Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Rev Cancer ; 23(7): 430-449, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286893

RESUMO

Human malignancies arise predominantly in tissues of epithelial origin, where the stepwise transformation from healthy epithelium to premalignant dysplasia to invasive neoplasia involves sequential dysregulation of biological networks that govern essential functions of epithelial homeostasis. Cutaneous squamous cell carcinoma (cSCC) is a prototype epithelial malignancy, often with a high tumour mutational burden. A plethora of risk genes, dominated by UV-induced sun damage, drive disease progression in conjunction with stromal interactions and local immunomodulation, enabling continuous tumour growth. Recent studies have identified subpopulations of SCC cells that specifically interact with the tumour microenvironment. These advances, along with increased knowledge of the impact of germline genetics and somatic mutations on cSCC development, have led to a greater appreciation of the complexity of skin cancer pathogenesis and have enabled progress in neoadjuvant immunotherapy, which has improved pathological complete response rates. Although measures for the prevention and therapeutic management of cSCC are associated with clinical benefit, the prognosis remains poor for advanced disease. Elucidating how the genetic mechanisms that drive cSCC interact with the tumour microenvironment is a current focus in efforts to understand, prevent and treat cSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Prognóstico , Progressão da Doença , Microambiente Tumoral/genética
3.
J Clin Invest ; 126(7): 2661-77, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27294528

RESUMO

Interactions between the epidermis and the immune system govern epidermal tissue homeostasis. These epidermis-immune interactions are altered in the inflammatory disease psoriasis; however, the pathways that underlie this aberrant immune response are not well understood. Here, we determined that Ras-related C3 botulinum toxin substrate 1 (RAC1) is a key mediator of epidermal dysfunction. RAC1 activation was consistently elevated in psoriatic epidermis and primary psoriatic human keratinocytes (PHKCs) exposed to psoriasis-related stimuli, but not in skin from patients with basal or squamous cell carcinoma. Expression of a constitutively active form of RAC1 (RACV12) in mice resulted in the development of lesions similar to those of human psoriasis that required the presence of an intact immune system. RAC1V12-expressing mice and human psoriatic skin showed similar RAC1-dependent signaling as well as transcriptional overlap of differentially expressed epidermal and immune pathways. Coculture of PHKCs with immunocytes resulted in the upregulation of RAC1-dependent proinflammatory cytokines, an effect that was reproduced by overexpressing RAC1 in normal human keratinocytes. In keratinocytes, modulating RAC1 activity altered differentiation, proliferation, and inflammatory pathways, including STAT3, NFκB, and zinc finger protein 750 (ZNF750). Finally, RAC1 inhibition in xenografts composed of human PHKCs and immunocytes abolished psoriasiform hyperplasia and inflammation in vivo. These studies implicate RAC1 as a potential therapeutic target for psoriasis and as a key orchestrator of pathologic epidermis-immune interactions.


Assuntos
Epiderme/metabolismo , Queratinócitos/citologia , Psoríase/imunologia , Psoríase/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Técnicas de Cocultura , Citocinas/metabolismo , Humanos , Sistema Imunitário , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Transplante de Neoplasias , Fenótipo , Pele/patologia
4.
Cell Transplant ; 25(7): 1371-80, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26132738

RESUMO

Compelling evidence suggests that transplantation of neural stem cells (NSCs) from multiple sources ameliorates motor deficits after stroke. However, it is currently unknown to what extent the electrophysiological activity of grafted NSC progeny participates in the improvement of motor deficits and whether excitatory phenotypes of the grafted cells are beneficial or deleterious to sensorimotor performances. To address this question, we used optogenetic tools to drive the excitatory outputs of the grafted NSCs and assess the impact on local circuitry and sensorimotor performance. We genetically engineered NSCs to express the Channelrhodopsin-2 (ChR2), a light-gated cation channel that evokes neuronal depolarization and initiation of action potentials with precise temporal control to light stimulation. To test the function of these cells in a stroke model, rats were subjected to an ischemic stroke and grafted with ChR2-NSCs. The grafted NSCs identified with a human-specific nuclear marker survived in the peri-infarct tissue and coexpressed the ChR2 transgene with the neuronal markers TuJ1 and NeuN. Gene expression analysis in stimulated versus vehicle-treated animals showed a differential upregulation of transcripts involved in neurotransmission, neuronal differentiation, regeneration, axonal guidance, and synaptic plasticity. Interestingly, genes involved in the inflammatory response were significantly downregulated. Behavioral analysis demonstrated that chronic optogenetic stimulation of the ChR2-NSCs enhanced forelimb use on the stroke-affected side and motor activity in an open field test. Together these data suggest that excitatory stimulation of grafted NSCs elicits beneficial effects in experimental stroke model through cell replacement and non-cell replacement, anti-inflammatory/neurotrophic effects.


Assuntos
Regulação para Baixo , Células-Tronco Neurais/transplante , Optogenética/métodos , Acidente Vascular Cerebral/terapia , Transmissão Sináptica , Animais , Separação Celular , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Células-Tronco Embrionárias Humanas/citologia , Humanos , Inflamação/complicações , Inflamação/genética , Inflamação/terapia , Masculino , Neostriado/metabolismo , Células-Tronco Neurais/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Ratos Sprague-Dawley , Rodopsina/genética , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética , Transdução Genética , Transgenes
6.
Arch Dermatol Res ; 304(10): 773-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22552355

RESUMO

Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases in industrialized countries. To identify candidate genes involved in the pathogenesis of AD, we previously undertook a genome-wide approach using DNA microarrays. A transcript encoding the epidermal growth factor receptor (EGFR) was found to be among the down-regulated transcripts in AD skin. Here, we further investigated the expression pattern of two EGFR family members (EGFR and ErbB2) in AD skin on a protein level. Immunohistochemical (IHC) analysis of EGFR and ErbB2 showed decreased expression of EGFR and ErbB2 proteins in AD lesional skin as compared to skin from healthy individuals. Interestingly, we found that EGFR and ErbB2 were reciprocally expressed in an in vitro model of keratinocyte proliferation and differentiation, paralleling the expression patterns found in epidermis of healthy skin. The highest levels of EGFR transcripts were found in proliferating cells, while ErbB2 was found in differentiated cells. We show that blocking EGFR activity combined with co-stimulation of the Th2-cytokine IL4 in keratinocytes leads to induction of the inflammatory chemokine CCL26/eotaxin-3 in vitro. Accordingly, increased CCL26 transcriptional levels were observed in AD lesional skin. Taken together, suppression of EGFR may contribute to the pathogenesis of AD via the regulation of inflammatory chemokines.


Assuntos
Dermatite Atópica/metabolismo , Receptores ErbB/biossíntese , Queratinócitos/metabolismo , Receptor ErbB-2/biossíntese , Pele/metabolismo , Adolescente , Adulto , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Quimiocina CCL26 , Quimiocinas CC/metabolismo , Dermatite Atópica/genética , Receptores ErbB/genética , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-4/imunologia , Queratinócitos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Quinazolinas/farmacologia , Receptor ErbB-2/genética , Células Th2/imunologia , Transcrição Gênica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA