Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 179(18): 4486-4499, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35710141

RESUMO

BACKGROUND AND PURPOSE: The incretin hormone, gastric inhibitory peptide/glucose-dependent insulinotropic polypeptide (GIP), secreted by the enteroendocrine K-cells in the proximal intestine, may regulate lipid metabolism and adiposity, but its exact role in these processes is unclear. EXPERIMENTAL APPROACH: We characterized in vitro and in vivo antagonistic properties of a novel GIP analogue, mGIPAnt-1. We further assessed the in vivo pharmacokinetic profile of this antagonist, as well as its ability to affect high-fat diet (HFD)-induced body weight gain in ovariectomised mice during an 8-week treatment period. KEY RESULTS: mGIPAnt-1 showed competitive antagonistic properties to the GIP receptor in vitro as it inhibited GIP-induced cAMP accumulation in COS-7 cells. Furthermore, mGIPAnt-1 was capable of inhibiting GIP-induced glucoregulatory and insulinotropic effects in vivo and has a favourable pharmacokinetic profile with a half-life of 7.2 h in C57Bl6 female mice. Finally, sub-chronic treatment with mGIPAnt-1 in ovariectomised HFD mice resulted in a reduction of body weight and fat mass. CONCLUSION AND IMPLICATIONS: mGIPAnt-1 successfully inhibited acute GIP-induced effects in vitro and in vivo and sub-chronically induces resistance to HFD-induced weight gain in ovariectomised mice. Our results support the development of GIP antagonists for the therapy of obesity.


Assuntos
Dieta Hiperlipídica , Receptores dos Hormônios Gastrointestinais , Animais , Glicemia/metabolismo , Peso Corporal , Feminino , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Aumento de Peso
2.
Br J Pharmacol ; 179(9): 1998-2015, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34855984

RESUMO

BACKGROUND: Glucagon-like peptide-2 (GLP-2) is a pro-glucagon-derived hormone secreted from intestinal enteroendocrine L cells with actions on gut and bones. GLP-2(1-33) is cleaved by DPP-4, forming GLP-2(3-33), having low intrinsic activity and competitive antagonism properties at GLP-2 receptors. We created radioligands based on these two molecules. EXPERIMENTAL APPROACH: The methionine in position 10 of GLP-2(1-33) and GLP-2(3-33) was substituted with tyrosine (M10Y) enabling oxidative iodination, creating [125 I]-hGLP-2(1-33,M10Y) and [125 I]-hGLP-2(3-33,M10Y). Both were characterized by competition binding, on-and-off-rate determination and receptor activation. Receptor expression was determined by target-tissue autoradiography and immunohistochemistry. KEY RESULTS: Both M10Y-substituted peptides induced cAMP production via the GLP-2 receptor comparable to the wildtype peptides. GLP-2(3-33,M10Y) maintained the antagonistic properties of GLP-2(3-33). However, hGLP-2(1-33,M10Y) had lower arrestin recruitment than hGLP-2(1-33). High affinities for the hGLP-2 receptor were observed using [125 I]-hGLP-2(1-33,M10Y) and [125 I]-hGLP-2(3-33,M10Y) with KD values of 59.3 and 40.6 nM. The latter (with antagonistic properties) had higher Bmax and faster on and off rates compared to the former (full agonist). Both bound the hGLP-1 receptor with low affinity (Ki of 130 and 330 nM, respectively). Autoradiography in wildtype mice revealed strong labelling of subepithelial myofibroblasts, confirmed by immunohistochemistry using a GLP-2 receptor specific antibody that in turn was confirmed in GLP-2 receptor knock-out mice. CONCLUSION AND IMPLICATIONS: Two new radioligands with different binding kinetics, one a full agonist and the other a weak partial agonist with antagonistic properties were developed and subepithelial myofibroblasts identified as a major site for GLP-2 receptor expression.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 2 , Peptídeos , Animais , Ligação Competitiva , Receptor do Peptídeo Semelhante ao Glucagon 2/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 2/antagonistas & inibidores , Humanos , Camundongos , Fragmentos de Peptídeos/metabolismo , Peptídeos/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-30863364

RESUMO

Bone homeostasis displays a circadian rhythm with increased resorption during the night time as compared to day time, a difference that seems-at least partly-to be caused by food intake during the day. Thus, ingestion of a meal results in a decrease in bone resorption, but people suffering from short bowel syndrome lack this response. Gut hormones, released in response to a meal, contribute to this link between the gut and bone metabolism. The responsible hormones appear to include glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), known as incretin hormones due to their role in regulating glucose homeostasis by enhancing insulin release in response to food intake. They interact with their cognate receptors (GIPR and GLP-1R), which are both members of the class B G protein-coupled receptors (GPCRs), and already recognized as targets for treatment of metabolic diseases, such as type 2 diabetes mellitus (T2DM) and obesity. Glucagon-like peptide-2 (GLP-2), secreted concomitantly with GLP-1, acting via another class B receptor (GLP-2R), is also part of this gut-bone axis. Several studies, including human studies, have indicated that these three hormones inhibit bone resorption and, moreover, that GIP increases bone formation. Another hormone, peptide YY (PYY), is also secreted from the enteroendocrine L-cells (together with GLP-1 and GLP-2), and acts mainly via interaction with the class A GPCR NPY-R2. PYY is best known for its effect on appetite regulation, but recent studies have also shown an effect of PYY on bone metabolism. The aim of this review is to summarize the current knowledge of the actions of GIP, GLP-1, GLP-2, and PYY on bone metabolism, and to discuss future therapies targeting these receptors for the treatment of osteoporosis.

4.
PLoS One ; 13(6): e0198046, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29864142

RESUMO

OBJECTIVE: Mucositis is a side effect of chemotherapy seen in the digestive tract, with symptoms including pain, diarrhoea, inflammation and ulcerations. Our aim was to investigate whether endogenous glucagon-like peptide -1 and -2 (GLP-1 and GLP-2) are implicated in intestinal healing after chemotherapy-induced mucositis. DESIGN: We used a transgenic mouse model Tg(GCG.DTR)(Tg) expressing the human diphtheria toxin receptor in the proglucagon-producing cells. Injections with diphtheria toxin ablated the GLP-1 and GLP-2 producing L-cells in Tg mice with no effect in wild-type (WT) mice. Mice were injected with 5-fluorouracil or saline and received vehicle, exendin-4, teduglutide (gly2-GLP-2), or exendin-4/teduglutide in combination. The endpoints were body weight change, small intestinal weight, morphology, histological scoring of mucositis and myeloperoxidase levels. RESULTS: Ablation of L-cells led to impaired GLP-2 secretion; increased loss of body weight; lower small intestinal weight; lower crypt depth, villus height and mucosal area; and increased the mucositis severity score in mice given 5-fluorouracil. WT mice showed compensatory hyperproliferation as a sign of regeneration in the recovery phase. Co-treatment with exendin-4 and teduglutide rescued the body weight of the Tg mice and led to a hyperproliferation in the small intestine, whereas single treatment was less effective. CONCLUSION: The ablation of L-cells leads to severe mucositis and insufficient intestinal healing, shown by severe body weight loss and lack of compensatory hyperproliferation in the recovery phase. Co-treatment with exendin-4 and teduglutide could prevent this. Because both peptides were needed, we can conclude that both GLP-1 and GLP-2 are essential for intestinal healing in mice.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Mucosite/fisiopatologia , Regeneração , Animais , Sinergismo Farmacológico , Exenatida/farmacologia , Feminino , Fluoruracila/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon/deficiência , Peptídeo 2 Semelhante ao Glucagon/deficiência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mucosite/induzido quimicamente , Mucosite/metabolismo , Peptídeos/farmacologia , Regeneração/efeitos dos fármacos
5.
Nutr Diabetes ; 8(1): 2, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330461

RESUMO

BACKGROUND/OBJECTIVE: After digestion, dietary triacylglycerol stimulates incretin release in humans, mainly through generation of 2-monoacylglycerol, an agonist for the intestinal G protein-coupled receptor 119 (GPR119). Enhanced incretin release may have beneficial metabolic effects. However, dietary fat may promote weight gain and should therefore be restricted in obesity. We designed C4-dietary oil (1,3-di-butyryl-2-oleoyl glycerol) as a 2-oleoyl glycerol (2-OG)-generating fat type, which would stimulate incretin release to the same extent while providing less calories than equimolar amounts of common triglycerides, e.g., olive oil. SUBJECTS AND METHODS: We studied the effect over 180 min of (a) 19 g olive oil plus 200 g carrot, (b) 10.7 g C4 dietary oil plus 200 g carrot and (c) 200 g carrot, respectively, on plasma responses of gut and pancreatic hormones in 13 overweight patients with type 2 diabetes (T2D). Theoretically, both oil meals result in formation of 7.7 g 2-OG during digestion. RESULTS: Both olive oil and C4-dietary oil resulted in greater postprandial (P ≤ 0.01) glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) responses (incremental area under curve (iAUC)): iAUCGLP-1: 645 ± 194 and 702 ± 97 pM × min; iAUCGIP: 4,338 ± 764 and 2,894 ± 601 pM × min) compared to the carrot meal (iAUCGLP-1: 7 ± 103 pM × min; iAUCGIP: 266 ± 234 pM × min). iAUC for GLP-1 and GIP were similar for C4-dietary oil and olive oil, although olive oil resulted in a higher peak value for GIP than C4-dietary oil. CONCLUSION: C4-dietary oil enhanced secretion of GLP-1 and GIP to almost the same extent as olive oil, in spite of liberation of both 2-OG and oleic acid, which also may stimulate incretin secretion, from olive oil. Thus, C4-dietary oil is more effective as incretin releaser than olive oil per unit of energy and may be useful for dietary intervention.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Gorduras Insaturadas na Dieta/farmacologia , Glicerídeos/farmacologia , Glicerol/farmacologia , Incretinas/metabolismo , Obesidade/complicações , Azeite de Oliva/farmacologia , Idoso , Área Sob a Curva , Diabetes Mellitus Tipo 2/tratamento farmacológico , Gorduras Insaturadas na Dieta/administração & dosagem , Gorduras Insaturadas na Dieta/metabolismo , Feminino , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glicerídeos/administração & dosagem , Glicerídeos/metabolismo , Glicerol/administração & dosagem , Humanos , Masculino , Refeições , Pessoa de Meia-Idade , Obesidade/metabolismo , Ácido Oleico/metabolismo , Azeite de Oliva/administração & dosagem , Azeite de Oliva/metabolismo , Sobrepeso , Período Pós-Prandial , Pró-Fármacos , Receptores Acoplados a Proteínas G/agonistas , Método Simples-Cego , Triglicerídeos/administração & dosagem , Triglicerídeos/metabolismo , Triglicerídeos/farmacologia
6.
J Diabetes Investig ; 7 Suppl 1: 8-12, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27186349

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) was established as a gut hormone more than 40 years ago, and there is good experimental support for its role as an incretin hormone although deletion of the GIP receptor or the GIP cells or GIP receptor mutations have only minor effects on glucose metabolism. Unlike the related hormone, GLP-1, GIP stimulates the secretion of glucagon, which in healthy individuals may help to stabilize glucose levels, but in people with type 2 diabetes may contribute to glucose intolerance. A role in lipid metabolism is supported by numerous indirect observations and by resistance to diet-induced obesity after deletion of the GIP receptor. However, a clear effect on lipid clearance could not be identified in humans, raising doubt about its importance. The GIP receptor is widely expressed in the body and also appears to be expressed on bone cells, and experimental studies in rodent point to effects on bone metabolism. Recent studies revealed pronounced inhibitory effects of GIP on bone resorption markers in humans and suggest that GIP may be (one of the) gastrointestinal regulators of bone turn-over. In support of this, a loss-of-function GIP receptor mutation in humans is associated with a marked increase in fracture risk. The lack of a reliable GIP receptor antagonist contributes to the uncertainty regarding the physiological role of GIP.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Animais , Osso e Ossos/metabolismo , Células Enteroendócrinas/fisiologia , Glucagon/metabolismo , Humanos , Metabolismo dos Lipídeos
7.
Peptides ; 55: 52-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24486427

RESUMO

XXX: Measurements of plasma concentrations of the incretin hormone GLP-1 are complex because of extensive molecular heterogeneity. This is partly due to a varying and incompletely known degree of C-terminal amidation. Given that virtually all GLP-1 assays rely on a C-terminal antibody, it is essential to know whether or not the molecule one wants to measure is amidated. We performed a detailed analysis of extractable GLP-1 from duodenum, proximal jejunum, distal ileum, caecum, proximal colon and distal colon of mice (n=9), rats (n=9) and pigs (n=8) and determined the degree of amidation and whether this varied with the six different locations. We also analyzed the amidation in 3 GLP-1 secreting cell lines (GLUTag, NCI-H716 and STC-1). To our surprise there were marked differences between the 3 species with respect to the concentration of GLP-1 in gut. In the mouse, concentrations increased continuously along the intestine all the way to the rectum, but were highest in the distal ileum and proximal colon of the rat. In the pig, very little or no GLP-1 was present before the distal ileum with similar levels from ileum to distal colon. In the mouse, GLP-1 was extensively amidated at all sampling sites, whereas rats and pigs on average had around 2.5 and 4 times higher levels of amidated compared to non-amidated GLP-1, although the ratio varied depending upon the location. GLUTag, NCI-H716 and STC-1 cells all exhibited partial amidation with 2-4 times higher levels of amidated compared to non-amidated GLP-1.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Mucosa Intestinal/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Masculino , Camundongos Endogâmicos C57BL , Ratos Wistar , Especificidade da Espécie , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA