Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 227, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775843

RESUMO

Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.


Assuntos
Autofagia , Catepsinas , Lisossomos , Proteólise , Humanos , Lisossomos/metabolismo , Catepsinas/metabolismo , Catepsinas/genética , Células HeLa , Endocitose , Catepsina L/metabolismo , Catepsina L/genética , Linhagem Celular Tumoral , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
2.
Expert Rev Proteomics ; 20(1-3): 47-55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36919490

RESUMO

INTRODUCTION: The lysosome is the main degradative organelle of almost all mammalian cells, fulfilling important functions in macromolecule recycling, metabolism, and signaling. Lysosomal dysfunction is connected to a continuously growing number of pathologic conditions, and lysosomal proteins present potential biomarkers for a variety of diseases. Therefore, there is an increasing interest in their analysis in patient samples. AREAS COVERED: We provide an overview of OMICs studies which identified lysosomal proteins as potential biomarkers for pathological conditions, covering proteomics, genomics, and transcriptomics approaches, identified through PubMed searches. With respect to discovery proteomics analyses, mainly lysosomal luminal and associated proteins were detected, while membrane proteins were found less frequently. Comprehensive coverage of the lysosomal proteome was only achieved by ultra-deep-coverage studies, but targeted approaches allowed for the reproducible quantification of lysosomal proteins in diverse sample types. EXPERT OPINION: The low abundance of lysosomal proteins complicates their reproducible analysis in patient samples. Whole proteome shotgun analyses fail in many instances to cover the lysosomal proteome, which is due to under-sampling and/or a lack of sensitivity. With the current state of the art, targeted proteomics assays provide the best performance for the characterization of lysosomal proteins in patient samples.


Assuntos
Lisossomos , Proteoma , Animais , Humanos , Proteoma/metabolismo , Lisossomos/genética , Organelas/metabolismo , Biomarcadores/metabolismo , Mamíferos/metabolismo
3.
Mol Cell Proteomics ; 22(3): 100509, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36791992

RESUMO

Lysosomes, the main degradative organelles of mammalian cells, play a key role in the regulation of metabolism. It is becoming more and more apparent that they are highly active, diverse, and involved in a large variety of processes. The essential role of lysosomes is exemplified by the detrimental consequences of their malfunction, which can result in lysosomal storage disorders, neurodegenerative diseases, and cancer. Using lysosome enrichment and mass spectrometry, we investigated the lysosomal proteomes of HEK293, HeLa, HuH-7, SH-SY5Y, MEF, and NIH3T3 cells. We provide evidence on a large scale for cell type-specific differences of lysosomes, showing that levels of distinct lysosomal proteins are highly variable within one cell type, while expression of others is highly conserved across several cell lines. Using differentially stable isotope-labeled cells and bimodal distribution analysis, we furthermore identify a high confidence population of lysosomal proteins for each cell line. Multi-cell line correlation of these data reveals potential novel lysosomal proteins, and we confirm lysosomal localization for six candidates. All data are available via ProteomeXchange with identifier PXD020600.


Assuntos
Neuroblastoma , Proteoma , Camundongos , Animais , Humanos , Proteoma/metabolismo , Células HEK293 , Células NIH 3T3 , Neuroblastoma/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo
4.
Nat Commun ; 14(1): 39, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596815

RESUMO

The mitochondrial F1FO-ATP synthase produces the bulk of cellular ATP. The soluble F1 domain contains the catalytic head that is linked via the central stalk and the peripheral stalk to the membrane embedded rotor of the FO domain. The assembly of the F1 domain and its linkage to the peripheral stalk is poorly understood. Here we show a dual function of the mitochondrial Hsp70 (mtHsp70) in the formation of the ATP synthase. First, it cooperates with the assembly factors Atp11 and Atp12 to form the F1 domain of the ATP synthase. Second, the chaperone transfers Atp5 into the assembly line to link the catalytic head with the peripheral stalk. Inactivation of mtHsp70 leads to integration of assembly-defective Atp5 variants into the mature complex, reflecting a quality control function of the chaperone. Thus, mtHsp70 acts as an assembly and quality control factor in the biogenesis of the F1FO-ATP synthase.


Assuntos
Mitocôndrias , ATPases Mitocondriais Próton-Translocadoras , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mitocôndrias/metabolismo , Óxido Nítrico Sintase , Trifosfato de Adenosina
5.
Proteomics ; 21(20): e2100129, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453389

RESUMO

The mass spectrometry-compatible surfactant RapiGest promotes the enzymatic digestion of proteins by facilitating their unfolding while retaining enzymatic activity. RapiGest consists of a hydrophilic head and a hydrophobic tail, which can be separated by acid hydrolysis. This allows for removal of RapiGest prior to mass spectrometric analysis via precipitation and solid phase extraction. During in-solution digestion experiments with RapiGest, we noticed a high variability in the formation of precipitates after acid hydrolysis, implying that RapiGest precipitation is sample-dependent. We show that RapiGest hydrolyses efficiently under acidic conditions and that differences in precipitation are solely due to protein/peptide concentration. Furthermore, we demonstrate that RapiGest precipitation can be triggered by the addition of intact proteins, providing a strategy for its efficient removal from highly diluted samples. Data are available via ProteomeXchange with identifier PXD025982.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Peptídeos , Tensoativos
6.
Mol Cell Proteomics ; 19(7): 1120-1131, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32299840

RESUMO

The degradation of intra- and extracellular proteins is essential in all cell types and mediated by two systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. This study investigates the changes in autophagosomal and lysosomal proteomes upon inhibition of proteasomes by bortezomib (BTZ) or MG132. We find an increased abundance of more than 50 proteins in lysosomes of cells in which the proteasome is inhibited. Among those are dihydrofolate reductase (DHFR), ß-Catenin and 3-hydroxy-3-methylglutaryl-coenzym-A (HMGCoA)-reductase. Because these proteins are known to be degraded by the proteasome they seem to be compensatorily delivered to the autophagosomal pathway when the proteasome is inactivated. Surprisingly, most of the proteins which show increased amounts in the lysosomes of BTZ or MG132 treated cells are proteasomal subunits. Thus an inactivated, non-functional proteasome is delivered to the autophagic pathway. Native gel electrophoresis shows that the proteasome reaches the lysosome intact and not disassembled. Adaptor proteins, which target proteasomes to autophagy, have been described in Arabidopsis, Saccharomyces and upon starvation in mammalians. However, in cell lines deficient of these proteins or their mammalian orthologues, respectively, the transfer of proteasomes to the lysosome is not impaired. Obviously, these proteins do not play a role as autophagy adaptor proteins in mammalian cells. We can also show that chaperone-mediated autophagy (CMA) does not participate in the proteasome delivery to the lysosomes. In autophagy-related (ATG)-5 and ATG7 deficient cells the delivery of inactivated proteasomes to the autophagic pathway was only partially blocked, indicating the existence of at least two different pathways by which inactivated proteasomes can be delivered to the lysosome in mammalian cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Autofagia/genética , Lisossomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Antineoplásicos/farmacologia , Autofagossomos/genética , Autofagossomos/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Bortezomib/farmacologia , Cromatografia Líquida , Células HEK293 , Humanos , Leupeptinas/farmacologia , Lisossomos/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Espectrometria de Massas em Tandem
7.
J Proteome Res ; 19(1): 371-381, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31738065

RESUMO

In mammalian cells, the lysosome is the main organelle for the degradation of macromolecules and the recycling of their building blocks. Correct lysosomal function is essential, and mutations in every known lysosomal hydrolase result in so-called lysosomal storage disorders, a group of rare and often fatal inherited diseases. Furthermore, it is becoming more and more apparent that lysosomes play also decisive roles in other diseases, such as cancer and common neurodegenerative disorders. This leads to an increasing interest in the proteomic analysis of lysosomes for which enrichment is a prerequisite. In this study, we compared the four most common strategies for the enrichment of lysosomes using data-independent acquisition. We performed centrifugation at 20,000 × g to generate an organelle-enriched pellet, two-step sucrose density gradient centrifugation, enrichment by superparamagnetic iron oxide nanoparticles (SPIONs), and immunoprecipitation using a 3xHA tagged version of the lysosomal membrane protein TMEM192. Our results show that SPIONs and TMEM192 immunoprecipitation outperform the other approaches with enrichment factors of up to 118-fold for certain proteins relative to whole cell lysates. Furthermore, we achieved an increase in identified lysosomal proteins and a higher reproducibility in protein intensities for label-free quantification in comparison to the other strategies.


Assuntos
Lisossomos/química , Proteínas/isolamento & purificação , Proteômica/métodos , Centrifugação com Gradiente de Concentração , Células HEK293 , Humanos , Proteínas de Membrana Lisossomal/análise , Nanopartículas Magnéticas de Óxido de Ferro/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas/análise , Fluxo de Trabalho
8.
Methods Mol Biol ; 1871: 225-251, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30276743

RESUMO

Peptide identification relies in the majority of mass spectrometry-based proteomics experiments on matching of experimental data against peptide and fragment ion masses derived from in silico digests of protein databases. One of the main drawbacks of this approach is that modifications have to be defined for database searching and therefore no unexpected modifications can be identified in a standard setup. Consequently, in many bottom-up proteomics experiments, unexpected modifications are not identified, even if high-quality fragment ion spectra of the modified peptides were acquired. It is therefore often not straightforward to identify unexpected modifications. In this protocol, we describe a stepwise procedure to identify unexpected modifications at peptides using the database search algorithm Mascot. The workflow includes parallel searches for the identification of known modifications at unexpected amino acids, error tolerant searches for modifications unexpected in the sample but known to the community, and mass tolerant searches for entirely unknown modifications. Furthermore, we suggest a follow-up strategy consisting of (1) verification of identified modifications in the initial dataset and (2) targeted experiments using synthetic peptides.


Assuntos
Proteínas/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem , Aminoácidos/química , Animais , Cromatografia Líquida , Biologia Computacional/métodos , Análise de Dados , Bases de Dados de Proteínas , Células HeLa , Humanos , Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteoma , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
9.
Anal Chem ; 90(11): 6594-6600, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29726681

RESUMO

Poly(ethylene glycol) (PEG) is one of the most common polymer contaminations in mass spectrometry (MS) samples. At present, the detection of PEG and other polymers relies largely on manual inspection of raw data, which is laborious and frequently difficult due to sample complexity and retention characteristics of polymer species in reversed-phase chromatography. We developed a new strategy for the automated identification of PEG molecules from tandem mass spectrometry (MS/MS) data using protein identification algorithms in combination with a database containing "PEG-proteins". Through definition of variable modifications, we extend the approach for the identification of commonly used PEG-based detergents. We exemplify the identification of different types of polymers by static nanoelectrospray tandem mass spectrometry (nanoESI-MS/MS) analysis of pure detergent solutions and data analysis using Mascot. Analysis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) runs of a PEG-contaminated sample by Mascot identified 806 PEG spectra originating from four PEG species using a defined set of modifications covering PEG and common PEG-based detergents. Further characterization of the sample for unidentified PEG species using error-tolerant and mass-tolerant searches resulted in identification of 3409 and 3187 PEG-related MS/MS spectra, respectively. We further demonstrate the applicability of the strategy for Protein Pilot and MaxQuant.


Assuntos
Detergentes/análise , Peptídeos/química , Polietilenoglicóis/análise , Cromatografia Líquida , Espectrometria de Massas em Tandem
10.
Mol Biol Cell ; 29(10): 1219-1227, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29563254

RESUMO

PTEN-induced putative kinase 1 (PINK1) is a mitochondria-targeted kinase whose mutations are a cause of Parkinson's disease. We set out to better understand PINK1's effects on mitochondrial proteins in vivo. Using an unbiased phosphoproteomic screen in Drosophila, we found that PINK1 mediates the phosphorylation of MCAD, a mitochondrial matrix protein critical to fatty acid metabolism. By mimicking phosphorylation of this protein in a PINK1 null background, we restored PINK1 null's climbing, flight, thorax, and wing deficiencies. Owing to MCAD's role in fatty acid metabolism, we examined the metabolic profile of PINK1 null flies, where we uncovered significant disruptions in both acylcarnitines and amino acids. Some of these disruptions were rescued by phosphorylation of MCAD, consistent with MCAD's rescue of PINK1 null's organismal phenotypes. Our work validates and extends the current knowledge of PINK1, identifies a novel function of MCAD, and illuminates the need for and effectiveness of metabolic profiling in models of neurodegenerative disease.


Assuntos
Acil-CoA Desidrogenase/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Acil-CoA Desidrogenase/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Aminoácidos/deficiência , Aminoácidos/metabolismo , Animais , Animais Geneticamente Modificados , Carnitina/análogos & derivados , Carnitina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Oxirredução , Fenótipo , Fosforilação , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
11.
Mol Cell Proteomics ; 16(7): 1173-1187, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28539326

RESUMO

Reduction and alkylation of cysteine residues is part of virtually any proteomics workflow. Despite its frequent use, up to date no systematic investigation of the impact of different conditions on the outcome of proteomics studies has been performed. In this study, we compared common reduction reagents (dithiothreitol, tris-(2-carboxyethyl)-phosphine, and ß-mercaptoethanol) and alkylation reagents (iodoacetamide, iodoacetic acid, acrylamide, and chloroacetamide). Using in-gel digests as well as SAX fractionated in-solution digests of cytosolic fractions of HeLa cells, we evaluated 13 different reduction and alkylation conditions resulting in considerably varying identification rates. We observed strong differences in offsite alkylation reactions at 7 amino acids as well as at the peptide N terminus, identifying single and double adducts of all reagents. Using dimethyl labeling, mass tolerant searches, and synthetic peptide experiments, we identified alkylation of methionine residues by iodine-containing alkylation reagents as one of the major factors for the differences. We observed differences of more than 9-fold in numbers of identified methionine-containing peptide spectral matches for in-gel digested samples between iodine- and noniodine-containing alkylation reagents. This was because of formation of carbamidomethylated and carboxymethylated methionine side chains and a resulting prominent neutral loss during ESI ionization or in MS/MS fragmentation, strongly decreasing identification rates of methionine-containing peptides. We achieved best results with acrylamide as alkylation reagent, whereas the highest numbers of peptide spectral matches were obtained when reducing with dithiothreitol and ß-mercaptoethanol for the in-solution and the in-gel digested samples, respectively.


Assuntos
Indicadores e Reagentes/química , Iodo/química , Proteínas/química , Proteômica/métodos , Alquilação , Cisteína/química , Ditiotreitol/química , Células HeLa , Humanos , Mercaptoetanol/química , Metionina/química , Espectrometria de Massas em Tandem
12.
Sci Rep ; 5: 16800, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26582367

RESUMO

Oligosialic and polysialic acid (oligoSia and polySia) of the glycocalyx of neural and immune cells are linear chains, in which the sialic acid monomers are α2.8-glycosidically linked. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a primate-lineage specific receptor of human tissue macrophages and microglia that binds to α2.8-linked oligoSia. Here, we show that soluble low molecular weight polySia with an average degree of polymerization 20 (avDP20) interacts with SIGLEC-11 and acts anti-inflammatory on human THP1 macrophages involving the SIGLEC-11 receptor. Soluble polySia avDP20 inhibited the lipopolysaccharide (LPS)-induced gene transcription and protein expression of tumor necrosis factor-α (Tumor Necrosis Factor Superfamily Member 2, TNFSF2). In addition, polySia avDP20 neutralized the LPS-triggered increase in macrophage phagocytosis, but did not affect basal phagocytosis or endocytosis. Moreover, polySia avDP20 prevented the oxidative burst of human macrophages triggered by neural debris or fibrillary amyloid-ß1-42. In a human macrophage-neuron co-culture system, polySia avDP20 also reduced loss of neurites triggered by fibrillary amyloid-ß1-42. Thus, treatment with polySia avDP20 might be a new anti-inflammatory therapeutic strategy that also prevents the oxidative burst of macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/metabolismo , Ácidos Siálicos/farmacologia , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Homeostase/efeitos dos fármacos , Humanos , Lectinas/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Microesferas , Peso Molecular , Fármacos Neuroprotetores/farmacologia , Fagocitose/efeitos dos fármacos , Polimerização , Explosão Respiratória/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese
13.
Nat Commun ; 5: 5429, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25403355

RESUMO

Only a small fraction of the mammalian genome codes for messenger RNAs destined to be translated into proteins, and it is generally assumed that a large portion of transcribed sequences--including introns and several classes of noncoding RNAs (ncRNAs)--do not give rise to peptide products. A systematic examination of translation and physiological regulation of ncRNAs has not been conducted. Here we use computational methods to identify the products of non-canonical translation in mouse neurons by analysing unannotated transcripts in combination with proteomic data. This study supports the existence of non-canonical translation products from both intragenic and extragenic genomic regions, including peptides derived from antisense transcripts and introns. Moreover, the studied novel translation products exhibit temporal regulation similar to that of proteins known to be involved in neuronal activity processes. These observations highlight a potentially large and complex set of biologically regulated translational events from transcripts formerly thought to lack coding potential.


Assuntos
Camundongos/genética , Peptídeos/genética , RNA não Traduzido/genética , Animais , Biologia Computacional , Genômica , Íntrons , Camundongos/embriologia , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Peptídeos/metabolismo , Biossíntese de Proteínas , RNA não Traduzido/metabolismo
14.
Biochem Pharmacol ; 85(1): 38-45, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23085438

RESUMO

Malaria causes millions of death cases per year. Since Plasmodium falciparum rapidly develops drug resistance, it is of high importance to investigate potential drug targets which may lead to novel rational therapy approaches. Here we report on the interaction of translationally controlled tumor protein of P. falciparum (PfTCTP) with the anti-malarial drug artemisinin. Furthermore, we investigated the crystal structure of PfTCTP. Using mass spectrometry, bioinformatic approaches and surface plasmon resonance spectroscopy, we identified novel binding sites of artemisinin which are in direct neighborhood to amino acids 19-46, 108-134 and 140-163. The regions covered by these residues are known to be functionally important for TCTP function. We conclude that interaction of artemisinin with TCTP may be at least in part explain the antimalarial activity of artemisinin.


Assuntos
Antimaláricos/química , Artemisininas/química , Biomarcadores Tumorais/química , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Sítios de Ligação , Biomarcadores Tumorais/metabolismo , Simulação por Computador , Cristalografia por Raios X , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Ressonância de Plasmônio de Superfície , Proteína Tumoral 1 Controlada por Tradução
15.
Proteomics ; 12(23-24): 3470-4, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23090848

RESUMO

A novel type of peptide standard is introduced that consists of two peptides combined in one synthetic molecule and separated by a proteolytic cleavage site. Upon enzymatic digestion, the two peptides are released in a molar one-to-one ratio. This method enables the generation of exact equimolar mixtures of two peptides of any nature and origin, thereby providing a valuable tool for the investigation of fundamental phenomena in MS. The applicability of the method is exemplified by the analysis of the effect of peptide sequence variations on the relative ionization efficiency in ESI- and MALDI-MS.


Assuntos
Peptídeos/química , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Dados de Sequência Molecular , Peptídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Tripsina/metabolismo
16.
Mol Cell Proteomics ; 11(7): M111.014167, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22493179

RESUMO

Currently, the reliable identification of peptides and proteins is only feasible when thoroughly annotated sequence databases are available. Although sequencing capacities continue to grow, many organisms remain without reliable, fully annotated reference genomes required for proteomic analyses. Standard database search algorithms fail to identify peptides that are not exactly contained in a protein database. De novo searches are generally hindered by their restricted reliability, and current error-tolerant search strategies are limited by global, heuristic tradeoffs between database and spectral information. We propose a Bayesian information criterion-driven error-tolerant peptide search (BICEPS) and offer an open source implementation based on this statistical criterion to automatically balance the information of each single spectrum and the database, while limiting the run time. We show that BICEPS performs as well as current database search algorithms when such algorithms are applied to sequenced organisms, whereas BICEPS only uses a remotely related organism database. For instance, we use a chicken instead of a human database corresponding to an evolutionary distance of more than 300 million years (International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695-716). We demonstrate the successful application to cross-species proteomics with a 33% increase in the number of identified proteins for a filarial nematode sample of Litomosoides sigmodontis.


Assuntos
Galinhas/genética , Filarioidea/genética , Peptídeos/química , Proteômica/métodos , Software , Algoritmos , Sequência de Aminoácidos , Animais , Teorema de Bayes , Evolução Biológica , Bases de Dados de Proteínas , Humanos , Internet , Espectrometria de Massas , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Análise de Sequência de Proteína
17.
Acta Neuropathol ; 123(4): 539-52, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22402744

RESUMO

Medulloblastomas are the most common malignant brain tumors in children. Several large-scale genomic studies have detailed their heterogeneity, defining multiple subtypes with unique molecular profiles and clinical behavior. Increased expression of the miR-183~96~182 cluster of microRNAs has been noted in several subgroups, including the most clinically aggressive subgroup associated with genetic amplification of MYC. To understand the contribution of miR-183~96~182 to the pathogenesis of this aggressive subtype of medulloblastoma, we analyzed global gene expression and proteomic changes that occur upon modulation of miRNAs in this cluster individually and as a group in MYC-amplified medulloblastoma cells. Knockdown of the full miR-183~96~182 cluster results in enrichment of genes associated with apoptosis and dysregulation of the PI3K/AKT/mTOR signaling axis. Conversely, there is a relative enrichment of pathways associated with migration, metastasis and epithelial to mesenchymal transition, as well as pathways associated with dysfunction of DNA repair in cells with preserved miR-183 cluster expression. Immunocytochemistry and FACS analysis confirm induction of apoptosis upon knockdown of the miR-183 cluster. Importantly, cell-based migration and invasion assays verify the positive regulation of cell motility/migration by the miR-183 cluster, which is largely mediated by miR-182. We show that the effects on cell migration induced by the miR-183 cluster are coupled to the PI3K/AKT/mTOR pathway through differential regulation of AKT1 and AKT2 isoforms. Furthermore, we show that rapamycin inhibits cell motility/migration in medulloblastoma cells and phenocopies miR-183 cluster knockdown. Thus, the miR-183 cluster regulates multiple biological programs that converge to support the maintenance and metastatic potential of medulloblastoma.


Assuntos
Apoptose/genética , Movimento Celular/genética , Proliferação de Células , MicroRNAs/genética , Transdução de Sinais/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Ensaios de Migração Celular , Neoplasias Cerebelares/patologia , Ensaio Cometa , Biologia Computacional , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Meduloblastoma/patologia , Proteômica , Proteínas Proto-Oncogênicas c-myc/genética , Transfecção
18.
J Am Soc Mass Spectrom ; 21(10): 1814-20, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20688526

RESUMO

The formation of c(1) ions during collision-induced fragmentation of peptides with asparagine, ornithine, or glutamine at the N-terminal position 2 has been studied. For this purpose, the corresponding fragment ion spectra of a large set of synthetic peptides were investigated. It is demonstrated that the c(1) ion intensity depends on the nature of the second residue in the N-terminal dipeptide motif as well as on the peptide length. It is shown that the formation of c(1) ions proceeds by two competing mechanisms. One mechanism is the secondary fragmentation of the b(2) ion, the efficiency of which shows only a minor dependency on the complete peptide sequence. The other mechanism is the direct formation from the molecular ion, which is identified to be connected with sequence-specific c(1) ion intensities. A model for this latter mechanism is proposed based on the analysis of the formation and secondary fragmentation of the z(max-1) ion, which is the complementary ion to the c(1) ion. Additional evidence is obtained by investigation of peptides with ornithine in N-terminal position 2, which in general exhibit c(1) ion intensities intermediate between the asparagine- and glutamine-containing species. The data presented support the reliable assignment of N-terminal dipeptide motifs using collision-induced dissociation.


Assuntos
Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Asparagina/química , Glutamina/química , Dados de Sequência Molecular , Ornitina/química
19.
Proteomics ; 10(7): 1510-4, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20104620

RESUMO

A novel type of isobaric internal peptide standard for quantitative proteomics is described. The standard is a synthetic peptide derived from the target peptide by positional permutation of two amino acids. This type of internal standard is denominated minimally permutated peptide analog (MIPA). MIPA can be differentiated from their target analytes by LC-MS due to individual retention times and/or by MS/MS due to specific fragment ions. Both quantification methods are demonstrated using peptide mixtures of low and high complexity.


Assuntos
Peptídeos/química , Proteômica/métodos , Sequência de Aminoácidos , Escherichia coli/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas/análise , Proteínas/química , Proteínas/genética , Proteômica/normas , Padrões de Referência , Espectrometria de Massas em Tandem
20.
Proteomics ; 9(21): 4978-84, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19743429

RESUMO

The effectiveness of database search algorithms, such as Mascot, Sequest and ProteinPilot is limited by the quality of the input spectra: spurious peaks in MS/MS spectra can jeopardize the correct identification of peptides or reduce their score significantly. Consequently, an efficient preprocessing of MS/MS spectra can increase the sensitivity of peptide identification at reduced file sizes and run time without compromising its specificity. We investigate the performance of 25 MS/MS preprocessing methods on various data sets and make software for improved preprocessing of mgf/dta-files freely available from http://hci.iwr.uni-heidelberg.de/mip/proteomics or http://www.childrenshospital.org/research/steenlab.


Assuntos
Biologia Computacional/métodos , Peptídeos/análise , Proteômica/métodos , Design de Software , Espectrometria de Massas em Tandem/métodos , Animais , Humanos , Internet , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA