Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transfus Med Hemother ; 51(2): 111-118, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584695

RESUMO

Introduction: Primary human blood cells represent an essential model system to study physiology and disease. However, human blood is a limited resource. During healthy donor plateletpheresis, the leukoreduction system chamber (LRSC) reduces the leukocyte amount within the subsequent platelet concentrate through saturated, fluidized, particle bed filtration technology. Normally, the LRSC is discarded after apheresis is completed. Compared to peripheral blood, LRSC yields 10-fold mononuclear cell concentration. Methods: To explore if those retained leukocytes are attractive for research purposes, we isolated CD3+ T cells from the usually discarded LRSCs via density gradient centrifugation in order to manufacture CD19-targeted chimeric antigen receptor (CAR) T cells. Results: Immunophenotypic characterization revealed viable and normal CD4+ and CD8+ T-cell populations within LRSC, with low CD19+ B cell counts. Magnetic-activated cell sorting (MACS) purified CD3+ T cells were transduced with CD19 CAR-encoding lentiviral self-inactivating vectors using concentrated viral supernatants. Robust CD19 CAR cell surface expression on transduced T cells was confirmed by flow cytometry. CD19 CAR T cells were further enriched through anti-CAR MACS, yielding 80% CAR+ T-cell populations. In vitro CAR T cell expansion to clinically relevant numbers was achieved. To prove functionality, CAR T cells were co-incubated with the human CD19+ B cell precursor leukemia cell line Nalm6. Compared to unmodified T cells, CD19 CAR T cells effectively eradicated Nalm6 cells. Conclusion: Taken together, we can show that lymphocytes isolated from LRSCs of plateletpheresis sets can be efficiently used for the generation of functional CAR T cells for experimental purposes.

2.
Hemasphere ; 8(2): e48, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38435424

RESUMO

CD19-directed immunotherapy has become a cornerstone in the therapy of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). CD19-directed cellular and antibody-based therapeutics have entered therapy of primary and relapsed disease and contributed to improved outcomes in relapsed disease and lower therapy toxicity. However, efficacy remains limited in many cases due to a lack of therapy response, short remission phases, or antigen escape. Here, BCP-ALL cell lines, patient-derived xenograft (PDX) samples, human macrophages, and an in vivo transplantation model in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were used to examine the therapeutic potency of a CD19 antibody Fc-engineered for improved effector cell recruitment (CD19-DE) and antibody-dependent cellular phagocytosis (ADCP), in combination with a novel modified CD47 antibody (Hu5F9-IgG2σ). For the in vivo model, only samples refractory to CD19-DE monotherapy were chosen. Hu5F9-IgG2σ enhanced ADCP by CD19-DE in various BCP-ALL cell line models with varying CD19 surface expression and cytogenetic backgrounds, two of which contained the KMT2A-AFF1 fusion. Also, the antibody combination was efficient in inducing ADCP by human macrophages in pediatric PDX samples with and adult samples with and without KMT2A-rearrangement in vitro. In a randomized phase 2-like PDX trial using seven KMT2A-rearranged BCP-ALL samples in NSG mice, the CD19/CD47 antibody combination proved highly efficient. Our findings support that the efficacy of Fc-engineered CD19 antibodies may be substantially enhanced by a combination with CD47 blockade. This suggests that the combination may be a promising therapy option for BCP-ALL, especially in relapsed patients and/or patients refractory to CD19-directed therapy.

3.
Front Immunol ; 14: 1240275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781391

RESUMO

Immune checkpoint blockade is a compelling approach in tumor immunotherapy. Blocking inhibitory pathways in T cells has demonstrated clinical efficacy in different types of cancer and may hold potential to also stimulate innate immune responses. A novel emerging potential target for immune checkpoint therapy is leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1). LILRB1 belongs to the superfamily of leukocyte immunoglobulin-like receptors and exerts inhibitory functions. The receptor is expressed by a variety of immune cells including macrophages as well as certain cytotoxic lymphocytes and contributes to the regulation of different immune responses by interaction with classical as well as non-classical human leukocyte antigen (HLA) class I molecules. LILRB1 has gained increasing attention as it has been demonstrated to function as a phagocytosis checkpoint on macrophages by recognizing HLA class I, which represents a 'Don't Eat Me!' signal that impairs phagocytic uptake of cancer cells, similar to CD47. The specific blockade of the HLA class I:LILRB1 axis may provide an option to promote phagocytosis by macrophages and also to enhance cytotoxic functions of T cells and natural killer (NK) cells. Currently, LILRB1 specific antibodies are in different stages of pre-clinical and clinical development. In this review, we introduce LILRB1 and highlight the features that make this immune checkpoint a promising target for cancer immunotherapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Macrófagos , Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Imunoglobulinas/metabolismo , Antígenos CD/metabolismo
4.
Hemasphere ; 7(10): e958, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37841755

RESUMO

Activating colony-stimulating factor-3 receptor gene (CSF3R) mutations are recurrent in acute myeloid leukemia (AML) with t(8;21) translocation. However, the nature of oncogenic collaboration between alterations of CSF3R and the t(8;21) associated RUNX1-RUNX1T1 fusion remains unclear. In CD34+ hematopoietic stem and progenitor cells from healthy donors, double oncogene expression led to a clonal advantage, increased self-renewal potential, and blast-like morphology and distinct immunophenotype. Gene expression profiling revealed hedgehog signaling as a potential mechanism, with upregulation of GLI2 constituting a putative pharmacological target. Both primary hematopoietic cells and the t(8;21) positive AML cell line SKNO-1 showed increased sensitivity to the GLI inhibitor GANT61 when expressing CSF3R T618I. Our findings suggest that during leukemogenesis, the RUNX1-RUNXT1 fusion and CSF3R mutation act in a synergistic manner to alter hedgehog signaling, which can be exploited therapeutically.

5.
Methods Mol Biol ; 2589: 27-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255616

RESUMO

Defined human primary cell model systems with growth dependence on oncogenes are highly requested to investigate tumor pathogenesis and to validate pharmacological inhibitors that specifically target oncoproteins and their executing protein complex partners. In acute myeloid leukemia (AML), transcription factors such as RUNX1 and MLL1, which are important for normal blood cell development, frequently harbor mutations including chromosomal translocations with other coding genes, resulting in tumor-promoting gain-of-function fusion proteins. These oncoproteins completely modify transcriptional programs, thereby inducing malignant cell phenotypes. A common theme of the chimeric gene products is their physical interaction with a variety of chromatin-modifying effector molecules, including histone acetyltransferases (HATs) and histone deacetylases (HDACs). These aberrant multiprotein machineries disturb gene expression and promote malignant cell growth. In this chapter, we briefly summarize the current understanding regarding AML-associated oncogene-driven human CD34+ blood progenitor cell expansion in ex vivo liquid cultures. We provide a step-by-step protocol to establish oncogene-induced human CD34+ blood progenitor cell cultures suitable to analyze the impact of transcriptional repressor/HDAC activity in these human AML cell models.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas de Fusão Oncogênica/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Leucemia Mieloide Aguda/genética , Antígenos CD34 , Moléculas de Adesão Celular/genética , Cromatina , Histona Acetiltransferases/genética
6.
Cells ; 13(1)2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201282

RESUMO

Hemato-oncological diseases account for nearly 10% of all malignancies and can be classified into leukemia, lymphoma, myeloproliferative diseases, and myelodysplastic syndromes. The causes and prognosis of these disease entities are highly variable. Most entities are not permanently controllable and ultimately lead to the patient's death. At the molecular level, recurrent mutations including chromosomal translocations initiate the transformation from normal stem-/progenitor cells into malignant blasts finally floating the patient's bone marrow and blood system. In acute myeloid leukemia (AML), the so-called master transcription factors such as RUNX1, KMT2A, and HOX are frequently disrupted by chromosomal translocations, resulting in neomorphic oncogenic fusion genes. Triggering ex vivo expansion of primary human CD34+ stem/progenitor cells represents a distinct characteristic of such chimeric AML transcription factors. Regarding oncogenic mechanisms of AML, most studies focus on murine models. However, due to biological differences between mice and humans, findings are only partly transferable. This review focuses on the genetic manipulation of human CD34+ primary hematopoietic stem/progenitor cells derived from healthy donors to model acute myeloid leukemia cell growth. Analysis of defined single- or multi-hit human cellular AML models will elucidate molecular mechanisms of the development, maintenance, and potential molecular intervention strategies to counteract malignant human AML blast cell growth.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Animais , Camundongos , Translocação Genética , Células-Tronco Hematopoéticas , Antígenos CD34 , Leucemia Mieloide Aguda/genética , Moléculas de Adesão Celular , Transformação Celular Neoplásica
7.
Front Immunol ; 13: 929339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389667

RESUMO

Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by 'Don´t Eat Me!' signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ). To boost ADCP, Fc-silent antibodies against LILRB1 and LILRB2 were generated (LILRB1-IgGσ and LILRB2-IgGσ, respectively). While LILRB2-IgGσ was not effective, LILRB1-IgGσ significantly enhanced ADCP of lymphoma cell lines when combined with both rituximab and CD47-IgGσ. LILRB1-IgGσ promoted serial engulfment of lymphoma cells and potentiated ADCP by non-polarized M0 as well as polarized M1 and M2 macrophages, but required CD47 co-blockade and the presence of the CD20 antibody. Importantly, complementing rituximab and CD47-IgGσ, LILRB1-IgGσ increased ADCP of chronic lymphocytic leukemia (CLL) or lymphoma cells isolated from patients. Thus, dual checkpoint blockade of CD47 and LILRB1 may be promising to improve antibody therapy of CLL and lymphomas through enhancing ADCP by macrophages.


Assuntos
Antígeno CD47 , Leucemia Linfocítica Crônica de Células B , Humanos , Antígeno CD47/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , Rituximab/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Linhagem Celular Tumoral , Fagocitose , Macrófagos , Anticorpos/metabolismo , Antígenos CD/metabolismo
8.
Exp Hematol ; 108: 26-35, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181392

RESUMO

GATA2 zinc-finger (ZF) mutations are associated with distinct entities of myeloid malignancies. The specific distribution of these mutations points toward different mechanisms of leukemogenesis depending on the ZF domain affected. In this study, we compared recurring somatic mutations in ZF1 and ZF2. All tested ZF mutants disrupted DNA binding in vitro. In transcription assays, co-expression of FOG1 counteracted GATA2-dependent transcriptional activation, while a variable response to FOG1-mediated repression was observed for individual GATA2 mutants. In primary murine bone marrow cells, GATA2 wild-type (WT) expression inhibited colony formation, while this effect was reduced for both mutants A318T (ZF1) and L359V (ZF2) with a shift toward granulopoiesis. In primary human CD34+ bone marrow cells and in the myeloid cell line K562, ectopic expression of GATA2 L359V, but not A318T or G320D, caused a block of erythroid differentiation accompanied by downregulation of GATA1, STAT5B, and PLCG1. Our findings may explain the role of GATA2 L359V during the progression of chronic myeloid leukemia and the collaboration of GATA2 ZF1 alterations with CEBPA double mutations in erythroleukemia.


Assuntos
Fator de Transcrição GATA2 , Leucemia Eritroblástica Aguda , Leucemia Mieloide , Animais , Diferenciação Celular/genética , Fator de Transcrição GATA2/genética , Humanos , Células K562 , Leucemia Eritroblástica Aguda/genética , Camundongos , Mutação , Dedos de Zinco
9.
Cancers (Basel) ; 11(3)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841639

RESUMO

Numerous cell⁻cell and cell⁻matrix interactions within the bone marrow microenvironment enable the controlled lifelong self-renewal and progeny of hematopoietic stem and progenitor cells (HSPCs). On the cellular level, this highly mutual interaction is granted by cell adhesion molecules (CAMs) integrating differentiation, proliferation, and pro-survival signals from the surrounding microenvironment to the inner cell. However, cell⁻cell and cell⁻matrix interactions are also critically involved during malignant transformation of hematopoietic stem/progenitor cells. It has become increasingly apparent that leukemia-associated gene products, such as activated tyrosine kinases and fusion proteins resulting from chromosomal translocations, directly regulate the activation status of adhesion molecules, thereby directing the leukemic phenotype. These observations imply that interference with adhesion molecule function represents a promising treatment strategy to target pre-leukemic and leukemic lesions within the bone marrow niche. Focusing on myeloid leukemia, we provide a current overview of the mechanisms by which leukemogenic gene products hijack control of cellular adhesion to subsequently disturb normal hematopoiesis and promote leukemia development.

10.
Oncogene ; 38(2): 261-272, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30093631

RESUMO

Chromosomal translocations represent frequent events in leukemia. In t(8;21)+ acute myeloid leukemia, RUNX1 is fused to nearly the entire ETO protein, which contains four conserved nervy homology regions, NHR1-4. Furthermore RUNX1/ETO interacts with ETO-homologous proteins via NHR2, thereby multiplying NHR domain contacts. As shown recently, RUNX1/ETO retains oncogenic activity upon either deletion of the NHR3 + 4 N-CoR/SMRT interaction domain or substitution of the NHR2 tetramer domain. Thus, we aimed to clarify the specificities of the NHR domains. A C-terminally NHR3 + 4 truncated RUNX1/ETO containing a heterologous, structurally highly related non-NHR2 tetramer interface translocated into the nucleus and bound to RUNX1 consensus motifs. However, it failed to interact with ETO-homologues, repress RUNX1 targets, and transform progenitors. Surprisingly, transforming capacity was fully restored by C-terminal fusion with ETO's NHR4 zinc-finger or the repressor domain 3 of N-CoR, while other repression domains failed. With an inducible protein assembly system, we further demonstrated that NHR4 domain activity is critically required early in the establishment of progenitor cultures expressing the NHR2 exchanged truncated RUNX1/ETO. Together, we can show that NHR2 and NHR4 domains can be replaced by heterologous protein domains conferring tetramerization and repressor functions, thus showing that the NHR2 and NHR4 domain structures do not have irreplaceable functions concerning RUNX1/ETO activity for the establishment of human CD34+ cell expansion. We could resemble the function of RUNX1/ETO through modular recomposition with protein domains from RUNX1, ETO, BCR and N-CoR without any NHR2 and NHR4 sequences. As most transcriptional repressor proteins do not comprise tetramerization domains, our results provide a possible explanation as to the reason that RUNX1 is recurrently found translocated to ETO family members, which all contain tetramer together with transcriptional repressor moieties.


Assuntos
Transformação Celular Neoplásica/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas de Fusão Oncogênica/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Antígenos CD34 , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/genética , Domínios Proteicos , Proteína 1 Parceira de Translocação de RUNX1/química , Proteína 1 Parceira de Translocação de RUNX1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA