Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Clin Genet ; 104(4): 491-496, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37270786

RESUMO

Restrictive dermopathy (RD) is a lethal condition caused by biallelic loss-of-function mutations in ZMPSTE24, whereas mutations preserving residual enzymatic activity of the ZMPSTE24 protein lead to the milder mandibuloacral dysplasia with type B lipodystrophy (MADB) phenotype. Remarkably, we identified a homozygous, presumably loss-of-function mutation in ZMPSTE24 [c.28_29insA, p.(Leu10Tyrfs*37)] in two consanguineous Pakistani families segregating MADB. To clarify how lethal consequences are prevented in affected individuals, functional analysis was performed. Expression experiments supported utilization of two alternative translation initiation sites, preventing complete loss of protein function consistent with the relatively mild phenotypic outcome in affected patients. One of these alternative start codons is newly formed at the insertion site. Our findings indicate that the creation of new potential start codons through N-terminal mutations in other disease-associated genes should generally be taken into consideration in the variant interpretation process.


Assuntos
Mutação da Fase de Leitura , Metaloendopeptidases , Humanos , Mutação da Fase de Leitura/genética , Códon de Iniciação/genética , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mutação , Códon , Proteínas de Membrana/genética
2.
Gene ; 833: 146582, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35597529

RESUMO

Biallelic mutations in ZMPSTE24 are known to be associated with autosomal recessive mandibuloacral dysplasia with type B lipodystrophy (MADB) and lethal restrictive dermopathy (RD), respectively. Disease manifestation is depending on the remaining enzyme activity of the mutated ZMPSTE24 protein. To date, complete loss of function has exclusively been reported in RD cases. In this study, we identified a novel N-terminal homozygous frameshift mutation (c.28_29insA) in a consanguineous family segregating with MADB. An in-depth analysis of the mutated sequence revealed, that the one base pair insertion creates a novel downstream in-frame start codon, which supposedly serves as an alternative translation initiation site (TIS). This possible rescue mechanism would explain the relatively mild clinical outcome in the studied individuals. Our findings demonstrate the necessity for careful interpretation of N-terminal variants potentially effecting translation initiation.


Assuntos
Lipodistrofia , Proteínas de Membrana , Metaloendopeptidases , Progéria , Códon de Iniciação/genética , Mutação da Fase de Leitura , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mutação , Progéria/genética
3.
Mol Genet Genomic Med ; 8(2): e1060, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31923348

RESUMO

BACKGROUND: Xeroderma pigmentosum (XP) is a rare genetic disorder, which is characterized by hyper-sensitivity to solar ultraviolet (UV) radiation. Clinical consequences of sun exposure are skin lesions and an increased risk of developing skin cancer. Genetic studies have identified eight genes associated with xeroderma pigmentosum. The proteins encoded by these genes are mainly involved in DNA repair mechanisms. METHODS: Molecular genetic characterization of patients with xeroderma pigmentosum involved positional cloning methods such as homozygosity mapping and subsequent candidate gene analysis. Mutation screening was performed through Sanger DNA sequencing. RESULTS AND DISCUSSION: In this case study, we report a novel protein truncating mutation in XPC associated with autosomal recessive xeroderma pigmentosum in a consanguineous Pakistani family. Genetic mapping revealed a novel single base insertion of a thymine nucleotide NM_004628.4: c.291dupT (c.291_292insT) in the second exon of XPC. The identified mutation leads to a premature stop codon (TGA) at amino acid position 98 (p.Asp98*) and thus presumably results in a truncated protein. The Xeroderma pigmentosum, complementation group C (XPC) is located on 3p25.1 and encodes a protein involved in nucleotide excision repair. The identified mutation presumably truncates all functional domains of the XPC protein, which likely results in the loss of protein function. CONCLUSION: The study expands the knowledge of the mutational spectrum of XPC and is valuable for genetic counseling of affected individuals and their families.


Assuntos
Proteínas de Ligação a DNA/genética , Mutação com Perda de Função , Xeroderma Pigmentoso/genética , Adolescente , Criança , Feminino , Mutação da Fase de Leitura , Humanos , Masculino , Linhagem , Xeroderma Pigmentoso/patologia
4.
Clin Res Cardiol ; 109(3): 358-373, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31263995

RESUMO

BACKGROUND: The present study aimed to evaluate biomarkers representing low-grade systemic inflammation and their association with cardiovascular mortality in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. METHODS: The included 3134 consecutive patients underwent coronary angiography between June 1997 and May 2001 with a median follow-up of 9.9 years. Plasma levels of IL-6, and acute-phase reactants serum amyloid A (SAA) and C-reactive protein (CRP) were measured. SAA and IL-6 polymorphisms were genotyped. RESULTS: During a median observation time of 9.9 years, 949 deaths (30.3%) occurred, of these 597 (19.2%) died from cardiovascular causes. High plasma levels of IL-6, CRP and SAA were associated with unstable CAD, as well as established risk factors including type 2 diabetes mellitus, smoking, low glomerular filtration rate, low TGs and low HDL-C. After adjusting for established cardiovascular risk markers and the other two inflammatory markers, SAA was found to be an independent risk factor for cardiovascular mortality after a short-term follow-up (6 months-1 year) with a HR per SD of 1.41. IL-6 was identified as an independent risk factor for long-term follow-up (3, 5, and 9.9 years) with HRs per SD of 1.21, 1.22 and 1.18. CRP lost significance after adjustment. Although 6 out of 27 SAA SNPs were significantly associated with SAA plasma concentrations, the genetic risk score was not associated with cardiovascular mortality. CONCLUSIONS: The present findings from the large, prospective LURIC cohort underline the importance of inflammation in CAD and the prognostic relevance of inflammatory biomarkers that independently predict cardiovascular mortality.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Inflamação/fisiopatologia , Proteína Amiloide A Sérica/metabolismo , Idoso , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/mortalidade , Estudos de Coortes , Angiografia Coronária , Feminino , Seguimentos , Humanos , Interleucina-6/sangue , Interleucina-6/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico , Estudos Prospectivos , Fatores de Risco , Proteína Amiloide A Sérica/genética , Fatores de Tempo
5.
World J Biol Psychiatry ; 19(sup2): S21-S29, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-27739341

RESUMO

OBJECTIVES: The clock gene ARNTL is associated with the transcription activation of monoamine oxidase A according to previous literature. Thus, we hypothesised that methylation of ARNTL may differ between bipolar disorder (BD) and controls. METHODS: The methylation status of one CpG island covering the first exon of ARNTL (PS2) and one site in the 5' region of ARNTL (cg05733463) were analysed in patients with BD (n = 151) versus controls (n = 66). Methylation analysis was performed by bisulphite-conversion of DNA from fasting blood with the EpiTect Bisulfite Kit, PCR and pyrosequencing. Analysis of covariances considering the covariates age, body mass index, sex, smoking, lithium and anticonvulsant intake were performed to test methylation differences between BD and controls. RESULTS: Methylation at cg05733463 of ARNTL was significantly higher in BD than in controls (F(1,209) = 44.500, P < .001). In contrast, methylation was significantly lower in BD at PS2_POS1 compared to controls (F(1,128) = 5.787, P = .018) and by trend at PS2_POS2 (F(1,128) = 3.033, P = .084) and POS7 (F(1,34) = 3.425, P = .073). CONCLUSIONS: Methylation of ARNTL differed significantly between BD and controls. Thus, our study suggests that altered epigenetic regulation of ARNTL might provide a mechanistic basis for better understanding circadian rhythms and mood swings in BD.


Assuntos
Fatores de Transcrição ARNTL/genética , Transtorno Bipolar/genética , Metilação de DNA , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticonvulsivantes/uso terapêutico , Áustria , Transtorno Bipolar/tratamento farmacológico , Estudos de Casos e Controles , Ritmo Circadiano/genética , Ilhas de CpG , Epigênese Genética , Feminino , Predisposição Genética para Doença , Humanos , Lítio/uso terapêutico , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
6.
Oncotarget ; 8(44): 77254-77267, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100385

RESUMO

Synovial sarcoma and high grade chondrosarcoma are characterized by their lack of response to conventional cytotoxic chemotherapy, the tendency to develop lung metastases, and low survival rates. Research within the field prioritizes the development and expansion of new treatment options for dealing with unresectable or metastatic diseases. Numerous clinical trials using histone deacetylases inhibitors (HDACi) have shown specific efficacy as an active antitumor agent for treating a variety of solid tumors. However, as of yet the effect of different HDACi on synovial- and chondrosarcoma cells has not been investigated. In this study, vorinostat (SAHA), panobinostat (LBH-589), and belinostat (PXD101) decreased cell viability of synovial sarcoma (SW-982) and chondrosarcoma (SW-1353) cells in a time- and dose dependent manner and arrested SW-982 cells in the G1/S phase. Western blot analysis determined the responsible cell cycle regulator proteins. In addition, we found apoptotic induction by caspase 3/7 activity, caspase 3 cleavage, and PARP cleavage. In SW-1353 cells only SAHA showed comparable effects. Noteworthy, all HDACi tested had synergistic effects with the topoisomerase II inhibitor doxorubicin in SW-1353 chondrosarcoma cells making the cells more sensitive to the chemotherapeutic drug. Our results show for the first time that SAHA and LBH-589 reduced viability of sarcoma cells and arrested them at the G1/S checkpoint, while also inducing apoptosis and enhancing chemotherapeutic sensitivity, especially in chondrosarcoma cells. These data demonstrate the exciting potential of HDACi for use in sarcoma treatment.

7.
J Invest Dermatol ; 137(4): 845-854, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28017832

RESUMO

In this paper, we report three patients with severe palmoplantar keratoderma associated with ichthyosis and sensorineural deafness. Biallelic mutations were found in VPS33B, encoding VPS33B, a Sec1/Munc18 family protein that interacts with Rab11a and Rab25 proteins and is involved in trafficking of the collagen-modifying enzyme LH3. Two patients were homozygous for the missense variant p.Gly131Glu, whereas one patient was compound heterozygous for p.Gly131Glu and the splice site mutation c.240-1G>C, previously reported in patients with arthrogryposis renal dysfunction and cholestasis syndrome. We demonstrated the pathogenicity of variant p.Gly131Glu by assessing the interactions of the mutant VPS33B construct and its ability to traffic LH3. Compared with wild-type VPS33B, the p.Gly131Glu mutant VPS33B had reduced coimmunoprecipitation and colocalization with Rab11a and Rab25 and did not rescue LH3 trafficking. Confirming the cell-based experiments, we found deficient LH3-specific collagen lysine modifications in patients' urine and skin fibroblasts. Additionally, the epidermal ultrastructure of the p.Gly131Glu patients mirrored defects in tamoxifen-inducible VPS33B-deficient Vps33bfl/fl-ERT2 mice. Both patients and murine models revealed an impaired epidermal structure, ascribed to aberrant secretion of lamellar bodies, which are essential for epidermal barrier formation. Our results demonstrate that p.Gly131Glu mutant VPS33B causes an autosomal recessive keratoderma-ichthyosis-deafness syndrome.


Assuntos
Perda Auditiva Neurossensorial/genética , Ictiose Lamelar/genética , Ceratodermia Palmar e Plantar/genética , Mutação , Proteínas de Transporte Vesicular/genética , Adolescente , Adulto , Animais , Colágeno/metabolismo , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Ictiose Lamelar/diagnóstico , Ceratodermia Palmar e Plantar/diagnóstico , Masculino , Camundongos , Prognóstico , Doenças Raras , Estudos de Amostragem , Síndrome , Proteínas rab de Ligação ao GTP/genética
8.
BMC Med Genet ; 17: 10, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26846096

RESUMO

BACKGROUND: Bardet Biedl Syndrome (BBS) is a rare condition of multi-organ dysfunction with characteristic clinical features of retinal degeneration, truncal obesity, postaxial polydactyly, genital anomaly, intellectual disability and renal dysfunction. It is a hetero-genetic disorder and nineteen BBS genes have been discovered so far. METHODS: Whole genome SNP genotyping was performed by using CytoScan® 750 K array (Affymetrix). Subsequently, the segregation of the disease locus in the whole family was carried out by genotyping STS markers within the homozygous interval. Finally, the mutation analysis was performed by Sanger DNA sequencing. RESULTS: In the present molecular study a consanguineous Pakistani family, with autosomal recessive BBS, was analyzed. The clinical analysis of affected individuals presented with synpolydactyly, obesity, intellectual disability, renal abnormality and retinitis pigmentosa. The presented phenotype was consistent with the major features of BBS syndrome. Homozygosity mapping identified a common homozygous interval within the known BBS9 locus. Sequence analysis of BBS9/PTHB1 gene revealed a single base deletion of c.299delC (p.Ser100Leufs*24) in exon 4. This frame-shift mutation presumably leads to a 122 amino acid truncated protein with complete loss of its C-terminal PTHB1 domain in combination with a partial loss of the N-terminal PTHB1 domain as well. BBS9/PTHB1 gene mutations have been shown to be associated with BBS syndrome and to the best of our knowledge this study reports the first Pakistani family linked to the BBS9 gene. CONCLUSION: Our molecular findings expand the mutational spectrum of BBS9 gene and also explain the genetic heterogeneity of Pakistan families with BBS syndrome. The growing number of mutations in BBS genes in combination with a detailed phenotypical description of patients will be helpful for genotype-phenotype correlation, targeted genetic diagnosis, prenatal screening and carrier testing of familial and non-familial BBS patients.


Assuntos
Síndrome de Bardet-Biedl/genética , Mapeamento Cromossômico , Proteínas de Neoplasias/genética , Adolescente , Sequência de Aminoácidos , Síndrome de Bardet-Biedl/diagnóstico , Consanguinidade , Proteínas do Citoesqueleto , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Heterogeneidade Genética , Técnicas de Genotipagem , Homozigoto , Humanos , Masculino , Dados de Sequência Molecular , Paquistão , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Adulto Jovem
9.
Hum Mol Genet ; 24(20): 5697-710, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26206890

RESUMO

Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability.


Assuntos
Genes Recessivos , Histamina N-Metiltransferase/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Sequência de Aminoácidos , Domínio Catalítico , Criança , Pré-Escolar , Simulação por Computador , Análise Mutacional de DNA , Exoma , Feminino , Histamina N-Metiltransferase/metabolismo , Humanos , Lactente , Deficiência Intelectual/enzimologia , Iraque , Masculino , Dados de Sequência Molecular , Linhagem , Alinhamento de Sequência , Turquia , População Branca/genética
10.
Sci Rep ; 5: 8364, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25666479

RESUMO

Mechanical interaction between cells - specifically distortion of tensional homeostasis-emerged as an important aspect of breast cancer genesis and progression. We investigated the biophysical characteristics of mechanosensitive ion channels (MSCs) in the malignant MCF-7 breast cancer cell line. MSCs turned out to be the most abundant ion channel species and could be activated by negative pressure at the outer side of the cell membrane in a saturable manner. Assessing single channel conductance (GΛ) for different monovalent cations revealed an increase in the succession: Li(+) < Na(+) < K(+) ≈Rb(+) ≈ Cs(+). Divalent cations permeated also with the order: Ca(2+) < Ba(2+). Comparison of biophysical properties enabled us to identify MSCs in MCF-7 as ion channels formed by the Piezo1 protein. Using patch clamp technique no functional MSCs were observed in the benign MCF-10A mammary epithelial cell line. Blocking of MSCs by GsMTx-4 resulted in decreased motility of MCF-7, but not of MCF-10A cells, underscoring a possible role of Piezo1 in invasion and metastatic propagation. The role of Piezo1 in biology and progression of breast cancer is further substantiated by markedly reduced overall survival in patients with increased Piezo1 mRNA levels in the primary tumor.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Canais Iônicos/metabolismo , Mecanotransdução Celular , Proteínas de Neoplasias/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Canais Iônicos/genética , Transporte de Íons/genética , Células MCF-7 , Invasividade Neoplásica , Proteínas de Neoplasias/genética
12.
Nat Commun ; 5: 5191, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25307848

RESUMO

Familial colorectal cancer type X (FCCTX) is characterized by clinical features of hereditary non-polyposis colorectal cancer with a yet undefined genetic background. Here we identify the SEMA4A p.Val78Met germline mutation in an Austrian kindred with FCCTX, using an integrative genomics strategy. Compared with wild-type protein, SEMA4A(V78M) demonstrates significantly increased MAPK/Erk and PI3K/Akt signalling as well as cell cycle progression of SEMA4A-deficient HCT-116 colorectal cancer cells. In a cohort of 53 patients with FCCTX, we depict two further SEMA4A mutations, p.Gly484Ala and p.Ser326Phe and the single-nucleotide polymorphism (SNP) p.Pro682Ser. This SNP is highly associated with the FCCTX phenotype exhibiting increased risk for colorectal cancer (OR 6.79, 95% CI 2.63 to 17.52). Our study shows previously unidentified germline variants in SEMA4A predisposing to FCCTX, which has implications for surveillance strategies of patients and their families.


Assuntos
Neoplasias Colorretais/genética , Predisposição Genética para Doença , Células Germinativas/metabolismo , Semaforinas/genética , Adulto , Idoso , Sequência de Aminoácidos , Neoplasias Colorretais/metabolismo , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Forbóis , Semaforinas/química , Semaforinas/metabolismo , Alinhamento de Sequência
14.
Biochem Biophys Res Commun ; 450(4): 1643-9, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25044109

RESUMO

The serum amyloid A (SAA) family of proteins is encoded by multiple genes, which display allelic variation and a high degree of homology in mammals. The SAA1/2 genes code for non-glycosylated acute-phase SAA1/2 proteins, that may increase up to 1000-fold during inflammation. The SAA4 gene, well characterized in humans (hSAA4) and mice (mSaa4) codes for a SAA4 protein that is glycosylated only in humans. We here report on a previously uncharacterized SAA4 gene (rSAA4) and its product in Rattus norvegicus, the only mammalian species known not to express acute-phase SAA. The exon/intron organization of rSAA4 is similar to that reported for hSAA4 and mSaa4. By performing 5'- and 3'RACE, we identified a 1830-bases containing rSAA4 mRNA (including a GA-dinucleotide tandem repeat). Highest rSAA4 mRNA expression was detected in rat liver. In McA-RH7777 rat hepatoma cells, rSAA4 transcription was significantly upregulated in response to LPS and IL-6 while IL-1α/ß and TNFα were without effect. Luciferase assays with promoter-truncation constructs identified three proximal C/EBP-elements that mediate expression of rSAA4 in McA-RH7777 cells. In line with sequence prediction a 14-kDa non-glycosylated SAA4 protein is abundantly expressed in rat liver. Fluorescence microscopy revealed predominant localization of rSAA4-GFP-tagged fusion protein in the ER.


Assuntos
Proteína Amiloide A Sérica/metabolismo , Animais , Linhagem Celular Tumoral , Fígado/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Proteína Amiloide A Sérica/química , Proteína Amiloide A Sérica/genética
15.
Hum Mol Genet ; 23(15): 4015-23, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24626631

RESUMO

We describe the characterization of a gene for mild nonsyndromic autosomal recessive intellectual disability (ID) in two unrelated families, one from Austria, the other from Pakistan. Genome-wide single nucleotide polymorphism microarray analysis enabled us to define a region of homozygosity by descent on chromosome 17q25. Whole-exome sequencing and analysis of this region in an affected individual from the Austrian family identified a 5 bp frameshifting deletion in the METTL23 gene. By means of Sanger sequencing of METTL23, a nonsense mutation was detected in a consanguineous ID family from Pakistan for which homozygosity-by-descent mapping had identified a region on 17q25. Both changes lead to truncation of the putative METTL23 protein, which disrupts the predicted catalytic domain and alters the cellular localization. 3D-modelling of the protein indicates that METTL23 is strongly predicted to function as an S-adenosyl-methionine (SAM)-dependent methyltransferase. Expression analysis of METTL23 indicated a strong association with heat shock proteins, which suggests that these may act as a putative substrate for methylation by METTL23. A number of methyltransferases have been described recently in association with ID. Disruption of METTL23 presented here supports the importance of methylation processes for intact neuronal function and brain development.


Assuntos
Deficiência Intelectual/genética , Metiltransferases/genética , Mutação , Sequência de Bases , Criança , Cromossomos Humanos Par 17 , Consanguinidade , Exoma , Feminino , Genes Recessivos , Homozigoto , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Linhagem
16.
Neuro Oncol ; 16(7): 933-45, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24463355

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive tumor of the central nervous system with a dismal prognosis for affected patients. Aberrant protein kinase C (PKC) signaling has been implicated in gliomagenesis, and a member of the PKC-activated protein kinase D (PRKD) family, PRKD2, was identified as mediator of GBM growth in vitro and in vivo. METHODS: The outcome of PRKD2 silencing and pharmacological inhibition on glioma cell proliferation was established with different glioma cell lines. Western blotting, senescence assays, co-immunoprecipitation, fluorescence activated cell sorting, quantitative PCR, and immunofluorescence microscopy were utilized to analyze downstream signaling. RESULTS: RNA-interference (21-mer siRNA) and pharmacological inhibition (CRT0066101) of PRKD2 profoundly inhibited proliferation of p53(wt) (U87MG, A172, and primary GBM2), and p53(mut) (GM133, T98G, U251, and primary Gli25) glioma cells. In a xenograft experiment, PRKD2 silencing significantly delayed tumor growth of U87MG cells. PRKD2 silencing in p53(wt) and p53(mut) cells was associated with typical hallmarks of senescence and cell cycle arrest in G1. Attenuated AKT/PKB phosphorylation in response to PRKD2 silencing was a common observation made in p53(wt) and p53(mut) GBM cells. PRKD2 knockdown in p53(wt) cells induced upregulation of p53, p21, and p27 expression, decreased phosphorylation of CDK2 and/or CDK4, hypophosphorylation of retinoblastoma protein (pRb), and reduced transcription of E2F1. In p53(mut) GM133 and primary Gli25 cells, PRKD2 silencing increased p27 and p15 and reduced E2F1 transcription but did not affect pRb phosphorylation. CONCLUSIONS: PRKD2 silencing induces glioma cell senescence via p53-dependent and -independent pathways.


Assuntos
Neoplasias Encefálicas/metabolismo , Senescência Celular/fisiologia , Glioma/metabolismo , Proteínas Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Citometria de Fluxo , Inativação Gênica , Xenoenxertos , Humanos , Imunoprecipitação , Camundongos , Microscopia de Fluorescência , Proteína Quinase D2 , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Transfecção
17.
Nat Genet ; 45(1): 83-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23222957

RESUMO

Vici syndrome is a recessively inherited multisystem disorder characterized by callosal agenesis, cataracts, cardiomyopathy, combined immunodeficiency and hypopigmentation. To investigate the molecular basis of Vici syndrome, we carried out exome and Sanger sequence analysis in a cohort of 18 affected individuals. We identified recessive mutations in EPG5 (previously KIAA1632), indicating a causative role in Vici syndrome. EPG5 is the human homolog of the metazoan-specific autophagy gene epg-5, encoding a key autophagy regulator (ectopic P-granules autophagy protein 5) implicated in the formation of autolysosomes. Further studies showed a severe block in autophagosomal clearance in muscle and fibroblasts from individuals with mutant EPG5, resulting in the accumulation of autophagic cargo in autophagosomes. These findings position Vici syndrome as a paradigm of human multisystem disorders associated with defective autophagy and suggest a fundamental role of the autophagy pathway in the immune system and the anatomical and functional formation of organs such as the brain and heart.


Assuntos
Agenesia do Corpo Caloso/genética , Antígenos de Neoplasias/genética , Autofagia/genética , Catarata/genética , Genes Recessivos , Mutação , Proteínas Relacionadas à Autofagia , Biópsia , Consanguinidade , Exoma , Família , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana Lisossomal , Lisossomos/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Proteínas/metabolismo , Proteínas de Transporte Vesicular
18.
Am J Hum Genet ; 90(5): 856-63, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22541562

RESUMO

Causes of autosomal-recessive intellectual disability (ID) have, until very recently, been under researched because of the high degree of genetic heterogeneity. However, now that genome-wide approaches can be applied to single multiplex consanguineous families, the identification of genes harboring disease-causing mutations by autozygosity mapping is expanding rapidly. Here, we have mapped a disease locus in a consanguineous Pakistani family affected by ID and distal myopathy. We genotyped family members on genome-wide SNP microarrays and used the data to determine a single 2.5 Mb homozygosity-by-descent (HBD) locus in region 5p15.32-p15.31; we identified the missense change c.2035G>A (p.Gly679Arg) at a conserved residue within NSUN2. This gene encodes a methyltransferase that catalyzes formation of 5-methylcytosine at C34 of tRNA-leu(CAA) and plays a role in spindle assembly during mitosis as well as chromosome segregation. In mouse brains, we show that NSUN2 localizes to the nucleolus of Purkinje cells in the cerebellum. The effects of the mutation were confirmed by the transfection of wild-type and mutant constructs into cells and subsequent immunohistochemistry. We show that mutation to arginine at this residue causes NSUN2 to fail to localize within the nucleolus. The ID combined with a unique profile of comorbid features presented here makes this an important genetic discovery, and the involvement of NSUN2 highlights the role of RNA methyltransferase in human neurocognitive development.


Assuntos
Genes Recessivos , Deficiência Intelectual/genética , Metiltransferases/genética , RNA/genética , 5-Metilcitosina , Adolescente , Sequência de Aminoácidos , Animais , Povo Asiático/genética , Linhagem Celular Tumoral , Criança , Mapeamento Cromossômico , Modelos Animais de Doenças , Feminino , Heterogeneidade Genética , Genótipo , Homozigoto , Humanos , Deficiência Intelectual/fisiopatologia , Escore Lod , Masculino , Metiltransferases/metabolismo , Camundongos , Dados de Sequência Molecular , Paquistão , Linhagem , Polimorfismo de Nucleotídeo Único , RNA/metabolismo
19.
Nat Genet ; 43(10): 1018-21, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21874003

RESUMO

Common acquired melanocytic nevi are benign neoplasms that are composed of small, uniform melanocytes and are typically present as flat or slightly elevated pigmented lesions on the skin. We describe two families with a new autosomal dominant syndrome characterized by multiple, skin-colored, elevated melanocytic tumors. In contrast to common acquired nevi, the melanocytic neoplasms in affected family members ranged histopathologically from epithelioid nevi to atypical melanocytic proliferations that showed overlapping features with melanoma. Some affected individuals developed uveal or cutaneous melanomas. Segregating with this phenotype, we found inactivating germline mutations of BAP1, which encodes a ubiquitin carboxy-terminal hydrolase. The majority of melanocytic neoplasms lost the remaining wild-type allele of BAP1 by various somatic alterations. In addition, we found BAP1 mutations in a subset of sporadic melanocytic neoplasms showing histological similarities to the familial tumors. These findings suggest that loss of BAP1 is associated with a clinically and morphologically distinct type of melanocytic neoplasm.


Assuntos
Mutação em Linhagem Germinativa , Nevo Pigmentado/genética , Neoplasias Cutâneas/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Feminino , Humanos , Masculino , Linhagem , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo
20.
Eur J Hum Genet ; 19(10): 1038-44, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21629301

RESUMO

Mutations in the four-and-a-half LIM domain 1 (FHL1) gene, which encodes a 280-amino-acid protein containing four LIM domains and a single zinc-finger domain in the N-terminal region, have been associated with a broad clinical spectrum of X-linked muscle diseases encompassing a variety of different phenotypes. Patients might present with a scapuloperoneal myopathy, a myopathy with postural muscle atrophy and generalized hypertrophy, an Emery-Dreifuss muscular dystrophy, or an early onset myopathy with reducing bodies. It has been proposed that the phenotypic variability is related to the position of the mutation within the FHL1 gene. Here, we report on three British families with a heterogeneous clinical presentation segregating a single FHL1 gene mutation and haplotype, suggesting that this represents a founder mutation. The underlying FHL1 gene mutation was detected by direct sequencing and the founder effect was verified by haplotype analysis of the FHL1 gene locus. A 3-bp insertion mutation (p.Phe127_Thr128insIle) within the second LIM domain of the FHL1 gene was identified in all available affected family members of the three families. Haplotype analysis of the FHL1 region on Xq26 revealed that the families shared a common haplotype. The p.Phe127_Thr128insIle mutation in the FHL1 gene therefore appears to be a British founder mutation and FHL1 gene screening, in particular of exon 6, should therefore be indicated in British patients with a broad phenotypic spectrum of X-linked muscle diseases.


Assuntos
Efeito Fundador , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Proteínas Musculares/genética , Doenças Musculares/patologia , Mutação/genética , Adulto , Biópsia , Éxons , Família , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/fisiopatologia , Linhagem , Fenótipo , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA