Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0289183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37963142

RESUMO

Clostridium novyi has demonstrated selective efficacy against solid tumors largely due to the microenvironment contained within dense tumor cores. The core of a solid tumor is typically hypoxic, acidic, and necrotic-impeding the penetration of current therapeutics. C. novyi is attracted to the tumor microenvironment and once there, can both lyse and proliferate while simultaneously re-activating the suppressed immune system. C. novyi systemic toxicity is easily mitigated by knocking out the phage DNA plasmid encoded alpha toxin resulting in C. novyi-NT; but, after intravenous injection spores are quickly cleared by phagocytosis before accomplishing significant tumor localization. C. novyi-NT could be designed to accomplish intravenous delivery with the potential to target all solid tumors and their metastases in a single dose. This study characterizes CRISPR/Cas9 modified C. novyi-NT to insert the gene for RGD, a tumor targeting peptide, expressed within the promoter region of a spore coat protein. Expression of the RGD peptide on the outer spore coat of C. novyi-NT indicates an increased capacity for tumor localization of C. novyi upon intravenous introduction based on the natural binding of RGD with the αvß3 integrin commonly overexpressed on the epithelial tissue surrounding a tumor, and lead to immune stimulation.


Assuntos
Clostridium botulinum , Neoplasias Pancreáticas , Humanos , Esporos Bacterianos/genética , Clostridium/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Oligopeptídeos/metabolismo , Microambiente Tumoral
2.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L711-L725, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37814796

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by nonresolving inflammation fueled by breach in the endothelial barrier and leukocyte recruitment into the airspaces. Among the ligand-receptor axes that control leukocyte recruitment, the full-length fractalkine ligand (CX3CL1)-receptor (CX3CR1) ensures homeostatic endothelial-leukocyte interactions. Cigarette smoke (CS) exposure and respiratory pathogens increase expression of endothelial sheddases, such as a-disintegrin-and-metalloproteinase-domain 17 (ADAM17, TACE), inhibited by the anti-protease α-1 antitrypsin (AAT). In the systemic endothelium, TACE cleaves CX3CL1 to release soluble CX3CL1 (sCX3CL1). During CS exposure, it is not known whether AAT inhibits sCX3CL1 shedding and CX3CR1+ leukocyte transendothelial migration across lung microvasculature. We investigated the mechanism of sCX3CL1 shedding, its role in endothelial-monocyte interactions, and AAT effect on these interactions during acute inflammation. We used two, CS and lipopolysaccharide (LPS) models of acute inflammation in transgenic Cx3cr1gfp/gfp mice and primary human endothelial cells and monocytes to study sCX3CL1-mediated CX3CR1+ monocyte adhesion and migration. We measured sCX3CL1 levels in plasma and bronchoalveolar lavage (BALF) of individuals with COPD. Both sCX3CL1 shedding and CX3CR1+ monocytes transendothelial migration were triggered by LPS and CS exposure in mice, and were significantly attenuated by AAT. The inhibition of monocyte-endothelial adhesion and migration by AAT was TACE-dependent. Compared with healthy controls, sCX3CL1 levels were increased in plasma and BALF of individuals with COPD, and were associated with clinical parameters of emphysema. Our results indicate that inhibition of sCX3CL1 as well as AAT augmentation may be effective approaches to decrease excessive monocyte lung recruitment during acute and chronic inflammatory states.NEW & NOTEWORTHY Our novel findings that AAT and other inhibitors of TACE, the sheddase that controls full-length fractalkine (CX3CL1) endothelial expression, may provide fine-tuning of the CX3CL1-CX3CR1 axis specifically involved in endothelial-monocyte cross talk and leukocyte recruitment to the alveolar space, suggests that AAT and inhibitors of sCX3CL1 signaling may be harnessed to reduce lung inflammation.


Assuntos
Quimiocina CX3CL1 , Enfisema Pulmonar , Animais , Humanos , Camundongos , alfa 1-Antitripsina/farmacologia , Comunicação Celular , Receptor 1 de Quimiocina CX3C/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Inflamação/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Monócitos , Enfisema Pulmonar/metabolismo
4.
Cancer Biomark ; 33(2): 219-235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213363

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a formidable challenge for patients and clinicians. OBJECTIVE: To analyze the distribution of 31 different markers in tumor and stromal portions of the tumor microenvironment (TME) and identify immune cell populations to better understand how neoplastic, non-malignant structural, and immune cells, diversify the TME and influence PDAC progression. METHODS: Whole slide imaging (WSI) and cyclic multiplexed-immunofluorescence (MxIF) was used to collect 31 different markers over the course of nine distinctive imaging series of human PDAC samples. Image registration and machine learning algorithms were developed to largely automate an imaging analysis pipeline identifying distinct cell types in the TME. RESULTS: A random forest algorithm accurately predicted tumor and stromal-rich areas with 87% accuracy using 31 markers and 77% accuracy using only five markers. Top tumor-predictive markers guided downstream analyses to identify immune populations effectively invading into the tumor, including dendritic cells, CD4+ T cells, and multiple immunoregulatory subtypes. CONCLUSIONS: Immunoprofiling of PDAC to identify differential distribution of immune cells in the TME is critical for understanding disease progression, response and/or resistance to treatment, and the development of new treatment strategies.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Aprendizado de Máquina , Neoplasias Pancreáticas/metabolismo , Células Estromais/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Feminino , Imunofluorescência , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/imunologia
5.
Physiol Rep ; 10(3): e15167, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35133089

RESUMO

Label-free fluorescence imaging of kidney sections can provide important morphological information, but its utility has not been tested in a histology processing workflow. We tested the feasibility of label-free imaging of paraffin-embedded sections without deparaffinization and its potential usefulness in generating actionable data. Kidney tissue specimens were obtained during percutaneous nephrolithotomy or via diagnostic needle biopsy. Unstained non-deparaffinized sections were imaged using widefield fluorescence microscopy to capture endogenous fluorescence. Some samples were also imaged with confocal microscopy and multiphoton excitation to collect second harmonic generation (SHG) signal to obtain high-quality autofluorescence images with optical sectioning. To adjudicate the label-free signal, the samples or corresponding contiguous sections were subsequently deparaffinized and stained with Lillie's allochrome. Label-free imaging allowed the recognition of various kidney structures and enabled morphological qualification for adequacy. SHG and confocal imaging yielded quantifiable high-quality images for tissue collagens and revealed specific patterns in glomeruli and various tubules. Disease specimens from patients with diabetic kidney disease and focal segmental glomerulosclerosis showed distinctive signatures compared to specimens from healthy controls with normal kidney function. Quantitative cytometry could also be performed when DAPI is added in situ before imaging. These results show that label-free imaging of non-deparaffinized sections provides useful information about tissue quality that could be beneficial to nephropathologists by maximizing the use of scarce kidney tissue. This approach also provides quantifiable features that could inform on the biology of health and disease.


Assuntos
Nefropatias Diabéticas/patologia , Rim/patologia , Imagem Óptica/métodos , Colágeno/metabolismo , Humanos , Rim/metabolismo , Inclusão em Parafina/métodos , Fixação de Tecidos/métodos
6.
Am J Physiol Renal Physiol ; 321(6): F675-F688, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34658261

RESUMO

Expansion of renal lymphatic networks, or lymphangiogenesis (LA), is well recognized during development and is now being implicated in kidney diseases. Although LA is associated with multiple pathological conditions, very little is known about its role in acute kidney injury. The purpose of this study was to evaluate the role of LA in a model of cisplatin-induced nephrotoxicity. LA is predominately regulated by vascular endothelial growth factor (VEGF)-C and VEGF-D, ligands that exert their function through their cognate receptor VEGF receptor 3 (VEGFR3). We demonstrated that use of MAZ51, a selective VEGFR3 inhibitor, caused significantly worse structural and functional kidney damage in cisplatin nephrotoxicity. Apoptotic cell death and inflammation were also increased in MAZ51-treated animals compared with vehicle-treated animals following cisplatin administration. Notably, MAZ51 caused significant upregulation of intrarenal phospho-NF-κB, phospho-JNK, and IL-6. Cisplatin nephrotoxicity is associated with vascular congestion due to endothelial dysfunction. Using three-dimensional tissue cytometry, a novel approach to explore lymphatics in the kidney, we detected significant vascular autofluorescence attributed to erythrocytes in cisplatin alone-treated animals. Interestingly, no such congestion was detected in MAZ51-treated animals. We found increased renal vascular damage in MAZ51-treated animals, whereby MAZ51 caused a modest decrease in the endothelial markers endomucin and von Willebrand factor, with a modest increase in VEGFR2. Our findings identify a protective role for de novo LA in cisplatin nephrotoxicity and provide a rationale for the development of therapeutic approaches targeting LA. Our study also suggests off-target effects of MAZ51 on the vasculature in the setting of cisplatin nephrotoxicity.NEW & NOTEWORTHY Little is known about injury-associated LA in the kidney and its role in the pathophysiology of acute kidney injury (AKI). Observed exacerbation of cisplatin-induced AKI after LA inhibition was accompanied by increased medullary damage and cell death in the kidney. LA inhibition also upregulated compensatory expression of LA regulatory proteins, including JNK and NF-κB. These data support the premise that LA is induced during AKI and lymphatic expansion is a protective mechanism in cisplatin nephrotoxicity.


Assuntos
Indóis/toxicidade , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Naftalenos/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Cisplatino , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Rim/enzimologia , Rim/patologia , Rim/fisiopatologia , Nefropatias/enzimologia , Nefropatias/patologia , Nefropatias/fisiopatologia , Vasos Linfáticos/enzimologia , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34003797

RESUMO

Single-cell sequencing studies have characterized the transcriptomic signature of cell types within the kidney. However, the spatial distribution of acute kidney injury (AKI) is regional and affects cells heterogeneously. We first optimized coordination of spatial transcriptomics and single-nuclear sequencing data sets, mapping 30 dominant cell types to a human nephrectomy. The predicted cell-type spots corresponded with the underlying histopathology. To study the implications of AKI on transcript expression, we then characterized the spatial transcriptomic signature of 2 murine AKI models: ischemia/reperfusion injury (IRI) and cecal ligation puncture (CLP). Localized regions of reduced overall expression were associated with injury pathways. Using single-cell sequencing, we deconvoluted the signature of each spatial transcriptomic spot, identifying patterns of colocalization between immune and epithelial cells. Neutrophils infiltrated the renal medulla in the ischemia model. Atf3 was identified as a chemotactic factor in S3 proximal tubules. In the CLP model, infiltrating macrophages dominated the outer cortical signature, and Mdk was identified as a corresponding chemotactic factor. The regional distribution of these immune cells was validated with multiplexed CO-Detection by indEXing (CODEX) immunofluorescence. Spatial transcriptomic sequencing complemented single-cell sequencing by uncovering mechanisms driving immune cell infiltration and detection of relevant cell subpopulations.


Assuntos
Injúria Renal Aguda , Células Epiteliais , Transcriptoma , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Humanos , Rim/imunologia , Rim/metabolismo , Rim/patologia , Camundongos , Pessoa de Meia-Idade , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Análise de Célula Única , Transcriptoma/genética , Transcriptoma/imunologia
8.
Lab Invest ; 101(9): 1186-1196, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34017058

RESUMO

The lymphatic system plays an integral role in physiology and has recently been identified as a key player in disease progression. Tissue injury stimulates lymphatic expansion, or lymphangiogenesis (LA), though its precise role in disease processes remains unclear. LA is associated with inflammation, which is a key component of acute kidney injury (AKI), for which there are no approved therapies. While LA research has gained traction in the last decade, there exists a significant lack of understanding of this process in the kidney. Though innovative studies have elucidated markers and models with which to study LA, the field is still evolving with ways to visualize lymphatics in vivo. Prospero-related homeobox-1 (Prox-1) is the master regulator of LA and determines lymphatic cell fate through its action on vascular endothelial growth factor receptor expression. Here, we investigate the consequences of AKI on the abundance and distribution of lymphatic endothelial cells using Prox1-tdTomato reporter mice (ProxTom) coupled with large-scale three-dimensional quantitative imaging and tissue cytometry (3DTC). Using these technologies, we describe the spatial dynamics of lymphatic vasculature in quiescence and post-AKI. We also describe the use of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) as a marker of lymphatic vessels using 3DTC in the absence of the ProxTom reporter mice as an alternative approach. The use of 3DTC for lymphatic research presents a new avenue with which to study the origin and distribution of renal lymphatic vessels. These findings will enhance our understanding of renal lymphatic function during injury and could inform the development of novel therapeutics for intervention in AKI.


Assuntos
Injúria Renal Aguda , Citometria por Imagem , Imageamento Tridimensional , Vasos Linfáticos , Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/metabolismo , Animais , Proteínas de Homeodomínio/metabolismo , Linfangiogênese , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Supressoras de Tumor/metabolismo
9.
Sci Adv ; 7(7)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568476

RESUMO

The gene expression signature of the human kidney interstitium is incompletely understood. The cortical interstitium (excluding tubules, glomeruli, and vessels) in reference nephrectomies (N = 9) and diabetic kidney biopsy specimens (N = 6) was laser microdissected (LMD) and sequenced. Samples underwent RNA sequencing. Gene signatures were deconvolved using single nuclear RNA sequencing (snRNAseq) data derived from overlapping specimens. Interstitial LMD transcriptomics uncovered previously unidentified markers including KISS1, validated with in situ hybridization. LMD transcriptomics and snRNAseq revealed strong correlation of gene expression within corresponding kidney regions. Relevant enriched interstitial pathways included G-protein coupled receptor. binding and collagen biosynthesis. The diabetic interstitium was enriched for extracellular matrix organization and small-molecule catabolism. Cell type markers with unchanged expression (NOTCH3, EGFR, and HEG1) and those down-regulated in diabetic nephropathy (MYH11, LUM, and CCDC3) were identified. LMD transcriptomics complements snRNAseq; together, they facilitate mapping of interstitial marker genes to aid interpretation of pathophysiology in precision medicine studies.


Assuntos
Nefropatias Diabéticas , Genes Supressores de Tumor , Rim , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Feminino , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Análise de Sequência de RNA , Transcriptoma
10.
Nephrol Dial Transplant ; 37(1): 72-84, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33537765

RESUMO

BACKGROUND: Idiopathic nodular mesangial sclerosis, also called idiopathic nodular glomerulosclerosis (ING), is a rare clinical entity with an unclear pathogenesis. The hallmark of this disease is the presence of nodular mesangial sclerosis on histology without clinical evidence of diabetes mellitus or other predisposing diagnoses. To achieve insights into its pathogenesis, we queried the clinical, histopathologic and transcriptomic features of ING and nodular diabetic nephropathy (DN). METHODS: All renal biopsy reports accessioned at Indiana University Health from 2001 to 2016 were reviewed to identify 48 ING cases. Clinical and histopathologic features were compared between individuals with ING and DN (n = 751). Glomeruli of ING (n = 5), DN (n = 18) and reference (REF) nephrectomy (n = 9) samples were isolated by laser microdissection and RNA was sequenced. Immunohistochemistry of proline-rich 36 (PRR36) protein was performed. RESULTS: ING subjects were frequently hypertensive (95.8%) with a smoking history (66.7%). ING subjects were older, had lower proteinuria and had less hyaline arteriolosclerosis than DN subjects. Butanoate metabolism was an enriched pathway in ING samples compared with either REF or DN samples. The top differentially expressed gene, PRR36, had increased expression in glomeruli 248-fold [false discovery rate (FDR) P = 5.93 × 10-6] compared with the REF and increased 109-fold (FDR P = 1.85 × 10-6) compared with DN samples. Immunohistochemistry revealed a reduced proportion of cells with perinuclear reaction in ING samples as compared to DN. CONCLUSIONS: Despite similar clinical and histopathologic characteristics in ING and DN, the uncovered transcriptomic signature suggests that ING has distinct molecular features from nodular DN. Further study is warranted to understand these relationships.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Síndrome Nefrótica , Diabetes Mellitus/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Humanos , Glomérulos Renais/patologia , Síndrome Nefrótica/patologia , Proteinúria/patologia , Esclerose/patologia
11.
Urolithiasis ; 49(2): 123-135, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33026465

RESUMO

Kidney stones frequently develop as an overgrowth on Randall's plaque (RP) which is formed in the papillary interstitium. The organic composition of RP is distinct from stone matrix in that RP contains fibrillar collagen; RP in tissue has also been shown to have two proteins that are also found in stones, but otherwise the molecular constituents of RP are unstudied. We hypothesized that RP contains unique organic molecules that can be differentiated from the stone overgrowth by fluorescence. To test this, we used micro-CT-guided polishing to expose the interior of kidney stones for multimodal imaging with multiphoton, confocal and infrared microscopy. We detected a blue autofluorescence signature unique to RP, the specificity of which was also confirmed in papillary tissue from patients with stone disease. High-resolution mineral mapping of the stone also showed a transition from the apatite within RP to the calcium oxalate in the overgrowth, demonstrating the molecular and spatial transition from the tissue to the urine. This work provides a systematic and practical approach to uncover specific fluorescence signatures which correlate with mineral type, verifies previous observations regarding mineral overgrowth onto RP and identifies a novel autofluorescence signature of RP demonstrating RP's unique molecular composition.


Assuntos
Apatitas/análise , Oxalato de Cálcio/análise , Cálculos Renais/química , Medula Renal/patologia , Imagem Óptica/métodos , Biópsia , Feminino , Humanos , Cálculos Renais/cirurgia , Medula Renal/química , Medula Renal/diagnóstico por imagem , Masculino , Microscopia Confocal/métodos , Imagem Multimodal/métodos , Nefrolitotomia Percutânea , Espectroscopia de Infravermelho com Transformada de Fourier , Ureteroscopia , Microtomografia por Raio-X/métodos
12.
Physiol Genomics ; 53(1): 1-11, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197228

RESUMO

Comprehensive and spatially mapped molecular atlases of organs at a cellular level are a critical resource to gain insights into pathogenic mechanisms and personalized therapies for diseases. The Kidney Precision Medicine Project (KPMP) is an endeavor to generate three-dimensional (3-D) molecular atlases of healthy and diseased kidney biopsies by using multiple state-of-the-art omics and imaging technologies across several institutions. Obtaining rigorous and reproducible results from disparate methods and at different sites to interrogate biomolecules at a single-cell level or in 3-D space is a significant challenge that can be a futile exercise if not well controlled. We describe a "follow the tissue" pipeline for generating a reliable and authentic single-cell/region 3-D molecular atlas of human adult kidney. Our approach emphasizes quality assurance, quality control, validation, and harmonization across different omics and imaging technologies from sample procurement, processing, storage, shipping to data generation, analysis, and sharing. We established benchmarks for quality control, rigor, reproducibility, and feasibility across multiple technologies through a pilot experiment using common source tissue that was processed and analyzed at different institutions and different technologies. A peer review system was established to critically review quality control measures and the reproducibility of data generated by each technology before their being approved to interrogate clinical biopsy specimens. The process established economizes the use of valuable biopsy tissue for multiomics and imaging analysis with stringent quality control to ensure rigor and reproducibility of results and serves as a model for precision medicine projects across laboratories, institutions and consortia.


Assuntos
Guias como Assunto , Rim/patologia , Medicina de Precisão , Biópsia , Humanos , Reprodutibilidade dos Testes
13.
Sci Transl Med ; 11(512)2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578243

RESUMO

High serum concentrations of kidney-derived protein uromodulin [Tamm-Horsfall protein (THP)] have recently been shown to be independently associated with low mortality in both older adults and cardiac patients, but the underlying mechanism remains unclear. Here, we show that THP inhibits the generation of reactive oxygen species (ROS) both in the kidney and systemically. Consistent with this experimental data, the concentration of circulating THP in patients with surgery-induced acute kidney injury (AKI) correlated with systemic oxidative damage. THP in the serum dropped after AKI and was associated with an increase in systemic ROS. The increase in oxidant injury correlated with postsurgical mortality and need for dialysis. Mechanistically, THP inhibited the activation of the transient receptor potential cation channel, subfamily M, member 2 (TRPM2) channel. Furthermore, inhibition of TRPM2 in vivo in a mouse model mitigated the systemic increase in ROS during AKI and THP deficiency. Our results suggest that THP is a key regulator of systemic oxidative stress by suppressing TRPM2 activity, and our findings might help explain how circulating THP deficiency is linked with poor outcomes and increased mortality.


Assuntos
Canais de Cátion TRPM/metabolismo , Uromodulina/sangue , Uromodulina/metabolismo , Adulto , Animais , Doxiciclina/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/genética
14.
JCI Insight ; 3(17)2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30185672

RESUMO

Poorly controlled diabetes leads to comorbidities and enhanced susceptibility to infections. While the immune components involved in wound healing in diabetes have been studied, the components involved in susceptibility to skin infections remain unclear. Here, we examined the effects of the inflammatory lipid mediator leukotriene B4 (LTB4) signaling through its receptor B leukotriene receptor 1 (BLT1) in the progression of methicillin-resistant Staphylococcus aureus (MRSA) skin infection in 2 models of diabetes. Diabetic mice produced higher levels of LTB4 in the skin, which correlated with larger nonhealing lesion areas and increased bacterial loads compared with nondiabetic mice. High LTB4 levels were also associated with dysregulated cytokine and chemokine production, excessive neutrophil migration but impaired abscess formation, and uncontrolled collagen deposition. Both genetic deletion and topical pharmacological BLT1 antagonism restored inflammatory response and abscess formation, followed by a reduction in the bacterial load and lesion area in the diabetic mice. Macrophage depletion in diabetic mice limited LTB4 production and improved abscess architecture and skin host defense. These data demonstrate that exaggerated LTB4/BLT1 responses mediate a derailed inflammatory milieu that underlies poor host defense in diabetes. Prevention of LTB4 production/actions could provide a new therapeutic strategy to restore host defense in diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Leucotrieno B4/metabolismo , Pele/imunologia , Pele/metabolismo , Infecções Cutâneas Estafilocócicas/imunologia , Abscesso/imunologia , Abscesso/patologia , Animais , Carga Bacteriana , Movimento Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Inflamação , Leucotrieno B4/genética , Leucotrieno B4/imunologia , Macrófagos/imunologia , Masculino , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Receptores do Leucotrieno B4/efeitos dos fármacos , Receptores do Leucotrieno B4/genética , Receptores do Leucotrieno B4/metabolismo , Transdução de Sinais , Pele/patologia , Infecções Cutâneas Estafilocócicas/patologia
15.
PLoS Pathog ; 14(8): e1007244, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102746

RESUMO

The early events that shape the innate immune response to restrain pathogens during skin infections remain elusive. Methicillin-resistant Staphylococcus aureus (MRSA) infection engages phagocyte chemotaxis, abscess formation, and microbial clearance. Upon infection, neutrophils and monocytes find a gradient of chemoattractants that influence both phagocyte direction and microbial clearance. The bioactive lipid leukotriene B4 (LTB4) is quickly (seconds to minutes) produced by 5-lipoxygenase (5-LO) and signals through the G protein-coupled receptors LTB4R1 (BLT1) or BLT2 in phagocytes and structural cells. Although it is known that LTB4 enhances antimicrobial effector functions in vitro, whether prompt LTB4 production is required for bacterial clearance and development of an inflammatory milieu necessary for abscess formation to restrain pathogen dissemination is unknown. We found that LTB4 is produced in areas near the abscess and BLT1 deficient mice are unable to form an abscess, elicit neutrophil chemotaxis, generation of neutrophil and monocyte chemokines, as well as reactive oxygen species-dependent bacterial clearance. We also found that an ointment containing LTB4 synergizes with antibiotics to eliminate MRSA potently. Here, we uncovered a heretofore unknown role of macrophage-derived LTB4 in orchestrating the chemoattractant gradient required for abscess formation, while amplifying antimicrobial effector functions.


Assuntos
Abscesso/imunologia , Carga Bacteriana/imunologia , Leucotrieno B4/fisiologia , Macrófagos/metabolismo , Staphylococcus aureus Resistente à Meticilina , Infecções Cutâneas Estafilocócicas/imunologia , Abscesso/genética , Abscesso/microbiologia , Abscesso/patologia , Animais , Araquidonato 5-Lipoxigenase/genética , Carga Bacteriana/genética , Células Cultivadas , Feminino , Leucotrieno B4/metabolismo , Macrófagos/imunologia , Masculino , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores do Leucotrieno B4/genética , Infecções Cutâneas Estafilocócicas/genética , Infecções Cutâneas Estafilocócicas/patologia
16.
Nephron ; 140(2): 134-139, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29870980

RESUMO

Kidney biopsy remains the gold standard for uncovering the pathogenesis of acute and chronic kidney diseases. However, the ability to perform high resolution, quantitative, molecular and cellular interrogation of this precious tissue is still at a developing stage compared to other fields such as oncology. Here, we discuss recent advances in performing large-scale, three-dimensional (3D), multi-fluorescence imaging of kidney biopsies and quantitative analysis referred to as 3D tissue cytometry. This approach allows the accurate measurement of specific cell types and their spatial distribution in a thick section spanning the entire length of the biopsy. By uncovering specific disease signatures, including rare occurrences, and linking them to the biology in situ, this approach will enhance our understanding of disease pathogenesis. Furthermore, by providing accurate quantitation of cellular events, 3D cytometry may improve the accuracy of prognosticating the clinical course and response to therapy. Therefore, large-scale 3D imaging and cytometry of kidney biopsy is poised to become a bridge towards personalized medicine for patients with kidney disease.


Assuntos
Biópsia/métodos , Imageamento Tridimensional/métodos , Nefropatias/patologia , Rim/patologia , Humanos , Medicina de Precisão
17.
Methods Mol Biol ; 1763: 129-136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29476494

RESUMO

Intravital two-photon microscopy is a powerful imaging tool for investigating various biological processes in live animals. This chapter describes an overview of intravital imaging of the rodent kidney including animal surgery, characteristics of renal tubular autofluorescence, in vivo use of fluorescent probes, and renal immune-cell tracking.


Assuntos
Rastreamento de Células/métodos , Microscopia Intravital/métodos , Rim/citologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Endotoxinas/farmacologia , Corantes Fluorescentes/metabolismo , Rim/efeitos dos fármacos , Rim/cirurgia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo
18.
J Am Soc Nephrol ; 29(4): 1154-1164, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29371417

RESUMO

Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine (P<0.05) observed in controls and increased the mitochondria membrane potential (P<0.05), maximal respiratory capacity (P<0.05), and intracellular ATP levels (P<0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning.


Assuntos
Precondicionamento Isquêmico , Isocitrato Desidrogenase/genética , Rim/irrigação sanguínea , Trifosfato de Adenosina/metabolismo , Animais , Hipóxia Celular , Células Cultivadas , Creatinina/sangue , Vetores Genéticos/administração & dosagem , Injeções Intravenosas , Isocitrato Desidrogenase/fisiologia , Túbulos Renais Proximais/citologia , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Recidiva , Transfecção , Regulação para Cima
19.
J Am Soc Nephrol ; 29(3): 841-856, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29180395

RESUMO

Tamm-Horsfall protein (THP), also known as uromodulin, is a kidney-specific protein produced by cells of the thick ascending limb of the loop of Henle. Although predominantly secreted apically into the urine, where it becomes highly polymerized, THP is also released basolaterally, toward the interstitium and circulation, to inhibit tubular inflammatory signaling. Whether, through this latter route, THP can also regulate the function of renal interstitial mononuclear phagocytes (MPCs) remains unclear, however. Here, we show that THP is primarily in a monomeric form in human serum. Compared with wild-type mice, THP-/- mice had markedly fewer MPCs in the kidney. A nonpolymerizing, truncated form of THP stimulated the proliferation of human macrophage cells in culture and partially restored the number of kidney MPCs when administered to THP-/- mice. Furthermore, resident renal MPCs had impaired phagocytic activity in the absence of THP. After ischemia-reperfusion injury, THP-/- mice, compared with wild-type mice, exhibited aggravated injury and an impaired transition of renal macrophages toward an M2 healing phenotype. However, treatment of THP-/- mice with truncated THP after ischemia-reperfusion injury mitigated the worsening of AKI. Taken together, our data suggest that interstitial THP positively regulates mononuclear phagocyte number, plasticity, and phagocytic activity. In addition to the effect of THP on the epithelium and granulopoiesis, this new immunomodulatory role could explain the protection conferred by THP during AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Fagócitos/efeitos dos fármacos , Fagócitos/fisiologia , Uromodulina/genética , Uromodulina/metabolismo , Injúria Renal Aguda/etiologia , Animais , Plasticidade Celular/genética , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Humanos , Rim/patologia , Camundongos , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/complicações , Uromodulina/química , Uromodulina/farmacologia , Uromodulina/uso terapêutico
20.
J Am Soc Nephrol ; 28(7): 2108-2118, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28154201

RESUMO

Analysis of the immune system in the kidney relies predominantly on flow cytometry. Although powerful, the process of tissue homogenization necessary for flow cytometry analysis introduces bias and results in the loss of morphologic landmarks needed to determine the spatial distribution of immune cells. An ideal approach would support three-dimensional (3D) tissue cytometry: an automated quantitation of immune cells and associated spatial parameters in 3D image volumes collected from intact kidney tissue. However, widespread application of this approach is limited by the lack of accessible software tools for digital analysis of large 3D microscopy data. Here, we describe Volumetric Tissue Exploration and Analysis (VTEA) image analysis software designed for efficient exploration and quantitative analysis of large, complex 3D microscopy datasets. In analyses of images collected from fixed kidney tissue, VTEA replicated the results of flow cytometry while providing detailed analysis of the spatial distribution of immune cells in different regions of the kidney and in relation to specific renal structures. Unbiased exploration with VTEA enabled us to discover a population of tubular epithelial cells that expresses CD11C, a marker typically expressed on dendritic cells. Finally, we show the use of VTEA for large-scale quantitation of immune cells in entire human kidney biopsies. In summary, we show that VTEA is a simple and effective tool that supports unique digital interrogation and analysis of kidney tissue from animal models or biobanked human kidney biopsies. We have made VTEA freely available to interested investigators via electronic download.


Assuntos
Citometria por Imagem/métodos , Imageamento Tridimensional , Rim/citologia , Rim/imunologia , Humanos , Túbulos Renais/citologia , Fagócitos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA