Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38519059

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have improved outcomes and extended patient survival in several tumor types. However, ICIs often induce immune-related adverse events (irAEs) that warrant therapy cessation, thereby limiting the overall effectiveness of this class of therapeutic agents. Currently, available therapies used to treat irAEs might also blunt the antitumor activity of the ICI themselves. Therefore, there is an urgent need to identify treatments that have the potential to be administered alongside ICI to optimize their use. METHODS: Using a translationally relevant murine model of anti-PD-1 and anti-CTLA-4 antibodies-induced irAEs, we compared the safety and efficacy of prednisolone, anti-IL-6, anti-TNFɑ, anti-IL-25 (IL-17E), and anti-IL-17RA (the receptor for IL-25) administration to prevent irAEs and to reduce tumor size. RESULTS: While all interventions were adequate to inhibit the onset of irAEs pneumonitis and hepatitis, treatment with anti-IL-25 or anti-IL-17RA antibodies also exerted additional antitumor activity. Mechanistically, IL-25/IL-17RA blockade reduced the number of organ-infiltrating lymphocytes. CONCLUSION: These findings suggest that IL-25/IL-17RA may serve as an additional target when treating ICI-responsive tumors, allowing for better tumor control while suppressing immune-related toxicities.


Assuntos
Neoplasias , Humanos , Animais , Camundongos , Ipilimumab/uso terapêutico , Imunoterapia/efeitos adversos , Fator de Necrose Tumoral alfa
2.
Arthritis Res Ther ; 26(1): 32, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254179

RESUMO

BACKGROUND: PD-1 is an immune checkpoint on T cells, and interventions to block this receptor result in T cell activation and enhanced immune response to tumors and pathogens. Reciprocally, despite a decade of research, approaches to treat autoimmunity with PD-1 agonists have only had limited successful. To resolve this, new methods must be developed to augment PD-1 function beyond engaging the receptor. METHODS: We conducted a flow cytometry analysis of T cells isolated from the peripheral blood and synovial fluid of patients with rheumatoid arthritis. In addition, we performed a genome-wide CRISPR/Cas9 screen to identify genes associated with PD-1 signaling. We further analyzed genes involved in PD-1 signaling using publicly available bulk and single-cell RNA sequencing datasets. RESULTS: Our screen confirmed known regulators in proximal PD-1 signaling and, importantly, identified an additional 1112 unique genes related to PD-1 ability to inhibit T cell functions. These genes were strongly associated with the response of cancer patients to PD-1 blockades and with high tumor immune dysfunction and exclusion scores, confirming their role downstream of PD-1. Functional annotation revealed that the most significant genes uncovered were those associated with known immune regulation processes. Remarkably, these genes were considerably downregulated in T cells isolated from patients with inflammatory arthritis, supporting their overall inhibitory functions. A study of rheumatoid arthritis single-cell RNA sequencing data demonstrated that five genes, KLRG1, CRTAM, SLAMF7, PTPN2, and KLRD1, were downregulated in activated and effector T cells isolated from synovial fluids. Backgating these genes to canonical cytotoxic T cell signatures revealed PD-1+ HLA-DRHIGH KLRG1LOW T cells as a novel inflammatory subset of T cells. CONCLUSIONS: We concluded that PD-1+ HLA-DRHIGH KLRG1LOW T cells are a potential target for future PD-1 agonists to treat inflammatory diseases. Our study uncovers new genes associated with PD-1 downstream functions and, therefore, provides a comprehensive resource for additional studies that are much needed to characterize the role of PD-1 in the synovial subset of T cells.


Assuntos
Artrite Reumatoide , Receptor de Morte Celular Programada 1 , Humanos , Receptor de Morte Celular Programada 1/genética , Artrite Reumatoide/genética , Transdução de Sinais , Linfócitos T Citotóxicos , Antígenos HLA-DR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA