Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Epigenetics ; 19(1): 2375011, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38956836

RESUMO

Mesenchymal stem cells (MSCs), with the ability to differentiate into osteoblasts, adipocytes, or chondrocytes, show evidence that the donor cell's metabolic type influences the osteogenic process. Limited knowledge exists on DNA methylation changes during osteogenic differentiation and the impact of diverse donor genetic backgrounds on MSC differentiation. In this study, synovial membrane mesenchymal stem cells (SMSCs) from two pig breeds (Angeln Saddleback, AS; German Landrace, DL) with distinct metabolic phenotypes were isolated, and the methylation pattern of SMSCs during osteogenic induction was investigated. Results showed that most differentially methylated regions (DMRs) were hypomethylated in osteogenic-induced SMSC group. These DMRs were enriched with genes of different osteogenic signalling pathways at different time points including Wnt, ECM, TGFB and BMP signalling pathways. AS pigs consistently exhibited a higher number of hypermethylated DMRs than DL pigs, particularly during the peak of osteogenesis (day 21). Predicting transcription factor motifs in regions of DMRs linked to osteogenic processes and donor breeds revealed influential motifs, including KLF1, NFATC3, ZNF148, ASCL1, FOXI1, and KLF5. These findings contribute to understanding the pattern of methylation changes promoting osteogenic differentiation, emphasizing the substantial role of donor the metabolic type and epigenetic memory of different donors on SMSC differentiation.


Assuntos
Diferenciação Celular , Metilação de DNA , Células-Tronco Mesenquimais , Osteogênese , Membrana Sinovial , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese/genética , Suínos , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo , Células Cultivadas , Epigênese Genética
2.
BMC Genomics ; 25(1): 407, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664635

RESUMO

BACKGROUND: Unraveling the intricate and tightly regulated process of adipogenesis, involving coordinated activation of transcription factors and signaling pathways, is essential for addressing obesity and related metabolic disorders. The molecular pathways recruited by mesenchymal stem cells (MSCs) during adipogenesis are also dependent on the different sources of the cells and genetic backgrounds of donors, which contribute to the functional heterogeneity of the stem cells and consequently affect the developmental features and fate of the cells. METHODS: In this study, the alteration of transcripts during differentiation of synovial mesenchymal stem cells (SMSCs) derived from fibrous synovium (FS) and adipose synovial tissue (FP) of two pig breeds differing in growth performance (German Landrace (DL)) and fat deposition (Angeln Saddleback (AS)) was investigated. SMSCs from both tissues and breeds were stimulated to differentiate into adipocytes in vitro and sampled at four time points (day 1, day 4, day 7 and day 14) to obtain transcriptomic data. RESULTS: We observed numerous signaling pathways related to the cell cycle, cell division, cell migration, or cell proliferation during early stages of adipogenesis. As the differentiation process progresses, cells begin to accumulate intracellular lipid droplets and changes in gene expression patterns in particular of adipocyte-specific markers occur. PI3K-Akt signaling and metabolic pathways changed most during adipogenesis, while p53 signaling and ferroptosis were affected late in adipogenesis. When comparing MSCs from FS and FP, only a limited number of differentially expressed genes (DEGs) and enriched signaling pathways were identified. Metabolic pathways, including fat, energy or amino acid metabolism, were highly enriched in the AS breed SMSCs compared to those of the DL breed, especially at day 7 of adipogenesis, suggesting retention of the characteristic metabolic features of their original source, demonstrating donor memory in culture. In contrast, the DL SMSCs were more enriched in immune signaling pathways. CONCLUSIONS: Our study has provided important insights into the dynamics of adipogenesis and revealed metabolic shifts in SMSCs associated with different cell sources and genetic backgrounds of donors. This emphasises the critical role of metabolic and genetic factors as important indications and criteria for donor stem cell selection.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Animais , Adipogenia/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Suínos , Transdução de Sinais , Diferenciação Celular , Perfilação da Expressão Gênica , Transcriptoma , Membrana Sinovial/metabolismo , Membrana Sinovial/citologia , Adipócitos/metabolismo , Adipócitos/citologia , Células Cultivadas , Cruzamento
3.
Sci Rep ; 13(1): 10048, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344635

RESUMO

Synovial membrane mesenchymal stem cells (SMSCs) often serve as in vitro model for bone disease, but the molecular mechanisms driving osteogenesis in SMSCs from different donor cells of various sources and breeds remain unclear. In this study, porcine SMSCs isolated from adipose synovium (FP) and fibrous synovium (FS) of Angeln Saddleback (AS) and German Landrace (DL) were used to discover the signaling network change after osteogenic induction. During osteogenic differentiation, mineral deposition was first observed at day 14 and further increased until day 21. Transcriptional changes between day 1 and day 21 were enriched in several signaling pathways, including Wnt, PI3K-Akt, and TGF-beta pathway. Certain pathways related to osteogenesis, including osteoblast differentiation, regulation of bone mineralization, and BMP signaling pathway, were enriched at late time points, as confirmed by the osteogenic markers ALPL, COL1A1, and NANOG. A fraction of differentially expressed genes (DEGs) were found between FP and FS, while DEGs between AS and DL increased during the differentiation phase until day 7 and then decreased from day 14 to day 21. These genes are involved in several important signaling pathways, including TGF-beta, Wnt, and lipid-related signaling pathways, suggesting that SMSCs from these two breeds have different osteogenic capabilities.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Suínos , Osteogênese/genética , Transcriptoma , Fosfatidilinositol 3-Quinases/metabolismo , Diferenciação Celular/genética , Fator de Crescimento Transformador beta/metabolismo , Membrana Sinovial/metabolismo , Patrimônio Genético , Células Cultivadas , Via de Sinalização Wnt
4.
Histochem Cell Biol ; 159(5): 389-400, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36790468

RESUMO

An improved oxygen availability in air-liquid interface (ALI) cultures of enterocytes of the small intestine seems to be primarily responsible for morphological, metabolic, and functional changes. Intestinal porcine epithelial cells 1 (IPEC-1) are less investigated and are rarely used as model for intestinal barrier but showed a profound change of cell shape during ALI cultivation. We aim to answer the following question: Are the observed morphological effects accompanied by changes in metabolic function? A microarray analysis of submerged culture (SMC) and ALI cultures identified 830 significantly regulated genes. Subsequent functional clustering revealed alterations in 31 pathways, with the highest number of regulated genes in metabolic pathways, carbon metabolism, glycolysis, and hypoxia-inducible factor (HIF) signaling. Furthermore, HIF-1α as a mediator of a metabolic switch between glycolysis and oxidative phosphorylation showed a trend of increased mRNA levels in ALI in contrast to a reduced nuclear HIF-1α content in the nucleus. Candidate genes of oxidative phosphorylation such as a mitochondrial marker exhibited enhanced mRNA levels, which was confirmed by western blot analysis. Cytochrome C oxidase (COX) subunit 5B protein was decreased in ALI, although mRNA level was increased. The oxidation of ferrocytochrome C to ferricytochrome C was used for detection of cytochrome C oxidase activity of isolated mitochondria and resulted in a trend of higher activity in ALI. Furthermore, quantification of glucose and lactate concentrations in cell culture medium revealed significantly reduced glucose levels and decreased lactate production in ALI. To evaluate energy metabolism, we measured cellular adenosine triphosphate (ATP) aggregation in homogenized cell suspensions showing similar levels. However, application of the uncoupling agent FCCP reduced ATP levels in ALI but not in SMC. In contrast, blocking with 2-desoxy-D-glucose (2DG) significantly reduced ATP content in ALI and SMC. These results indicate a metabolic shift in IPEC-1 cultured under ALI conditions enhancing oxidative phosphorylation and suppressing glycolysis.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Células Epiteliais , Animais , Suínos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células Epiteliais/metabolismo , Trifosfato de Adenosina , Lactatos/metabolismo , Glucose/metabolismo , RNA Mensageiro/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
5.
Cells ; 10(12)2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34943926

RESUMO

The somatotropic axis is required for a number of biological processes, including growth, metabolism, and aging. Due to its central effects on growth and metabolism and with respect to its positive effects on muscle mass, regulation of the GH/IGF-system during endurance exercise is of particular interest. In order to study the control of gene expression and adaptation related to physical performance, we used a non-inbred mouse model, phenotype-selected for high running performance (DUhTP). Gene expression of the GH/IGF-system and related signaling cascades were studied in the pituitary gland and muscle of sedentary males of marathon and unselected control mice. In addition, the effects of three weeks of endurance exercise were assessed in both genetic groups. In pituitary glands from DUhTP mice, reduced expression of Pou1f1 (p = 0.002) was accompanied by non-significant reductions of Gh mRNA (p = 0.066). In addition, mRNA expression of Ghsr and Sstr2 were significantly reduced in the pituitary glands from DUhTP mice (p ≤ 0.05). Central downregulation of Pou1f1 expression was accompanied by reduced serum concentrations of IGF1 and coordinated downregulation of multiple GH/IGF-signaling compounds in muscle (e.g., Ghr, Igf1, Igf1r, Igf2r, Irs1, Irs2, Akt3, Gskb, Pik3ca/b/a2, Pten, Rictor, Rptor, Tsc1, Mtor; p ≤ 0.05). In response to exercise, the expression of Igfbp3, Igfbp 4, and Igfbp 6 and Stc2 mRNA was increased in the muscle of DUhTP mice (p ≤ 0.05). Training-induced specific activation of AKT, S6K, and p38 MAPK was found in muscles from control mice but not in DUhTP mice (p ≤ 0.05), indicating a lack of mTORC1 and mTORC2 activation in marathon mice in response to physical exercise. While hormone-dependent mTORC1 and mTORC2 pathways in marathon mice were repressed, robust increases of Ragulator complex compounds (p ≤ 0.001) and elevated sirtuin 2 to 6 mRNA expression were observed in the DUhTP marathon mouse model (p ≤ 0.05). Activation of AMPK was not observed under the experimental conditions of the present study. Our results describe coordinated downregulation of the somatotropic pathway in long-term selected marathon mice (DUhTP), possibly via the pituitary gland and muscle interaction. Our results, for the first time, demonstrate that GH/IGF effects are repressed in a context of superior running performance in mice.


Assuntos
Hormônio do Crescimento , Fator de Crescimento Insulin-Like I , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Músculos , Condicionamento Físico Animal , Transdução de Sinais , Animais , Masculino , Camundongos , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Músculos/metabolismo , Fenótipo , Fosforilação , Resistência Física , Hipófise/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Sci Rep ; 11(1): 20086, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635722

RESUMO

The jejunum plays crucial roles for the digestion and absorption of nutrients and minerals and for barrier functions that are essential for a healthy, productive life cycle of farm animals, including laying hens. Accordingly, knowledge of the molecular pathways that emerge in the intestine during development, and particularly at the beginning of laying activity, will help to derive strategies for improving nutrient efficiency in laying hens. In this study, jejunal samples were obtained from two high-yielding layer strains at five developmental stages (weeks 10, 16, 24, 30 and 60 of life) for RNA-sequencing, alongside the profiling of blood plasma parameters to approximate the dynamics of mineral homeostasis. The results reflected a marked distinction between the pre-laying and laying phase as inferred from levels of parathyroid hormone, triiodothyronine, estradiol, vitamin D, and calcium. Moreover, the expression patterns of the intestinal mucosa responded directly to the changing metabolic and nutritional profiles at the beginning of the laying phase in maturing high-yielding strains of laying hens. These comprise signaling events namely RANK/RANKL signaling and cellular senescence. Taken together, the timing of sexual maturity of laying hens demands closer examination to unravel metabolic requirements and associated endogenous mechanisms.


Assuntos
Ração Animal/análise , Dieta/veterinária , Jejuno/metabolismo , Nutrientes/análise , Transcriptoma , Animais , Cálcio/metabolismo , Galinhas , Estradiol/metabolismo , Hormônio Paratireóideo/metabolismo
7.
Innate Immun ; 27(5): 388-408, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34338001

RESUMO

The sensitivity of pigs to deoxynivalenol (DON) might be increased by systemic inflammation (SI), which also has consequences for hepatic integrity. Liver lesions and a dys-regulated gene network might hamper hepatic handling and elimination of DON whereby the way of initiation of hepatic inflammation might play an additional role. First and second-pass exposure of the liver with LPS for triggering a SI was achieved by LPS infusion via pre- or post-hepatic venous route, respectively. Each infusion group was pre-conditioned either with a control diet (0.12 mg DON/kg diet) or with a DON-contaminated diet (4.59 mg DON/kg diet) for 4 wk. Liver transcriptome was evaluated at 195 min after starting infusions. DON exposure alone failed to modulate the mRNA expression significantly. However, pre- and post-hepatic LPS challenges prompted transcriptional responses in immune and metabolic levels. The mRNAs for B-cell lymphoma 2-like protein 11 as a key factor in apoptosis and IFN-γ released by T cells were clearly up-regulated in DON-fed group infused with LPS post-hepatically. On the other hand, mRNAs for nucleotide binding oligomerization domain containing 2, IFN-α and eukaryotic translation initiation factor 2α kinase 3 as ribosomal stress sensors were exclusively up-regulated in control pigs with pre-hepatic LPS infusion. These diverse effects were traced back to differences in TLR4 signalling.


Assuntos
Reação de Fase Aguda/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Fígado/fisiologia , Tricotecenos/toxicidade , Reação de Fase Aguda/metabolismo , Ração Animal , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dieta/efeitos adversos , Exposição Dietética , Contaminação de Alimentos , Lipopolissacarídeos/metabolismo , Micotoxinas , Suínos , Transcriptoma
8.
Mob DNA ; 12(1): 20, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407874

RESUMO

BACKGROUND: Toll-like receptors (TLRs) play important roles in building innate immune and inducing adaptive immune responses. Associations of the TLR genes polymorphisms with disease susceptibility, which are the basis of molecular breeding for disease resistant animals, have been reported extensively. Retrotransposon insertion polymorphisms (RIPs), as a new type of molecular markers developed recently, have great potential in population genetics and quantitative trait locus mapping. In this study, bioinformatic prediction combined with PCR-based amplification was employed to screen for RIPs in porcine TLR genes. Their population distribution was examined, and for one RIP the impact on gene activity and phenotype was further evaluated. RESULTS: Five RIPs, located at the 3' flank of TLR3, 5' flank of TLR5, intron 1 of TLR6, intron 1 of TLR7, and 3' flank of TLR8 respectively, were identified. These RIPs were detected in different breeds with an uneven distribution among them. By using the dual luciferase activity assay a 192 bp endogenous retrovirus (ERV) in the intron 1 of TLR6 was shown to act as an enhancer increasing the activities of TLR6 putative promoter and two mini-promoters. Furthermore, real-time quantitative polymerase chain reaction (qPCR) analysis revealed significant association (p < 0.05) of the ERV insertion with increased mRNA expression of TLR6, the neighboring gene TLR1, and genes downstream in the TLR signaling pathway such as MyD88 (Myeloid differentiation factor 88), Rac1 (Rac family small GTPase 1), TIRAP (TIR domain containing adaptor protein), Tollip (Toll interacting protein) as well as the inflammatory factors IL6 (Interleukin 6), IL8 (Interleukin 8), and TNFα (Tumor necrosis factor alpha) in tissues of 30 day-old piglet. In addition, serum IL6 and TNFα concentrations were also significantly upregulated by the ERV insertion (p < 0.05). CONCLUSIONS: A total of five RIPs were identified in five different TLR loci. The 192 bp ERV insertion in the first intron of TLR6 was associated with higher expression of TLR6, TLR1, and several genes downstream in the signaling cascade. Thus, the ERV insertion may act as an enhancer affecting regulation of the TLR signaling pathways, and can be potentially applied in breeding of disease resistant animals.

9.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316683

RESUMO

Phosphorus is an essential mineral for all living organisms and a limited resource worldwide. Variation and heritability of phosphorus utilization (PU) traits were observed, indicating the general possibility of improvement. Molecular mechanisms of PU, including host and microbial effects, are still poorly understood. The most promising molecules that interact between the microbiome and host are microRNAs. Japanese quail representing extremes for PU were selected from an F2 population for miRNA profiling of the ileal tissue and subsequent association with mRNA and microbial data of the same animals. Sixty-nine differentially expressed miRNAs were found, including 21 novel and 48 known miRNAs. Combining miRNAs and mRNAs based on correlated expression and target prediction revealed enrichment of transcripts in functional pathways involved in phosphate or bone metabolism such as RAN, estrogen receptor and Wnt signaling, and immune pathways. Out of 55 genera of microbiota, seven were found to be differentially abundant between PU groups. The study reveals molecular interactions occurring in the gut of quail which represent extremes for PU including miRNA-16-5p, miR-142b-5p, miR-148a-3p, CTDSP1, SMAD3, IGSF10, Bacteroides, and Alistipes as key indicators due to their trait-dependent differential expression and occurrence as hub-members of the network of molecular drivers of PU.


Assuntos
Bactérias/classificação , Coturnix/genética , Perfilação da Expressão Gênica/veterinária , MicroRNAs/genética , Fósforo/metabolismo , Animais , Proteínas Aviárias/genética , Bactérias/genética , Bactérias/isolamento & purificação , Coturnix/microbiologia , Feminino , Microbioma Gastrointestinal , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Masculino , Filogenia , RNA Mensageiro/genética , Análise de Sequência de RNA
10.
Int J Hyperthermia ; 36(1): 776-784, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31431083

RESUMO

Objective: Environmental stress induces disturbances in cell energy metabolism and may cause epigenetic modifications. This study aimed to understand the possible impact of temperature stress (35 °C, 39 °C and 41 °C, compared to control 37 °C) on energy metabolism and epigenetic modifications, such as DNA methylation and histone H4 acetylation, as well as its effects on the expression of genes responsible for epigenetic changes, in mouse skeletal myoblasts (C2C12 cells). Methods: The results showed significantly reduced maximal respiration and spare respiratory capacity under heat stress (39 °C and 41 °C), suggesting that mitochondrial functions were compromised under these conditions. The glycolytic capacity and glycolysis markedly increased following low-temperature stress (35 °C). The results suggested that, under cold stress, cells prefer glycolysis as a rapid compensatory mechanism to meet energy requirements for adaptive thermogenic response. Results: Epigenetic changes (histone H4 acetylation and global DNA methylation) were observed under both heat and cold stress. Among the genes coding for DNA methyltransferases, the Dnmt3a was significantly increased under high-temperature conditions (39 °C and 41 °C), while Dnmt1 expression was significantly increased at low temperature (35 °C), indicating that under these conditions the cells preferred maintenance of methylation to de novo methylation activity. An expression pattern similar to Dnmt3a was observed for Gcn5, encoding for a histone acetyltransferase. The study revealed that temperature stress induced changes in the metabolic profiles, as well as epigenetic modifications, including the dynamics of the key enzymes. Conclusion: The results indicated the existence of crosstalk mechanisms between energy metabolism and epigenetics during cell stress response.


Assuntos
Metabolismo Energético , Epigênese Genética , Resposta ao Choque Térmico , Mioblastos/metabolismo , Acetilação , Animais , Metilação de DNA , Glicólise , Histonas , Camundongos , Mitocôndrias/metabolismo
11.
Front Genet ; 10: 559, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249595

RESUMO

Tissue sensitivity to glucocorticoids is a key factor dictating outcome of their homeostatic and therapeutic action, whereby liver represents one of the major peripheral targets. Here, we used pigs carrying a natural gain-of-function glucocorticoid receptor (GR) variant Ala610Val (GRAla610Val) as a model to identify genes and pathways related to differential glucocorticoid sensitivity. Animals with different GRAla610Val genotypes were treated either with saline or two different doses of dexamethasone. Genome-wide transcriptional responses depending on treatment, genotype, and their interaction in the liver were investigated using mRNA sequencing. Dexamethasone induced vast transcriptional responses, with more than 30% of present genes being affected. Functional annotation of genes differentially expressed due to dexamethasone treatment suggested that genes related to inflammation respond more sensitively, despite absence of an immune stimulus. In contrast, genes involved in glucose metabolism and cancer appeared to be less sensitive. Analysis of genotype and genotype × treatment interaction revealed that clustered protocadherins, particularly PCDHB7, are most prominently affected by GRAla610Val, mainly depending on dose. GRAla610Val influenced also expression of a set of glucose metabolism related genes, including PPARGC1A and CEBPB, in the absence of dexamethasone though no differences in basal plasma glucose level were observed. This might represent an adaptive response, keeping balance between receptor sensitivity, and level of circulating endogenous glucocorticoids. Administration of low dexamethasone dose changed their expression pattern and induced higher glucose response in carriers of the hypersensitive Val receptor. Our findings suggest that GRAla610Val modulates tissue responses to glucocorticoids dynamically, depending on their circulating level.

12.
Toxins (Basel) ; 10(11)2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423940

RESUMO

Deoxynivalenol (DON) is a toxin found in cereals as well as in processed products such as pasta, and causes substantial economic losses for stock breeding as it induces vomiting, reduced feeding, and reduced growth rates in piglets. Oxidative phosphorylation, TCA-cycle, transcription, and translation have been hypothesized to be leading pathways that are affected by DON. We used an application of high and low glucose to examine oxidative phosphorylation and anaerobic glycolysis. A change in the metabolic status of IPEC-J2 was observed and confirmed by microarray data. Measurements of oxygen consumption resulted in a significant reduction, if DON attacks from the basolateral. Furthermore, we found a dose-dependent effect with a significant reduction at 2000 ng/mL. In addition, SLC7A11 and PHB, the genes with the highest regulation in our microarray analyses under low glucose supply, were investigated and showed a variable regulation on protein level. Lactate production and glucose consumption was investigated to examine the impact of DON on anaerobic glycolysis and we observed a significant increase in 2000 blhigh and a decrease in 2000 aphigh. Interestingly, both groups as well as 200 blhigh showed a significant higher de novo protein synthesis when compared to the control. These results indicate the direct or indirect impact of DON on metabolic pathways in IPEC-J2.


Assuntos
Células Epiteliais/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Tricotecenos/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glicólise , Intestinos/citologia , Ácido Láctico/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação Oxidativa , Consumo de Oxigênio , Suínos
13.
Sci Rep ; 7(1): 14024, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070892

RESUMO

Genes expressed in mitochondria work in concert with those expressed in the nucleus to mediate oxidative phosphorylation (OXPHOS), a process that is relevant for muscle metabolism and meat quality. Mitochondrial genome activity can be efficiently studied and compared in Duroc and Pietrain pigs, which harbor different mitochondrial haplotypes and distinct muscle fiber types, mitochondrial respiratory activities, and fat content. Pietrain pigs homozygous-positive for malignant hyperthermia susceptibility (PiPP) carried only haplotype 8 and showed the lowest absolute mtDNA copy number accompanied by a decrease transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6 and nuclear-encoded subunits NDUFA11 and NDUFB8. In contrast, we found that haplotype 4 of Duroc pigs had significantly higher mitochondrial DNA (mtDNA) copy numbers and an increase transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6. These results suggest that the variation in mitochondrial and nuclear genetic background among these animals has an effect on mitochondrial content and OXPHOS system subunit expression. We observed the co-expression pattern of mitochondrial and nuclear encoded OXPHOS subunits suggesting that the mitochondrial-nuclear crosstalk functionally involves in muscle metabolism. The findings provide valuable information for understanding muscle biology processes and energy metabolism, and may direct use for breeding strategies to improve meat quality and animal health.


Assuntos
Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Suínos/genética , Animais , DNA Mitocondrial/química , Dosagem de Genes , Variação Genética , Genoma Mitocondrial , Haplótipos , Carne , Fibras Musculares Esqueléticas/metabolismo , Suínos/metabolismo
14.
J Agric Food Chem ; 65(32): 6821-6830, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28722406

RESUMO

Phytogenic feed additives represent a potential alternative to antibiotics with attributed health and growth-promoting effects. Chickens supplemented with an essential oil blend, a Quillaja saponin blend, or a combination of both phytogenic preparations showed a comprehensively and significantly improved apparent ileal digestibility of crude protein and amino acids compared to control birds. Accordingly, holistic transcriptomic analyses of jejunum and liver samples indicated alterations of macromolecule transporters and processing pathways likely culminating in an increased uptake and metabolizing of carbohydrates and fatty acids. Complementary analyses in Caco-2 showed a significant increase in transporter recruitment to the membrane (SGLT1 and PEPT1) after addition of essential oils and saponins. Although the penetrance of effects differed for the used phytogenic feed additives, the results indicate for an overlapping mode of action including local effects at the intestinal border and systemic alterations of macronutrient metabolism resulting in an improved performance of broilers.


Assuntos
Ração Animal/análise , Galinhas/metabolismo , Aditivos Alimentares/metabolismo , Íleo/metabolismo , Illicium/química , Óleos Voláteis/metabolismo , Origanum/metabolismo , Rosmarinus/metabolismo , Saponinas/metabolismo , Thymus (Planta)/metabolismo , Animais , Células CACO-2 , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Digestão , Humanos , Óleos Voláteis/análise , Origanum/química , Proteínas/genética , Proteínas/metabolismo , Rosmarinus/química , Saponinas/análise , Thymus (Planta)/química
15.
Cell Death Discov ; 3: 17001, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28250970

RESUMO

The intestinal porcine epithelial cell line IPEC-J2, cultured under the air-liquid interface (ALI) conditions, develops remarkable morphological characteristics close to intestinal epithelial cells in vivo. Improved oxygen availability has been hypothesised to be the leading cause of this morphological differentiation. We assessed oxygen availability in ALI cultures and examined the influence of this cell culture method on glycolysis and oxidative phosphorylation in IPEC-J2 using the submerged membrane culture (SMC) and ALI cultures. Furthermore, the role of HIF-1 as mediator of oxygen availability was analysed. Measurements of oxygen tension confirmed increased oxygen availability at the medium-cell interface and demonstrated reduced oxygen extraction at the basal compartment in ALI. Microarray analysis to determine changes in the genetic profile of IPEC-J2 in ALI identified 2751 modified transcripts. Further examinations of candidate genes revealed reduced levels of glycolytic enzymes hexokinase II and GAPDH, as well as lactate transporting monocarboxylate transporter 1 in ALI, whereas expression of the glucose transporter GLUT1 remained unchanged. Cytochrome c oxidase (COX) subunit 5B protein analysis was increased in ALI, although mRNA level remained at constant level. COX activity was assessed using photometric quantification and a three-fold increase was found in ALI. Quantification of glucose and lactate concentrations in cell culture medium revealed significantly reduced glucose levels and decreased lactate production in ALI. In order to evaluate energy metabolism, we measured cellular adenosine triphosphate (ATP) aggregation in homogenised cell suspensions showing similar levels. However, application of the uncoupling agent FCCP reduced ATP levels in ALI but not in SMC. In addition, HIF showed reduced mRNA levels in ALI. Furthermore, HIF-1α protein was reduced in the nuclear compartment of ALI when compared to SCM as confirmed by confocal microscopy. These results indicate a metabolic switch in IPEC-J2 cultured under ALI conditions enhancing oxidative phosphorylation and suppressing glycolysis. ALI-induced improvement of oxygen supply reduced nuclear HIF-1α, demonstrating a major change in the transcriptional response.

16.
BMC Genomics ; 17: 531, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27485725

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in diverse biological processes via regulation of gene expression including in skeletal muscles. In the current study, miRNA expression profile was investigated in longissimus muscle biopsies of malignant hyperthermia syndrome-negative Duroc and Pietrain pigs with distinct muscle metabolic properties in order to explore the regulatory role of miRNAs related to mitochondrial respiratory activity and metabolic enzyme activity in skeletal muscle. RESULTS: A comparative analysis of the miRNA expression profile between Duroc and Pietrain pigs was performed, followed by integration with mRNA profiles based on their pairwise correlation and computational target prediction. The identified target genes were enriched in protein ubiquitination pathway, stem cell pluripotency and geranylgeranyl diphosphate biosynthesis, as well as skeletal and muscular system development. Next, we analyzed the correlation between individual miRNAs and phenotypical traits including muscle fiber type, mitochondrial respiratory activity, metabolic enzyme activity and adenosine phosphate concentrations, and constructed the regulatory miRNA-mRNA networks associated with energy metabolism. It is noteworthy that miR-25 targeting BMPR2 and IRS1, miR-363 targeting USP24, miR-28 targeting HECW2 and miR-210 targeting ATP5I, ME3, MTCH1 and CPT2 were highly associated with slow-twitch oxidative fibers, fast-twitch oxidative fibers, ADP and ATP concentration suggesting an essential role of the miRNA-mRNA regulatory networking in modulating the mitochondrial energy expenditure in the porcine muscle. In the identified miRNA-mRNA network, a tight relationship between mitochondrial and ubiquitin proteasome system at the level of gene expression was observed. It revealed a link between these two systems contributing to energy metabolism of skeletal muscle under physiological conditions. CONCLUSIONS: We assembled miRNA-mRNA regulatory networks based on divergent muscle properties between different pig breeds and further with the correlation analysis of expressed genes and phenotypic measurements. These complex networks relate to muscle fiber type, metabolic enzyme activity and ATP production and may contribute to divergent muscle phenotypes by fine-tuning the expression of genes. Altogether, the results provide an insight into a regulatory role of miRNAs in muscular energy metabolisms and may have an implication on meat quality and production.


Assuntos
Metabolismo Energético/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , Mitocôndrias Musculares/fisiologia , Fibras Musculares Esqueléticas/metabolismo , RNA Mensageiro/genética , Animais , Respiração Celular , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Fenótipo , Característica Quantitativa Herdável , Reprodutibilidade dos Testes , Suínos
17.
J Bioenerg Biomembr ; 48(1): 55-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26759028

RESUMO

Skeletal muscles are metabolically active and have market value in meat-producing farm animals. A better understanding of biological pathways affecting energy metabolism in skeletal muscle could advance the science of skeletal muscle. In this study, comparative pathway-focused gene expression profiling in conjunction with muscle fiber typing were analyzed in skeletal muscles from Duroc, Pietrain, and Duroc-Pietrain crossbred pigs. Each breed type displayed a distinct muscle fiber-type composition. Mitochondrial respiratory activity and glycolytic and oxidative enzyme activities were comparable among genotypes, except for significantly lower complex I activity in Pietrain pigs homozygous-positive for malignant hyperthermia syndrome. At the transcriptional level, lactate dehydrogenase B showed breed specificity, with significantly lower expression in Pietrain pigs homozygous-positive for malignant hyperthermia syndrome. A similar mRNA expression pattern was shown for several subunits of oxidative phosphorylation complexes, including complex I, complex II, complex IV, and ATP synthase. Significant correlations were observed between mRNA expression of genes in focused pathways and enzyme activities in a breed-dependent manner. Moreover, expression patterns of pathway-focused genes were well correlated with muscle fiber-type composition. These results stress the importance of regulation of transcriptional rate of genes related to oxidative and glycolytic pathways in the metabolic capacity of muscle fibers. Overall, the results further the breed-specific understanding of the molecular basis of metabolic enzyme activities, which directly impact meat quality.


Assuntos
Cruzamento , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxigênio/fisiologia , Animais , Suínos
18.
Int J Biol Sci ; 11(12): 1348-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26681915

RESUMO

Skeletal muscle is a highly metabolically active tissue that both stores and consumes energy. Important biological pathways that affect energy metabolism and metabolic fiber type in muscle cells may be identified through transcriptomic profiling of the muscle, especially ante mortem. Here, gene expression was investigated in malignant hyperthermia syndrome (MHS)-negative Duroc and Pietrian (PiNN) pigs significantly differing for the muscle fiber types slow-twitch-oxidative fiber (STO) and fast-twitch-oxidative fiber (FTO) as well as mitochondrial activity (succinate-dependent state 3 respiration rate). Longissimus muscle samples were obtained 24 h before slaughter and profiled using cDNA microarrays. Differential gene expression between Duroc and PiNN muscle samples were associated with protein ubiquitination, stem cell pluripotency, amyloid processing, and 3-phosphoinositide biosynthesis and degradation pathways. In addition, weighted gene co-expression network analysis within both breeds identified several co-expression modules that were associated with the proportion of different fiber types, mitochondrial respiratory activity, and ATP metabolism. In particular, Duroc results revealed strong correlations between mitochondrion-associated co-expression modules and STO (r = 0.78), fast-twitch glycolytic fiber (r = -0.98), complex I (r=0.72) and COX activity (r = 0.86). Other pathways in the protein-kinase-activity enriched module were positively correlated with STO (r=0.93), while negatively correlated with FTO (r = -0.72). In contrast to PiNN, co-expression modules enriched in macromolecule catabolic process, actin cytoskeleton, and transcription activator activity were associated with fiber types, mitochondrial respiratory activity, and metabolic enzyme activities. Our results highlight the importance of mitochondria for the oxidative capacity of porcine muscle and for breed-dependent molecular pathways in muscle cell fibers.


Assuntos
Transporte de Elétrons , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/fisiologia , Animais , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Suínos
19.
Toxicol Lett ; 239(3): 161-71, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26417708

RESUMO

The porcine intestinal epithelium is a primary target for mycotoxin deoxynivalenol (DON) and lipopolysaccharides (LPS). Although epithelial cells are exposed to these toxins mainly from the luminal-chyme compartment an exposure from the blood side resulting from systemic absorption cannot be excluded. Thus, we investigated the effect of DON and LPS, alone or combined, on porcine intestinal epithelial cells IPEC-J2 on a transcriptional, translational and functional level when administered either from apical or basolateral. IPEC-J2 cells were cultured on 12-well inserts in complete medium at 5% CO2 and 39°C and subjected to following treatments: control (CON), 2000 ng/mL DON, 1 µg/mL LPS or DON+LPS for 72 h, either from apical or basolateral. Transepithelial electrical resistance (TEER), protein and IL-8 content were measured and microarray analysis, qRT-PCR (IL-8, zonula occludens-1 ZO-1, ß-actin), Western Blot (ZO-1, ß-actin) and immunofluorescence (ZO-1) were performed. Data of at least three independent experiments were analysed with ANOVA and Dunnett's post hoc test. Basolateral DON resulted in significantly lower cell counts (p<0.05) with larger cells (p<0.01), whereas apical DON reduced total (p<0.001) and specific protein content (IL-8 content CON vs. DON: 2378 pg/3 mL vs. 991 pg/3 mL; p<0.001). Transcripts of ß-actin and ZO-1 were significantly upregulated in response to DON, irrespective of direction, whereas IL-8 mRNA remained unaffected. However, ZO-1 spatial distribution in the tight junction and its function (TEER) were detrimentally affected by basolateral DON only. In conclusion, direction of DON exposure affected IPEC-J2 differently on a translational and functional level, but was mainly inconsequential on a transcriptional level.


Assuntos
Células Epiteliais/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Tricotecenos/toxicidade , Actinas/genética , Actinas/metabolismo , Animais , Contagem de Células , Células Cultivadas , Escherichia coli/química , Interleucina-8/genética , Interleucina-8/metabolismo , Intestinos/citologia , Intestinos/efeitos dos fármacos , Suínos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Regulação para Cima , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
20.
PLoS One ; 10(7): e0132323, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147118

RESUMO

The pig shows genetical and physiological resemblance to human, which predestines it as an experimental animal model especially for mucosal physiology. Therefore, the intestinal epithelial cell lines 1 and J2 (IPEC-1, IPEC-J2)--spontaneously immortalised cell lines from the porcine intestine--are important tools for studying intestinal function. A microarray (GeneChip Porcine Genome Array) was performed to compare the genome wide gene expression of IPECs. Different significantly up-regulated pathways were identified, like "lysosome", "pathways in cancer", "regulation of actin cytoskeleton" and "oxidative phosphorylation" in IPEC-J2 in comparison to IPEC-1. On the other hand, "spliceosome", "ribosome", "RNA-degradation" and "tight junction" are significantly down-regulated pathways in IPEC-J2 in comparison to IPEC-1. Examined pathways were followed up by functional analyses. ATP-, oxygen, glucose and lactate-measurement provide evidence for up-regulation of oxidative phosphorylation in IPEC-J2. These cells seem to be more active in their metabolism than IPEC-1 cells due to a significant higher ATP-content as well as a higher O2- and glucose-consumption. The down-regulated pathway "ribosome" was followed up by measurement of RNA- and protein content. In summary, IPEC-J2 is a morphologically and functionally more differentiated cell line in comparison to IPEC-1. In addition, IPEC-J2 cells are a preferential tool for in vitro studies with the focus on metabolism.


Assuntos
Células Epiteliais/citologia , Mucosa Intestinal/citologia , Intestinos/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Forma Celular/fisiologia , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Fosforilação , Suínos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA