Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 34(9): 12521-12532, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32744782

RESUMO

Class Ia phosphoinositide 3-kinases (PI3K) are critical mediators of insulin and growth factor action. We have demonstrated that the p85α regulatory subunit of PI3K modulates the unfolded protein response (UPR) by interacting with and regulating the nuclear translocation of XBP-1s, a transcription factor essential for the UPR. We now show that PI3K activity is required for full activation of the UPR. Pharmacological inhibition of PI3K in cells blunts the ER stress-dependent phosphorylation of IRE1α and PERK, decreases induction of ATF4, CHOP, and XBP-1 and upregulates UPR target genes. Cells expressing a human p85α mutant (R649W) previously shown to inhibit PI3K, exhibit decreased activation of IRE1α and PERK and reduced induction of CHOP and ATF4. Pharmacological inhibition of PI3K, overexpression of a mutant of p85α that lacks the ability to interact with the p110α catalytic subunit (∆p85α) or expression of mutant p85α (R649W) in vivo, decreased UPR-dependent induction of ER stress response genes. Acute tunicamycin treatment of R649W+/- mice revealed reduced induction of UPR target genes in adipose tissue, whereas chronic tunicamycin exposure caused sustained increases in UPR target genes in adipose tissue. Finally, R649W+/- cells exhibited a dramatic resistance to ER stress-dependent apoptosis. These data suggest that PI3K pathway dysfunction causes ER stress that may drive the pathogenesis of several diseases including Type 2 diabetes and various cancers.


Assuntos
Tecido Adiposo/metabolismo , Apoptose , Classe Ia de Fosfatidilinositol 3-Quinase/fisiologia , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Tecido Adiposo/citologia , Animais , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 1 de Ligação a X-Box/metabolismo
2.
Diabetes ; 67(7): 1297-1309, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29724723

RESUMO

Phosphatidylinositol 3-kinase (PI3K) plays a central role in insulin signaling, glucose metabolism, cell growth, cell development, and apoptosis. A heterozygous missense mutation (R649W) in the p85α regulatory subunit gene of PI3K (PIK3R1) has been identified in patients with SHORT (Short stature, Hyperextensibility/Hernia, Ocular depression, Rieger anomaly, and Teething delay) syndrome, a disorder characterized by postnatal growth retardation, insulin resistance, and partial lipodystrophy. Knock-in mice with the same heterozygous mutation mirror the human phenotype. In this study, we show that Pik3r1 R649W knock-in mice fed a high-fat diet (HFD) have reduced weight gain and adipose accumulation. This is accompanied by reduced expression of several genes involved in lipid metabolism. Interestingly, despite the lower level of adiposity, the HFD knock-in mice are more hyperglycemic and more insulin-resistant than HFD-fed control mice. Likewise, when crossed with genetically obese ob/ob mice, the ob/ob mice carrying the heterozygous R649W mutation were protected from obesity and hepatic steatosis but developed a severe diabetic state. Together, our data demonstrate a central role of PI3K in development of obesity and fatty liver disease, separating these effects from the role of PI3K in insulin resistance and the resultant hyperglycemia.


Assuntos
Diabetes Mellitus/genética , Fígado Gorduroso/genética , Transtornos do Crescimento/genética , Hipercalcemia/genética , Doenças Metabólicas/genética , Nefrocalcinose/genética , Obesidade/genética , Fosfatidilinositol 3-Quinases/genética , Substituição de Aminoácidos , Animais , Arginina/genética , Classe Ia de Fosfatidilinositol 3-Quinase , Diabetes Mellitus/patologia , Fígado Gorduroso/patologia , Feminino , Técnicas de Introdução de Genes , Genes Dominantes , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Obesidade/patologia , Triptofano/genética
3.
Invest Ophthalmol Vis Sci ; 58(7): 3100-3106, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28632845

RESUMO

Purpose: To determine the ocular consequences of a dominant-negative mutation in the p85α subunit of phosphatidylinositol 3-kinase (PIK3R1) using a knock-in mouse model of SHORT syndrome, a syndrome associated with short stature, lipodystrophy, diabetes, and Rieger anomaly in humans. Methods: We investigated knock-in mice heterozygous for the SHORT syndrome mutation changing arginine 649 to tryptophan in p85α (PIK3R1) using physical examination, optical coherence tomography (OCT), tonometry, and histopathologic sections from paraffin-embedded eyes, and compared the findings to similar investigations in two human subjects with SHORT syndrome heterozygous for the same mutation. Results: While overall eye development was normal with clear cornea and lens, normal anterior chamber volume, normal intraocular pressure, and no changes in the retinal structure, OCT images of the knock-in mouse eyes revealed a significant decrease in thickness and width of the iris resulting in increased pupil area and irregularity of shape. Both human subjects had Rieger anomaly with similar defects including thin irides and irregular pupils, as well as a prominent ring of Schwalbe, goniosynechiae, early cataract formation, and glaucoma. Although the two subjects had had diabetes for more than 30 years, there were no signs of diabetic retinopathy. Conclusions: A dominant-negative mutation in the p85α regulatory subunit of PI3K affects development of the iris, and contributes to changes consistent with anterior segment dysgenesis in both humans and mice.


Assuntos
Segmento Anterior do Olho/anormalidades , DNA/genética , Anormalidades do Olho/genética , Iris/anormalidades , Mutação , Fosfatidilinositol 3-Quinases/genética , Animais , Segmento Anterior do Olho/diagnóstico por imagem , Segmento Anterior do Olho/enzimologia , Classe Ia de Fosfatidilinositol 3-Quinase , Análise Mutacional de DNA , Modelos Animais de Doenças , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/enzimologia , Oftalmopatias Hereditárias , Feminino , Humanos , Pressão Intraocular , Iris/diagnóstico por imagem , Masculino , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Tomografia de Coerência Óptica
4.
Diabetes ; 65(8): 2187-200, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27207510

RESUMO

Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor 1 receptor (F-IR/IGFRKO). These mice develop severe lipodystrophy, diabetes, hyperlipidemia, and fatty liver disease within the first weeks of life. By 12 weeks of age, liver demonstrated increased reactive oxygen species, lipid peroxidation, histological evidence of balloon degeneration, and elevated serum alanine aminotransferase and aspartate aminotransferase levels. In these lipodystrophic mice, stored liver lipids can be used for energy production, as indicated by a marked decrease in liver weight with fasting and increased liver fibroblast growth factor 21 expression and intact ketogenesis. By 52 weeks of age, liver accounted for 25% of body weight and showed continued balloon degeneration in addition to inflammation, fibrosis, and highly dysplastic liver nodules. Progression of liver disease was associated with improvement in blood glucose levels, with evidence of altered expression of gluconeogenic and glycolytic enzymes. However, these mice were able to mobilize stored glycogen in response to glucagon. Feeding F-IRKO and F-IR/IGFRKO mice a high-fat diet for 12 weeks accelerated the liver injury and normalization of blood glucose levels. Thus, severe fatty liver disease develops early in lipodystrophic mice and progresses to advanced nonalcoholic steatohepatitis with highly dysplastic liver nodules. The liver injury is propagated by lipotoxicity and is associated with improved blood glucose levels.


Assuntos
Tecido Adiposo/metabolismo , Lipodistrofia/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor de Insulina/metabolismo , Alanina Transaminase/metabolismo , Animais , Glicemia/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Teste de Tolerância a Glucose , Glicogênio/metabolismo , Immunoblotting , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/metabolismo , Lipodistrofia/genética , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Receptor de Insulina/genética
5.
Proc Natl Acad Sci U S A ; 111(3): 1192-7, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24395790

RESUMO

In insulin resistant states such as type 2 diabetes, there is a high demand on the ß-cell to synthesize and secrete insulin, which challenges the ability of the endoplasmic reticulum (ER) to synthesize and fold nascent proteins. This creates a state of ER stress that triggers a coordinated program referred to as the unfolded protein response (UPR) that attempts to restore ER homeostasis. We identified a role for the p85α regulatory subunit of PI3K to modulate the UPR by promoting the nuclear localization of X-box binding protein 1, a transcription factor central to the UPR. In the present study we demonstrate that reducing p85α expression in ß-cells can markedly delay the onset and severity of the diabetic phenotype observed in Akita(+/-) mice, which express a mutant insulin molecule. This is due to a decrease in activation of ER stress-dependent apoptotic pathways and a preservation of ß-cell mass and function. These data demonstrate that modulation of p85α can protect pancreatic ß-cells from ER stress, pointing to a potentially therapeutic target in diabetic states.


Assuntos
Apoptose , Classe Ia de Fosfatidilinositol 3-Quinase/deficiência , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Células Secretoras de Insulina/citologia , Alelos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Regulação Enzimológica da Expressão Gênica , Genótipo , Glucose/metabolismo , Hiperglicemia/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Estresse Oxidativo , Pâncreas/fisiologia , Fenótipo , Desnaturação Proteica , Dobramento de Proteína , Fatores de Tempo
6.
Am J Hum Genet ; 93(1): 150-7, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23810379

RESUMO

The phosphatidylinositol 3 kinase (PI3K) pathway regulates fundamental cellular processes such as metabolism, proliferation, and survival. A central component in this pathway is the p85α regulatory subunit, encoded by PIK3R1. Using whole-exome sequencing, we identified a heterozygous PIK3R1 mutation (c.1945C>T [p.Arg649Trp]) in two unrelated families affected by partial lipodystrophy, low body mass index, short stature, progeroid face, and Rieger anomaly (SHORT syndrome). This mutation led to impaired interaction between p85α and IRS-1 and reduced AKT-mediated insulin signaling in fibroblasts from affected subjects and in reconstituted Pik3r1-knockout preadipocytes. Normal PI3K activity is critical for adipose differentiation and insulin signaling; the mutated PIK3R1 therefore provides a unique link among lipodystrophy, growth, and insulin signaling.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Transtornos do Crescimento/enzimologia , Hipercalcemia/enzimologia , Doenças Metabólicas/enzimologia , Nefrocalcinose/enzimologia , Transdução de Sinais , Adipócitos/metabolismo , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Índice de Massa Corporal , Diferenciação Celular , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Análise Mutacional de DNA , Ativação Enzimática , Exoma , Feminino , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Triagem de Portadores Genéticos , Predisposição Genética para Doença , Genética Populacional/métodos , Transtornos do Crescimento/patologia , Humanos , Hipercalcemia/patologia , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Doenças Metabólicas/patologia , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Nefrocalcinose/patologia , Linhagem , Adulto Jovem , Domínios de Homologia de src
7.
J Biol Chem ; 287(15): 12016-26, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22337886

RESUMO

Disturbed Wnt signaling has been implicated in numerous diseases, including type 2 diabetes and the metabolic syndrome. In the present study, we have investigated cross-talk between insulin and Wnt signaling pathways using preadipocytes with and without knockdown of the Wnt co-receptors LRP5 and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3ß, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3ß, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation and appears to be due to an inducible interaction between LRP5 and the insulin receptor as demonstrated by co-immunoprecipitation. These data demonstrate that Wnt and insulin signaling pathways exhibit cross-talk at multiple levels. Wnt induces phosphorylation of Akt, ERK1/2, and GSK3ß, and this is dependent on insulin/IGF-1 receptors. Insulin signaling also involves the Wnt co-receptor LRP5, which has a positive effect on insulin signaling. Thus, altered Wnt and LRP5 activity can serve as modifiers of insulin action and insulin resistance in the pathophysiology of diabetes and metabolic syndrome.


Assuntos
Adipócitos/metabolismo , Insulina/fisiologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Receptor Cross-Talk , Via de Sinalização Wnt , Células 3T3-L1 , Animais , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Imunoprecipitação , Insulina/metabolismo , Cinética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteína Wnt3A/fisiologia , beta Catenina/metabolismo
8.
Methods Enzymol ; 490: 147-58, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21266249

RESUMO

The endoplasmic reticulum (ER) consists of an interconnected, membranous network that is the major site for the synthesis and folding of integral membrane and secretory proteins. Within the ER lumen, protein folding is facilitated by molecular chaperones and a variety of enzymes that ensure that polypeptides obtain their appropriate, tertiary conformation (Dobson, C. M. (2004). Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol. 15, 3-16; Ni, M., and Lee, A. S. (2007). ER chaperones in mammalian development and human diseases. FEBS Lett. 581, 3641-3651.). Physiological conditions that increase protein synthesis or stimuli that disturb the processes by which proteins obtain their native conformation, create an imbalance between the protein-folding demand and capacity of the ER. This results in the accumulation of unfolded or improperly folded proteins in the ER lumen and a state of ER stress. The cellular response, referred to as the unfolded protein response (UPR), results in activation of three linked signal transduction pathways: PKR-like kinase (PERK), inositol requiring 1 α (IRE1α), and activating transcription factor 6α (ATF6α) (Ron, D., and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell. Biol. 8, 519-529; Schroder, M., and Kaufman, R. (2005). ER stress and the unfolded protein response. Mutat. Res./Fundam. Mol. Mech. Mutagen. 569, 29-63.). Collectively, the combined actions of these signaling cascades serve to reduce ER stress through attenuation of translation to reduce protein synthesis and through activation of transcriptional programs that ultimately serve to increase ER protein-folding capacity. Recently, we and Park et al. have characterized a novel function for the p85α and p85ß subunits as modulators of the UPR by virtue of their ability to facilitate the nuclear entry of XBP-1s following induction of ER stress (Park, S. W., Zhou, Y., Lee, J., Lu, A., Sun, C., Chung, J., Ueki, K., and Ozcan, U. (2010). Regulatory subunits of PI3K, p85alpha and p85 beta, interact with XBP1 and increase its nuclear translocation. Nat. Med. 16, 429-437; Winnay, J. N., Boucher, J., Mori, M. A., Ueki, K., and Kahn, C. R. (2010). A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response. Nat. Med. 16, 438-445.). This chapter describes the recently elucidated role for the regulatory subunits of PI 3-kinase as modulators of the UPR and provides methods to measure UPR pathway activation.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Subunidades Proteicas/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/fisiologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
9.
Cancer Res ; 70(13): 5305-15, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20530665

RESUMO

Phosphoinositide 3-kinase (PI3K) plays a critical role in tumorigenesis, and the PI3K p85 regulatory subunit exerts both positive and negative effects on signaling. Expression of Pik3r1, the gene encoding p85, is decreased in human prostate, lung, ovarian, bladder, and liver cancers, consistent with the possibility that p85 has tumor suppressor properties. We tested this hypothesis by studying mice with a liver-specific deletion of the Pik3r1 gene. These mice exhibited enhanced insulin and growth factor signaling and progressive changes in hepatic pathology, leading to the development of aggressive hepatocellular carcinomas with pulmonary metastases. Liver tumors that arose exhibited markedly elevated levels of phosphatidylinositol (3,4,5)-trisphosphate, along with Akt activation and decreased PTEN expression, at both the mRNA and protein levels. Together, these results substantiate the concept that the p85 subunit of PI3K has a tumor-suppressive role in the liver and possibly other tissues.


Assuntos
Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Genes Supressores de Tumor , Hepatite Crônica/genética , Hepatite Crônica/metabolismo , Hepatite Crônica/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/biossíntese , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/biossíntese , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/metabolismo , Subunidades Proteicas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Regulação para Cima
10.
Cell Metab ; 11(3): 220-30, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20197055

RESUMO

The class I(A) phosphatidylinsositol 3-kinases (PI3Ks) form a critical node in the insulin metabolic pathway; however, the precise roles of the different isoforms of this enzyme remain elusive. Using tissue-specific gene inactivation, we demonstrate that p110alpha catalytic subunit of PI3K is a key mediator of insulin metabolic actions in the liver. Thus, deletion of p110alpha in liver results in markedly blunted insulin signaling with decreased generation of PIP(3) and loss of insulin activation of Akt, defects that could not be rescued by overexpression of p110beta. As a result, mice with hepatic knockout of p110alpha display reduced insulin sensitivity, impaired glucose tolerance, and increased gluconeogenesis, hypolipidemia, and hyperleptinemia. The diabetic syndrome induced by loss of p110alpha in liver did not respond to metformin treatment. Together, these data indicate that the p110alpha isoform of PI3K plays a fundamental role in insulin signaling and control of hepatic glucose and lipid metabolism.


Assuntos
Glicemia/metabolismo , Insulina/metabolismo , Lipídeos/fisiologia , Fígado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Classe I de Fosfatidilinositol 3-Quinases , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Regulação para Baixo , Metabolismo Energético , Intolerância à Glucose/metabolismo , Leptina/metabolismo , Metformina/uso terapêutico , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
11.
Nature ; 454(7207): 1000-4, 2008 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-18719589

RESUMO

Adipose tissue is central to the regulation of energy balance. Two functionally different types of fat are present in mammals: white adipose tissue, the primary site of triglyceride storage, and brown adipose tissue, which is specialized in energy expenditure and can counteract obesity. Factors that specify the developmental fate and function of white and brown adipose tissue remain poorly understood. Here we demonstrate that whereas some members of the family of bone morphogenetic proteins (BMPs) support white adipocyte differentiation, BMP7 singularly promotes differentiation of brown preadipocytes even in the absence of the normally required hormonal induction cocktail. BMP7 activates a full program of brown adipogenesis including induction of early regulators of brown fat fate PRDM16 (PR-domain-containing 16; ref. 4) and PGC-1alpha (peroxisome proliferator-activated receptor-gamma (PPARgamma) coactivator-1alpha; ref. 5), increased expression of the brown-fat-defining marker uncoupling protein 1 (UCP1) and adipogenic transcription factors PPARgamma and CCAAT/enhancer-binding proteins (C/EBPs), and induction of mitochondrial biogenesis via p38 mitogen-activated protein (MAP) kinase-(also known as Mapk14) and PGC-1-dependent pathways. Moreover, BMP7 triggers commitment of mesenchymal progenitor cells to a brown adipocyte lineage, and implantation of these cells into nude mice results in development of adipose tissue containing mostly brown adipocytes. Bmp7 knockout embryos show a marked paucity of brown fat and an almost complete absence of UCP1. Adenoviral-mediated expression of BMP7 in mice results in a significant increase in brown, but not white, fat mass and leads to an increase in energy expenditure and a reduction in weight gain. These data reveal an important role of BMP7 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro, and provide a potential new therapeutic approach for the treatment of obesity.


Assuntos
Adipogenia , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Metabolismo Energético , Fator de Crescimento Transformador beta/metabolismo , Células 3T3-L1 , Tecido Adiposo Branco/crescimento & desenvolvimento , Animais , Proteína Morfogenética Óssea 7 , Linhagem Celular , Metabolismo Energético/genética , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Mitocôndrias/fisiologia , Termogênese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Mol Endocrinol ; 20(1): 147-66, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16109736

RESUMO

Steroidogenic factor 1 (SF-1) is an orphan nuclear receptor that has emerged as a critical mediator of endocrine function at multiple levels of the hypothalamic-pituitary-steroidogenic axis. Within the adrenal cortex, ACTH-dependent transcriptional responses, including transcriptional activation of several key steroidogenic enzymes within the steroid biosynthetic pathway, are largely dependent upon SF-1 action. The absence of a bona fide endogenous eukaryotic ligand for SF-1 suggests that signaling pathway activation downstream of the melanocortin 2 receptor (Mc2r) modulates this transcriptional response. We have used the chromatin immunoprecipitation assay to examine the temporal formation of ACTH-dependent transcription complexes on the Mc2r gene promoter. In parallel, ACTH-dependent signaling events were examined in an attempt to correlate transcriptional events with the upstream activation of signaling pathways. Our results demonstrate that ACTH-dependent signaling cascades modulate the temporal dynamics of SF-1-dependent complex assembly on the Mc2r promoter. Strikingly, the pattern of SF-1 recruitment and the subsequent attainment of active rounds of transcription support a kinetic model of SF-1 transcriptional activation, a model originally established in the context of ligand-dependent transcription by several classical nuclear hormone receptors. An assessment of the major ACTH-dependent signaling pathways highlights pivotal roles for the MAPK as well as the cAMP-dependent protein kinase A pathway in the entrainment of SF-1-mediated transcriptional events. In addition, the current study demonstrates that specific enzymatic activities are capable of regulating distinct facets of a highly ordered transcriptional response.


Assuntos
Hormônio Adrenocorticotrópico/fisiologia , Proteínas de Homeodomínio/metabolismo , Receptor Tipo 2 de Melanocortina/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Acetilação , Córtex Suprarrenal/citologia , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Histona Desacetilases/fisiologia , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Fosfoproteínas Fosfatases/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Regiões Promotoras Genéticas , Receptor Tipo 2 de Melanocortina/genética , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais , Fator Esteroidogênico 1 , Fatores de Transcrição/genética , Regulação para Cima
13.
J Biol Chem ; 278(29): 26572-9, 2003 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12732619

RESUMO

The action of a variety of peptide hormones is critical for proper growth and differentiation of the urogenital ridge, which ultimately gives rise to the kidney, adrenal cortex, and gonad. One such class of peptides is the Wnt family of secreted glycoproteins that is classically involved in development of cell polarity and cell fate determination. Notably, alterations in Wnt-4 expression in mice and humans result in profound defects in urogenital ridge development, including dysregulation of kidney, gonadal, and adrenal growth. The nuclear receptor steroidogenic factor-1 (SF-1) has been implicated as a downstream effector of peptide hormone signaling during urogenital ridge development as evidenced by both the activation of SF-1-dependent transcription in the adrenal cortex by signaling molecules such as protein kinase A and by the adrenal and gonadal agenesis in mice with null mutations in SF-1. We hypothesized that Wnt-dependent signaling cascades regulate SF-1-dependent transcription of genes required for adreno-gonadal development. Specifically, the data demonstrate that beta-catenin synergizes with SF-1 to activate the alpha-inhibin promoter through formation of a transcriptional complex. The activation requires an intact SF-1 RE and is independent of TCF/Lef. These data support the recent observation that beta-catenin can participate in nuclear receptor-mediated transcriptional activation and extend the findings to the monomer binding class of orphan nuclear receptors.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Inibinas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra , Córtex Suprarrenal/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , DNA Complementar/genética , Feminino , Fatores de Transcrição Fushi Tarazu , Genes Reporter , Proteínas de Homeodomínio , Humanos , Fator 1 de Ligação ao Facilitador Linfoide , Masculino , Camundongos , Regiões Promotoras Genéticas , Ratos , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais , Fator Esteroidogênico 1 , Transativadores/metabolismo , Ativação Transcricional , Proteínas Wnt , Proteína Wnt4 , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA