catalyzed by an inverting glycosyltransferase O-GlcNAc transferase (uridine diphospho-N-acetylglucosamine:polypeptide ß-N-acetylaminyltransferase, OGT) that belongs to the GT-B superfamily. The catalytic mechanism of this metal-independent glycosyltransferase is of primary importance and is investigated here using QM(DFT)/MM methods. The structural model of the reaction site used in this paper is based on the crystal structures of OGT. The entire enzyme-substrate system was partitioned into two different subsystems: the QM subsystem containing 198 atoms, and the MM region containing 11,326 atoms. The catalytic mechanism was monitored by means of three two-dimensional potential energy maps calculated as a function of three predefined reaction coordinates at different levels of theory. These potential energy surfaces revealed the existence of a concerted S(N)2-like mechanism, in which a nucleophilic attack by O(Ser), facilitated by proton transfer to the catalytic base, and the dissociation of the leaving group occur almost simultaneously. The transition state for the proposed reaction mechanism at the MPW1K level was located at C1-O(Ser) = 1.92 Å and C1-O1 = 3.11 Å. The activation energy for this passage was estimated to be ~20 kcal mol(-1). These calculations also identified, for the first time for glycosyltransferases, the substrate-assisted mechanism in which the N-acetamino group of the donor participates in the catalytic mechanism.


Assuntos
N-Acetilglucosaminiltransferases/metabolismo , Teoria Quântica , Catálise , Modelos Moleculares , N-Acetilglucosaminiltransferases/química , Especificidade por Substrato
13.
J Biol Chem ; 287(38): 32206-15, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22815473

RESUMO

Double-stranded regions of the telomeres are recognized by proteins containing Myb-like domains conferring specificity toward telomeric repeats. Although biochemical and structural studies revealed basic molecular principles involved in DNA binding, relatively little is known about evolutionary pathways leading to various types of Myb domain-containing proteins in divergent species of eukaryotes. Recently we identified a novel type of telomere-binding protein YlTay1p from the yeast Yarrowia lipolytica containing two Myb domains (Myb1, Myb2) very similar to the Myb domain of mammalian TRF1 and TRF2. In this study we prepared mutant versions of YlTay1p lacking Myb1, Myb2, or both Myb domains and found that YlTay1p carrying either Myb domain exhibits preferential affinity to both Y. lipolytica (GGGTTAGTCA)(n) and human (TTAGGG)(n) telomeric sequences. Quantitative measurements of the protein binding to telomeric DNA revealed that the presence of both Myb domains is required for a high affinity of YlTay1p to either telomeric repeat. Additionally, we performed detailed thermodynamic analysis of the YlTay1p interaction with its cognate telomeric DNA, which is to our knowledge the first energetic description of a full-length telomeric-protein binding to DNA. Interestingly, when compared with human TRF1 and TRF2 proteins, YlTay1p exhibited higher affinity not only for Y. lipolytica telomeres but also for human telomeric sequences. The duplication of the Myb domain region in YlTay1p thus produces a synergistic effect on its affinity toward the cognate telomeric sequence, alleviating the need for homodimerization observed in TRF-like proteins possessing a single Myb domain.


Assuntos
Proteínas Fúngicas/química , Proteínas Proto-Oncogênicas c-myb/química , Proteína 1 de Ligação a Repetições Teloméricas/química , Yarrowia/metabolismo , Sequência de Aminoácidos , Anisotropia , Biofísica/métodos , Calorimetria/métodos , Mapeamento Cromossômico , Evolução Molecular , Proteínas Fúngicas/metabolismo , Humanos , Cinética , Microscopia de Fluorescência/métodos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Telômero/ultraestrutura , Termodinâmica
14.
Glycobiology ; 22(10): 1387-98, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22763039

RESUMO

Bacteria from the Burkholderia cepacia complex (Bcc) cause highly contagious pneumonia among cystic fibrosis (CF) patients. Among them, Burkholderia cenocepacia is one of the most dangerous in the Bcc and is the most frequent cause of morbidity and mortality in CF patients. Indeed, it is responsible of "cepacia syndrome", a deadly exacerbation of infection, that is the main cause of poor outcomes in lung transplantation. Burkholderia cenocepacia produces several soluble lectins with specificity for fucosylated and mannosylated glycoconjugates. These lectins are present on the bacterial cell surface and it has been proposed that they bind to lipopolysaccharide epitopes. In this work, we report on the interaction of one B. cenocepacia lectin, BC2L-A, with heptose and other manno configured sugar residues. Saturation transfer difference NMR spectroscopy studies of BC2L-A with different mono- and disaccharides demonstrated the requirement of manno configuration with the hydroxyl or glycol group at C6 for the binding process. The crystal structure of BC2L-A complexed with the methyl-heptoside confirmed the location of the carbohydrate ring in the binding site and elucidated the orientation of the glycol tail, in agreement with NMR data. Titration calorimetry performed on monosaccharides, heptose disaccharides and bacterial heptose-containing oligosaccharides and polysaccharides confirmed that bacterial cell wall contains carbohydrate epitopes that can bind to BC2L-A. Additionally, the specific binding of fluorescent BC2L-A lectin on B. cenocepacia bacterial surface was demonstrated by microscopy.


Assuntos
Burkholderia cenocepacia/química , Heptoses/química , Lectinas/química , Lipopolissacarídeos/química , Sítios de Ligação , Burkholderia cenocepacia/citologia , Configuração de Carboidratos , Modelos Moleculares
15.
J Biol Chem ; 287(6): 4335-47, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22170069

RESUMO

Burkholderia ambifaria is generally associated with the rhizosphere of plants where it has biocontrol effects on other microorganisms. It is also a member of the Burkholderia cepacia complex, a group of closely related bacteria that cause lung infections in immunocompromised patients as well as in patients with granulomatous disease or cystic fibrosis. Our previous work indicated that fucose on human epithelia is a frequent target for lectins and adhesins of lung pathogens (Sulák, O., Cioci, G., Lameignère, E., Balloy, V., Round, A., Gutsche, I., Malinovská, L., Chignard, M., Kosma, P., Aubert, D. F., Marolda, C. L., Valvano, M. A., Wimmerová, M., and Imberty, A. (2011) PLoS Pathog. 7, e1002238). Analysis of the B. ambifaria genome identified BambL as a putative fucose-binding lectin. The 87-amino acid protein was produced recombinantly and demonstrated to bind to fucosylated oligosaccharides with a preference for αFuc1-2Gal epitopes. Crystal structures revealed that it associates as a trimer with two fucose-binding sites per monomer. The overall fold is a six-bladed ß-propeller formed by oligomerization as in the Ralstonia solanacearum lectin and not by sequential domains like the fungal fucose lectin from Aleuria aurantia. The affinity of BambL for small fucosylated glycans is very high as demonstrated by microcalorimetry (K(D) < 1 µM). Plant cell wall oligosaccharides and human histo-blood group oligosaccharides H-type 2 and Lewis Y are bound with equivalent efficiency. Binding to artificial glycosphingolipid-containing vesicles, human saliva, and lung tissues confirmed that BambL could recognize a wide spectrum of fucosylated epitopes, albeit with a lower affinity for biological material from nonsecretor individuals.


Assuntos
Proteínas de Bactérias/química , Burkholderia/química , Epitopos/química , Fucose/química , Lectinas/química , Oligossacarídeos/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Burkholderia/metabolismo , Epitopos/metabolismo , Fucose/metabolismo , Humanos , Lectinas/metabolismo , Oligossacarídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Quaternária de Proteína , Rizoma/microbiologia , Saliva/química , Saliva/metabolismo
16.
J Phys Chem A ; 115(41): 11378-86, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21888366

RESUMO

Electrospray ionization mass spectrometry (ESI-MS) is used to probe the binding of small anions to the macrocycle of bambus[6]uril. For the halide ions, the experimental patterns suggest F(-) < Cl(-) < Br(-) < I(-), which is consistent with the order of anion binding found in the condensed phase. Parallel equilibrium studies in the condensed phase establish the association constants of halide anions and bambus[6]uril in mixed solvents. A detailed analysis of the mass spectrometric data is used to shed light on the correlations between the binding constants in the condensed phase and the ion abundances observed using ESI-MS. From the analysis it becomes apparent that ESI-MS can indeed represent the situation in solution to some extent, but the sampling in the gas-phase experiment is not 1:1 compared to that in solution.


Assuntos
Imidazóis/química , Compostos Macrocíclicos/química , Ânions/química , Sítios de Ligação , Gases/química , Modelos Moleculares , Estrutura Molecular , Soluções , Espectrometria de Massas por Ionização por Electrospray
17.
PLoS Pathog ; 7(9): e1002238, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21909279

RESUMO

Lectins and adhesins are involved in bacterial adhesion to host tissues and mucus during early steps of infection. We report the characterization of BC2L-C, a soluble lectin from the opportunistic pathogen Burkholderia cenocepacia, which has two distinct domains with unique specificities and biological activities. The N-terminal domain is a novel TNF-α-like fucose-binding lectin, while the C-terminal part is similar to a superfamily of calcium-dependent bacterial lectins. The C-terminal domain displays specificity for mannose and l-glycero-d-manno-heptose. BC2L-C is therefore a superlectin that binds independently to mannose/heptose glycoconjugates and fucosylated human histo-blood group epitopes. The apo form of the C-terminal domain crystallized as a dimer, and calcium and mannose could be docked in the binding site. The whole lectin is hexameric and the overall structure, determined by electron microscopy and small angle X-ray scattering, reveals a flexible arrangement of three mannose/heptose-specific dimers flanked by two fucose-specific TNF-α-like trimers. We propose that BC2L-C binds to the bacterial surface in a mannose/heptose-dependent manner via the C-terminal domain. The TNF-α-like domain triggers IL-8 production in cultured airway epithelial cells in a carbohydrate-independent manner, and is therefore proposed to play a role in the dysregulated proinflammatory response observed in B. cenocepacia lung infections. The unique architecture of this newly recognized superlectin correlates with multiple functions including bacterial cell cross-linking, adhesion to human epithelia, and stimulation of inflammation.


Assuntos
Mediadores da Inflamação/fisiologia , Lectinas/fisiologia , Sequência de Aminoácidos , Burkholderia cenocepacia , Cristalografia por Raios X , Fucose/metabolismo , Humanos , Interleucina-8 , Lectinas/química , Lectinas/metabolismo , Lectinas de Ligação a Manose/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína/fisiologia , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Alinhamento de Sequência , Fator de Necrose Tumoral alfa/metabolismo
18.
Infect Immun ; 77(5): 2065-75, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19237519

RESUMO

Pseudomonas aeruginosa is a frequently encountered pathogen that is involved in acute and chronic lung infections. Lectin-mediated bacterium-cell recognition and adhesion are critical steps in initiating P. aeruginosa pathogenesis. This study was designed to evaluate the contributions of LecA and LecB to the pathogenesis of P. aeruginosa-mediated acute lung injury. Using an in vitro model with A549 cells and an experimental in vivo murine model of acute lung injury, we compared the parental strain to lecA and lecB mutants. The effects of both LecA- and Lec B-specific lectin-inhibiting carbohydrates (alpha-methyl-galactoside and alpha-methyl-fucoside, respectively) were evaluated. In vitro, the parental strain was associated with increased cytotoxicity and adhesion on A549 cells compared to the lecA and lecB mutants. In vivo, the P. aeruginosa-induced increase in alveolar barrier permeability was reduced with both mutants. The bacterial burden and dissemination were decreased for both mutants compared with the parental strain. Coadministration of specific lectin inhibitors markedly reduced lung injury and mortality. Our results demonstrate that there is a relationship between lectins and the pathogenicity of P. aeruginosa. Inhibition of the lectins by specific carbohydrates may provide new therapeutic perspectives.


Assuntos
Adesinas Bacterianas/fisiologia , Lectinas/fisiologia , Lesão Pulmonar , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/fisiologia , Adesinas Bacterianas/genética , Animais , Antibacterianos/farmacologia , Aderência Bacteriana , Carboidratos/farmacologia , Linhagem Celular , Células Epiteliais/microbiologia , Deleção de Genes , Humanos , Lectinas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia Bacteriana/patologia , Pseudomonas aeruginosa/genética , Análise de Sobrevida , Fatores de Virulência/genética
19.
J Mol Biol ; 383(4): 837-53, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18762193

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa contains several carbohydrate-binding proteins, among which is the P. aeruginosa lectin I (PA-IL), which displays affinity for alpha-galactosylated glycans. Glycan arrays were screened and demonstrated stronger binding of PA-IL toward alphaGal1-4betaGal-terminating structures and weaker binding to alphaGal1-3betaGal ones in order to determine which human glycoconjugates could play a role in the carbohydrate-mediated adhesion of the bacteria. This was confirmed in vivo by testing the binding of the lectin to Burkitt lymphoma cells that present large amounts of globotriaosylceramide antigen Gb3/CD77/P(k). Trisaccharide moieties of Gb3 (alphaGal1-4betaGal1-4Glc) and isoglobotriaosylceramide (alphaGal1-3betaGal1-4Glc) were tested by titration microcalorimetry, and both displayed similar affinity to PA-IL in solution. The crystal structure of PA-IL complexed to alphaGal1-3betaGal1-4Glc trisaccharide has been solved at 1.9-A resolution and revealed how the second galactose residue makes specific contacts with the protein surface. Molecular modeling studies were performed in order to compare the binding mode of PA-IL toward alphaGal1-3Gal with that toward alphaGal1-4Gal. Docking studies demonstrated that alphaGal1-4Gal creates another network of contacts for achieving a very similar affinity, and 10-ns molecular dynamics in explicit water allowed for analyzing the flexibility of each disaccharide ligand in the protein binding site. The higher affinity observed for binding to Gb3 epitope, both in vivo and on glycan array, is likely related to the presentation effect of the oligosaccharide on a surface, since only the Gb3 glycosphingolipid geometry is fully compatible with parallel insertion of neighboring trisaccharide heads in two binding sites of the same tetramer of PA-IL.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Aderência Bacteriana/fisiologia , Globosídeos , Lectinas/química , Lectinas/metabolismo , Estrutura Quaternária de Proteína , Pseudomonas aeruginosa/metabolismo , Triexosilceramidas , Adesinas Bacterianas/genética , Animais , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Linfoma de Burkitt , Configuração de Carboidratos , Sequência de Carboidratos , Linhagem Celular , Cristalografia por Raios X , Dissacarídeos/química , Dissacarídeos/metabolismo , Globosídeos/química , Globosídeos/metabolismo , Humanos , Ligação de Hidrogênio , Lectinas/genética , Análise em Microsséries , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato , Triexosilceramidas/química , Triexosilceramidas/metabolismo , Água/química
20.
Biochem J ; 411(2): 307-18, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18215132

RESUMO

Chronic colonization of the lungs by opportunist bacteria such as Pseudomonas aeruginosa and members of the Bcc (Burkholderia cepacia complex) is the major cause of morbidity and mortality among CF (cystic fibrosis) patients. PA-IIL (lecB gene), a soluble lectin from Ps. aeruginosa, has been the subject of much interest because of its very strong affinity for fucose. Orthologues have been identified in the opportunist bacteria Ralstonia solanacearum, Chromobacterium violaceum and Burkholderia of Bcc. The genome of the J2315 strain of B. cenocepacia, responsible for epidemia in CF centres, contains three genes that code for proteins with PA-IIL domains. The shortest gene was cloned in Escherichia coli and pure recombinant protein, BclA (B. cenocepacia lectin A), was obtained. The presence of native BclA in B. cenocepacia extracts was checked using a proteomic approach. The specificity of recombinant BclA was characterized using surface plasmon resonance showing a preference for mannosides and supported with glycan array experiments demonstrating a strict specificity for oligomannose-type N-glycan structures. The interaction thermodynamics of BclA with methyl alpha-D-mannoside demonstrates a dissociation constant (K(d)) of 2.75 x 10(-6) M. The X-ray crystal structure of the complex with methyl alpha-D-mannoside was determined at 1.7 A (1 A=0.1 nm) resolution. The lectin forms homodimers with one binding site per monomer, acting co-operatively with the second dimer site. Each monomer contains two Ca2+ ions and one sugar ligand. Despite strong sequence similarity, the differences between BclA and PA-IIL in their specificity, binding site and oligomerization mode indicate that the proteins should have different roles in the bacteria.


Assuntos
Burkholderia/química , Lectinas/química , Lectinas/metabolismo , Manose/química , Manose/metabolismo , Sequência de Aminoácidos , Burkholderia/genética , Calorimetria , Cromatografia em Gel , Clonagem Molecular , Cristalografia por Raios X , Genoma Bacteriano/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/isolamento & purificação , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Sensibilidade e Especificidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Ressonância de Plasmônio de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA