RESUMO
Peroxiredoxins are important regulators of cellular peroxide metabolism. As antioxidants, they restrict oxidation of other cell proteins, but as signaling molecules they can act as sensors and promote thiol protein oxidation via a redox relay mechanism. The presence of peroxiredoxins could therefore influence other thiol proteins, even in cells experiencing endogenous redox activity. To investigate this for the two cytoplasmic peroxiredoxins, Prdx1 and Prdx2, we have compared the thiol proteome of wildtype Jurkat cells with cells in which either one was knocked out. Using mass spectrometry and isotope tagging, approximately 10,000 common CysSH-containing peptides were detected for each WT/KO comparison. Knockout of Prdx1 or Prdx2 resulted in a change in redox state of a small selection of Cys residues, with less than 100 giving more than a 2-fold difference. Strikingly, a large proportion of these, including those that showed the greatest change, were common to both KOs. Some Cys residues showed more oxidation in the knockouts, whereas others showed less. The candidate proteins have diverse functions and have not been known to be oxidant sensitive. No differences were seen in redox state of Cys residues of other Prdxs and oxidant sensitive proteins. A change in expression in Prdx2 knockout cells was indicated for seven cytoskeletal or regulatory thiol proteins, three of which were tested and validated by western blotting. Little firm evidence was found for thiol redox changes dependent on either Prdx that could be attributed to oxidation via a relay mechanism.
RESUMO
Human peroxidasin (PXDN) is a ubiquitous peroxidase enzyme expressed in most tissues in the body. PXDN represents an interesting therapeutic target for inhibition, as it plays a role in numerous pathologies, including cardiovascular disease, cancer and fibrosis. Like other peroxidases, PXDN generates hypohalous acids and free radical species, thereby facilitating oxidative modifications of numerous biomolecules. We have studied the inhibition of PXDN halogenation and peroxidase activity by phloroglucinol and 14 other peroxidase inhibitors. Although a number of compounds on their own potently inhibited PXDN halogenation activity, only five were effective in the presence of a peroxidase substrate with IC50 values in the low µM range. Using sequential stopped-flow spectrophotometry, we examined the mechanisms of inhibition for several compounds. Phloroglucinol was the most potent inhibitor with a nanomolar IC50 for purified PXDN and IC50 values of 0.95 µM and 1.6 µM for the inhibition of hypobromous acid (HOBr)-mediated collagen IV cross-linking in a decellularized extracellular matrix and a cell culture model. Other compounds were less effective in these models. Most interestingly, phloroglucinol was identified to irreversibly inhibit PXDN, either by mechanism-based inhibition or tight binding. Our work has highlighted phloroglucinol as a promising lead compound for the design of highly specific PXDN inhibitors and the assays used in this study provide a suitable approach for high-throughput screening of PXDN inhibitors.
RESUMO
Peroxidasin, a heme peroxidase, has been shown to play a role in cancer progression. mRNA expression has been reported to be upregulated in metastatic melanoma cell lines and connected to the invasive phenotype, but little is known about how peroxidasin acts in cancer cells. We have analyzed peroxidasin protein expression and activity in eight metastatic melanoma cell lines using an ELISA developed with an in-house peroxidasin binding protein. RNAseq data analysis confirmed high peroxidasin mRNA expression in the five cell lines classified as invasive and low expression in the three non-invasive cell lines. Protein levels of peroxidasin were higher in the cell lines with an invasive phenotype. Active peroxidasin was secreted to the cell culture medium, where it accumulated over time, and peroxidasin protein levels in the medium were also much higher in invasive than non-invasive cell lines. The only well-established physiological role of peroxidasin is in the formation of a sulfilimine bond, which cross-links collagen IV in basement membranes via catalyzed oxidation of bromide to hypobromous acid. We found that peroxidasin secreted from melanoma cells formed sulfilimine bonds in uncross-linked collagen IV, confirming peroxidasin activity and hypobromous acid formation. Moreover, 3-bromotyrosine, a stable product of hypobromous acid reacting with tyrosine residues, was detected in invasive melanoma cells, substantiating that their expression of peroxidasin generates hypobromous acid, and showing that it does not exclusively react with collagen IV, but also with other biomolecules.
Assuntos
Melanoma , Peroxidase , Linhagem Celular , Proteínas da Matriz Extracelular/genética , Humanos , Melanoma/genética , Peroxidase/genética , PeroxidasinaRESUMO
Peroxiredoxin 2 (Prdx2) is a thiol peroxidase with an active site Cys (C52) that reacts rapidly with H2O2 and other peroxides. The sulfenic acid product condenses with the resolving Cys (C172) to form a disulfide which is recycled by thioredoxin or GSH via mixed disulfide intermediates or undergoes hyperoxidation to the sulfinic acid. C172 lies near the C terminus, outside the active site. It is not established whether structural changes in this region, such as mixed disulfide formation, affect H2O2 reactivity. To investigate, we designed mutants to cause minimal (C172S) or substantial (C172D and C172W) structural disruption. Stopped flow kinetics and mass spectrometry showed that mutation to Ser had minimal effect on rates of oxidation and hyperoxidation, whereas Asp and Trp decreased both by â¼100-fold. To relate to structural changes, we solved the crystal structures of reduced WT and C172S Prdx2. The WT structure is highly similar to that of the published hyperoxidized form. C172S is closely related but more flexible and as demonstrated by size exclusion chromatography and analytical ultracentrifugation, a weaker decamer. Size exclusion chromatography and analytical ultracentrifugation showed that the C172D and C172W mutants are also weaker decamers than WT, and small-angle X-ray scattering analysis indicated greater flexibility with partially unstructured regions consistent with C-terminal unfolding. We propose that these structural changes around C172 negatively impact the active site geometry to decrease reactivity with H2O2. This is relevant for Prdx turnover as intermediate mixed disulfides with C172 would also be disruptive and could potentially react with peroxides before resolution is complete.
Assuntos
Cisteína/química , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Humanos , Peróxido de Hidrogênio/química , Mutação , Oxidantes/química , Oxidantes/metabolismo , Oxirredução , Relação Estrutura-AtividadeRESUMO
Neutrophils generate hypochlorous acid (HOCl) and related reactive chlorine species as part of their defence against invading microorganisms. In isolation, bacteria respond to reactive chlorine species by upregulating responses that provide defence against oxidative challenge. Key questions are whether these responses are induced when bacteria are phagocytosed by neutrophils, and whether this provides them with a survival advantage. We investigated RclR, a transcriptional activator of the rclABC operon in Escherichia coli that has been shown to be specifically activated by reactive chlorine species. We first measured induction by individual reactive chlorine species, and showed that HOCl itself activates the response, as do chloramines (products of HOCl reacting with amines) provided they are cell permeable. Strong RclR activation was seen in E. coli following phagocytosis by neutrophils, beginning within 5 min and persisting for 40 min. RclR activation was suppressed by inhibitors of NOX2 and myeloperoxidase, providing strong evidence that it was due to HOCl production in the phagosome. RclR activation demonstrates that HOCl, or a derived chloramine, enters phagocytosed bacteria in sufficient amount to induce this response. Although RclR was induced in wild-type bacteria following phagocytosis, we detected no greater sensitivity to neutrophil killing of mutants lacking genes in the rclABC operon.
Assuntos
Cloro/metabolismo , Escherichia coli/metabolismo , Ácido Hipocloroso/metabolismo , NADPH Oxidase 2/metabolismo , Neutrófilos/metabolismo , Peroxidase/metabolismo , Fatores de Transcrição/metabolismo , Células Cultivadas , Cloraminas/farmacologia , Cloro/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Humanos , Ácido Hipocloroso/farmacologia , Viabilidade Microbiana , Neutrófilos/microbiologia , Oxirredução , Fagocitose , Fatores de Transcrição/genéticaRESUMO
Peroxiredoxins (Prxs) are antioxidant proteins that are involved in cellular defence against reactive oxygen species and reactive nitrogen species. Humans have six peroxiredoxins, hPrxI-VI, out of which hPrxI and hPrxII belongs to the typical 2-Cys class sharing 90% conservation in their amino acid sequence including catalytic residues required to carry out their peroxidase and chaperone activities. Despite the high conservation between hPrxI and hPrxII, hPrxI behaves differently from hPrxII in its peroxidase and chaperone activity. We recently showed in yeast that in the absence of Tsa1 and Tsa2 (orthologs of hPrx) hPrxI protects the cells against different stressors whereas hPrxII does not. To understand this difference, we expressed catalytic mutants of hPrxI in yeast cells lacking the orthologs of hPrxI/II. We found that the catalytic mutants lacking peroxidase function including hPrxIC52S, hPrxIC173S, hPrxIT49A, hPrxIP45A and hPrxIR128A were not able to grow on media with nitrosative stressor (sodium nitroprusside) and unable to withstand heat stress, but surprisingly they were able to grow on an oxidative stressor (H2O2). Interestingly, we found that hPrxI increases the expression of antioxidant genes, GPX1 and SOD1, and this is also seen in the case of a catalytic mutant, indicating hPrxI can indirectly reduce oxidative stress independently of its own peroxidase function and thus suggesting a novel role of hPrxI in altering the expression of other antioxidant genes. Furthermore, hPrxIC83T was resistant to hyperoxidation and formation of stable high molecular weight oligomers, which is suggestive of impaired chaperone activity. Our results suggest that the catalytic residues of hPrxI are essential to counter the nitrosative stress whereas Cys83 in hPrxI plays a critical role in hyperoxidation of hPrxI.
Assuntos
Peroxirredoxinas , Humanos , Peróxido de Hidrogênio , Estresse Oxidativo , Peroxidases/genética , Peroxidases/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMO
Peroxiredoxin 2 (Prdx2) and other typical 2-Cys Prdxs function as homodimers in which hydrogen peroxide oxidizes each active site cysteine to a sulfenic acid which then condenses with the resolving cysteine on the alternate chain. Previous kinetic studies have considered both sites as equally reactive. Here we have studied Prdx2 using a combination of non-reducing SDS-PAGE to separate reduced monomers and dimers with one and two disulfide bonds, and stopped flow analysis of tryptophan fluorescence, to investigate whether there is cooperativity between the sites. We have observed positive cooperativity when H2O2 is added as a bolus and oxidation of the second site occurs while the first site is present as a sulfenic acid. Modelling of this reaction showed that the second site reacts 2.2 ± 0.1 times faster. In contrast, when H2O2 was generated slowly and the first active site condensed to a disulfide before the second site reacted, no cooperativity was evident. Conversion of the sulfenic acid to the disulfide showed negative cooperativity, with modelling of the exponential rise in tryptophan fluorescence yielding a rate constant of 0.75 ± 0.08 s-1 when the alternate active site was present as a sulfenic acid and 2.29 ± 0.08-fold lower when it was a disulfide. No difference in the rate of hyperoxidation at the two sites was detected. Our findings imply that oxidation of one active site affects the conformation of the second site and influences which intermediate forms of the protein are favored under different cellular conditions.
Assuntos
Cisteína , Peroxirredoxinas , Domínio Catalítico , Cisteína/metabolismo , Peróxido de Hidrogênio , Cinética , Oxirredução , Peroxirredoxinas/metabolismoRESUMO
Excessive generation of oxidants by immune cells results in acute tissue damage. One mechanism by which oxidant exposure could have long-term effects is modulation of epigenetic pathways. We hypothesized that methylation of newly synthesized DNA in proliferating cells can be altered by oxidants that target DNA methyltransferase activity or deplete its substrate, the methyl donor SAM. To this end, we investigated the effect of two oxidants produced by neutrophils, H2O2 and glycine chloramine, on maintenance DNA methylation in Jurkat T lymphoma cells. Using cell synchronization and MS-based analysis, we measured heavy deoxycytidine isotope incorporation into newly synthesized DNA and observed that a sublethal bolus of glycine chloramine, but not H2O2, significantly inhibited DNA methylation. Both oxidants inhibited DNA methyltransferase 1 activity, but only chloramine depleted SAM, suggesting that removal of substrate was the most effective means of inhibiting DNA methylation. These results indicate that immune cell-derived oxidants generated during inflammation have the potential to affect the epigenome of neighboring cells.
Assuntos
Cloraminas/farmacologia , Metilação de DNA/efeitos dos fármacos , DNA de Neoplasias/efeitos dos fármacos , Glicina/análogos & derivados , Linfoma/tratamento farmacológico , Linfoma/patologia , Oxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Glicina/farmacologia , Humanos , Células Jurkat , Linfoma/imunologiaRESUMO
Peroxiredoxins (Prxs), scavenge cellular peroxides by forming recyclable disulfides but under high oxidative stress, hyperoxidation of their active-site Cys residue results in loss of their peroxidase activity. Saccharomyces cerevisiae deficient in human Prx (hPrx) orthologue TSA1 show growth defects under oxidative stress. They can be complemented with hPRXI but not by hPRXII, but it is not clear how the disulfide and hyperoxidation states of the hPrx vary in yeast under oxidative stress. To understand this, we used oxidative-stress sensitive tsa1tsa2Δ yeast strain to express hPRXI or hPRXII. We found that hPrxI in yeast exists as a mixture of disulfide-linked dimer and reduced monomer but becomes hyperoxidized upon elevated oxidative stress as analyzed under denaturing conditions (SDS-PAGE). In contrast, hPrxII was present predominantly as the disulfide in unstressed cells and readily converted to its hyperoxidized, peroxidase-inactive form even with mild oxidative stress. Interestingly, we found that plant extracts containing polyphenol antioxidants provided further protection against the growth defects of the tsa1tsa2Δ strain expressing hPrx and preserved the peroxidase-active forms of the Prxs. The extracts also helped to protect against hyperoxidation of hPrxs in HeLa cells. Based on these findings we can conclude that resistance to oxidative stress of yeast cells expressing individual hPrxs requires the hPrx to be maintained in a redox state that permits redox cycling and peroxidase activity. Peroxidase activity decreases as the hPrx becomes hyperoxidized and the limited protection by hPrxII compared with hPrxI can be explained by its greater sensitivity to hyperoxidation.
Assuntos
Proteínas de Homeodomínio/genética , Estresse Oxidativo/genética , Peroxidases/genética , Proteínas de Saccharomyces cerevisiae/genética , Antioxidantes/metabolismo , Domínio Catalítico/genética , Cisteína/metabolismo , Dissulfetos/metabolismo , Células HeLa , Proteínas de Homeodomínio/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Oxirredução/efeitos dos fármacos , Peroxidases/metabolismo , Peróxidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Protein-tyrosine phosphatases (PTPs) counteract protein tyrosine phosphorylation and cooperate with receptor-tyrosine kinases in the regulation of cell signaling. PTPs need to undergo oxidative inhibition for activation of cellular cascades of protein-tyrosine kinase phosphorylation following growth factor stimulation. It has remained enigmatic how such oxidation can occur in the presence of potent cellular reducing systems. Here, using in vitro biochemical assays with purified, recombinant protein, along with experiments in the adenocarcinoma cell line A431, we discovered that bicarbonate, which reacts with H2O2 to form the more reactive peroxymonocarbonate, potently facilitates H2O2-mediated PTP1B inactivation in the presence of thioredoxin reductase 1 (TrxR1), thioredoxin 1 (Trx1), and peroxiredoxin 2 (Prx2) together with NADPH. The cellular experiments revealed that intracellular bicarbonate proportionally dictates total protein phosphotyrosine levels obtained after stimulation with epidermal growth factor (EGF) and that bicarbonate levels directly correlate with the extent of PTP1B oxidation. In fact, EGF-induced cellular oxidation of PTP1B was completely dependent on the presence of bicarbonate. These results provide a plausible mechanism for PTP inactivation during cell signaling and explain long-standing observations that growth factor responses and protein phosphorylation cascades are intimately linked to the cellular acid-base balance.
Assuntos
Equilíbrio Ácido-Base , Bicarbonatos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , NADP/genética , NADP/metabolismo , Oxirredução , Fosforilação/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Transdução de Sinais , Tiorredoxina Redutase 1/genética , Tiorredoxina Redutase 1/metabolismo , Tiorredoxinas/genéticaRESUMO
Peroxiredoxins (Prxs) are thiol peroxidases with a key role in antioxidant defense and redox signaling. They could be important in neutrophils for handling the large amount of oxidants that these cells produce. We investigated the redox state of Prx1 and Prx2 in HL-60 promyelocytic cells differentiated to neutrophil-like cells (dHL-60) and in human neutrophils. HL-60â¯cell differentiation with dimethyl sulfoxide caused a large decrease in expression of both Prxs, and all-trans retinoic acid also decreased Prx1 expression. Prx1 was mostly reduced in dHL-60â¯cells. NADPH oxidase activation by phorbol myristate acetate (PMA) or ingestion of Staphylococcus aureus induced rapid oxidation to disulfide-linked dimers, and eventually hyperoxidation. The NADPH oxidase inhibitor, diphenyleneiodonium, prevented Prx1 dimerization in stimulated dHL-60â¯cells, and decreased the extent of oxidation under resting conditions. In contrast, Prx1 and Prx2 were present in neutrophils from human blood as disulfides, and PMA or S. aureus caused no further oxidation. They remained oxidized on incubation with diphenyleneiodonium in media. Although this suggests that Prx redox cycling could be deficient in neutrophils, thioredoxin expression and thioredoxin reductase activity were similar in neutrophils and dHL-60â¯cells. Additionally, neutrophil thioredoxin was initially reduced and underwent oxidation after PMA activation. Thus, although the Prxs respond to oxidant generation in dHL-60â¯cells, in neutrophils they appear "locked" as disulfides. On this basis we propose that neutrophil Prxs are inefficient antioxidants and contribute little to peroxide removal during the oxidative burst, and speculate that they might be involved in other cell processes.
Assuntos
Antioxidantes/metabolismo , Proteínas de Homeodomínio/genética , Oxirredução/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Proteínas de Homeodomínio/antagonistas & inibidores , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Oniocompostos/farmacologia , Oxidantes/metabolismo , Transdução de Sinais/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Acetato de Tetradecanoilforbol/toxicidadeRESUMO
Hydrogen peroxide (H2O2) acts as a signaling molecule in cells by oxidising cysteine residues in regulatory proteins such as phosphatases, kinases and transcription factors. It is unclear exactly how many of these proteins are specifically targeted by H2O2 because they appear too unreactive to be directly oxidised. One proposal is that peroxiredoxins (Prxs) initially react with H2O2 and then oxidise adjacent proteins via a thiol relay mechanism. The aim of this study was to identify constitutive interaction partners of Prx2 in Jurkat T-lymphoma cells, in which thiol protein oxidation occurs at low micromolar concentrations of H2O2. Immunoprecipitation and proximity ligation assays identified a physical interaction between collapsin response mediator protein 2 (CRMP2) and cytoplasmic Prx2. CRMP2 regulates microtubule structure during lymphocyte migration and neuronal development. Exposure of Jurkat cells to low micromolar levels of H2O2 caused rapid and reversible oxidation of CRMP2, in parallel with Prx2 oxidation, despite purified recombinant CRMP2 protein reacting slowly with H2O2 (k~1â¯M-1s-1). Lowering Prx expression should inhibit oxidation of proteins oxidised by a relay mechanism, however knockout of Prx2 had no effect on CRMP2 oxidation. CRMP2 also interacted with Prx1, suggesting redundancy in single knockout cells. Prx 1 and 2 double knockout Jurkat cells were not viable. An interaction between Prx2 and CRMP2 was also detected in other human and rodent cells, including primary neurons. However, low concentrations of H2O2 did not cause CRMP2 oxidation in these cells. This indicates a cell-type specific mechanism for promoting CRMP2 oxidation in Jurkat cells, with insufficient evidence to attribute oxidation to a Prx-dependent redox relay.
Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Peróxido de Hidrogênio/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Movimento Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Jurkat , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxirredução , Células PC12 , Cultura Primária de Células , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de SinaisRESUMO
Peroxidasin is a heme peroxidase that catalyses the oxidation of bromide by hydrogen peroxide to form an essential sulfilimine cross-link between methionine and hydroxylysine residues in collagen IV. We investigated cross-linking by peroxidasin embedded in extracellular matrix isolated from cultured epithelial cells and its sensitivity to alternative substrates and peroxidase inhibitors. Peroxidasin showed peroxidase activity as measured with hydrogen peroxide and Amplex red. Using a specific mass spectrometry assay that measures NADH bromohydrin, we showed definitively that the enzyme releases hypobromous acid (HOBr). Less than 1 µM of the added hydrogen peroxide was used by peroxidasin. The remainder was consumed by catalase activity that was associated with the matrix. Results from NADH bromohydrin measurements indicates that low micromolar HOBr generated by peroxidasin was sufficient for maximum sulfilimine cross-linking, whereas 100 µM reagent HOBr or taurine bromamine was less efficient. This implies selectivity for the enzymatic process. Physiological concentrations of thiocyanate and urate partially inhibited cross-link formation. 4-Aminobenzoic acid hydrazide, a commonly used myeloperoxidase inhibitor, also inhibited peroxidasin, whereas acetaminophen and a 2-thioxanthine were much less effective. In conclusion, HOBr is produced by peroxidasin in the extracellular matrix. It appears to be directed at the site of collagen IV sulfilimine formation but the released HOBr may also undergo other reactions.
Assuntos
Bromatos/química , Brometos/química , Proteínas da Matriz Extracelular/química , Matriz Extracelular/química , Peróxido de Hidrogênio/química , Peroxidase/química , Animais , Bromatos/análise , Linhagem Celular Tumoral , Colágeno Tipo IV/química , Proteínas da Matriz Extracelular/antagonistas & inibidores , Proteínas da Matriz Extracelular/genética , Técnicas de Inativação de Genes , Iminas/química , Espectrometria de Massas , Camundongos , NAD/química , Peroxidase/antagonistas & inibidores , Peroxidase/genética , PeroxidasinaRESUMO
Regulation of growth factor signaling involves reversible inactivation of protein tyrosine phosphatases (PTPs) through the oxidation and reduction of their active site cysteine. However, there is limited mechanistic understanding of these redox events and their co-ordination in the presence of cellular antioxidant networks. Here we investigated interactions between PTP1B and the peroxiredoxin 2 (Prx2)/thioredoxin 1 (Trx1)/thioredoxin reductase 1 (TrxR1) network. We found that Prx2 becomes oxidized in PDGF-treated fibroblasts, but only when TrxR1 has first been inhibited. Using purified proteins, we also found that PTP1B is relatively insensitive to inactivation by H2O2 but found no evidence for a relay mechanism in which Prx2 or Trx1 facilitates PTP1B oxidation. Instead, these proteins prevented PTP1B inactivation by H2O2 Intriguingly, we discovered that TrxR1/NADPH directly protects PTP1B from inactivation when present during the H2O2 exposure. This protection was dependent on the concentration of TrxR1 and independent of Trx1 and Prx2. The protection was blocked by auranofin and required an intact selenocysteine residue in TrxR1. This activity likely involves reduction of the sulfenic acid intermediate form of PTP1B by TrxR1 and is therefore distinct from the previously described reactivation of end-point oxidized PTP1B, which requires both Trx1 and TrxR1. The ability of TrxR1 to directly reduce an oxidized phosphatase is a novel activity that can help explain previously observed increases in PTP1B oxidation and PDGF receptor phosphorylation in TrxR1 knockout cells. The activity of TrxR1 is therefore of potential relevance for understanding the mechanisms of redox regulation of growth factor signaling pathways.
Assuntos
NADP/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Tiorredoxina Redutase 1/metabolismo , Animais , Auranofina/farmacologia , Domínio Catalítico , Células Cultivadas , Dimerização , Embrião de Mamíferos/citologia , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos , Oxidantes/farmacologia , Oxirredução , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Ratos , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo , Tiorredoxina Redutase 1/antagonistas & inibidores , Tiorredoxina Redutase 1/química , Tiorredoxina Redutase 1/genética , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismoRESUMO
Neutrophils are essential for killing bacteria and other microorganisms, and they also have a significant role in regulating the inflammatory response. Stimulated neutrophils activate their NADPH oxidase (NOX2) to generate large amounts of superoxide, which acts as a precursor of hydrogen peroxide and other reactive oxygen species that are generated by their heme enzyme myeloperoxidase. When neutrophils engulf bacteria they enclose them in small vesicles (phagosomes) into which superoxide is released by activated NOX2 on the internalized neutrophil membrane. The superoxide dismutates to hydrogen peroxide, which is used by myeloperoxidase to generate other oxidants, including the highly microbicidal species hypochlorous acid. NOX activation occurs at other sites in the cell, where it is considered to have a regulatory function. Neutrophils also release oxidants, which can modify extracellular targets and affect the function of neighboring cells. We discuss the identity and chemical properties of the specific oxidants produced by neutrophils in different situations, and what is known about oxidative mechanisms of microbial killing, inflammatory tissue damage, and signaling.
Assuntos
Cloraminas/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácido Hipocloroso/metabolismo , Neutrófilos/imunologia , Superóxidos/metabolismo , Tiocianatos/metabolismo , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Cloraminas/imunologia , Expressão Gênica , Humanos , Peróxido de Hidrogênio/imunologia , Ácido Hipocloroso/imunologia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Oxirredução , Peroxidase/genética , Peroxidase/imunologia , Transdução de Sinais , Superóxidos/imunologia , Acetato de Tetradecanoilforbol/farmacologia , Tiocianatos/imunologia , Zimosan/farmacologiaRESUMO
The reaction between GSH and superoxide has long been of interest in the free radical biology. Early studies were confusing, as some reports suggested that the reaction could be a major pathway for superoxide removal whereas others questioned whether it happened at all. Further research by several investigators, including Helmut Sies, was required to clarify this complex reaction. We now know that superoxide does react with GSH, but the reaction is relatively slow and occurs mostly by a chain reaction that consumes oxygen and regenerates superoxide. Most of the GSH is converted to GSSG, with a small amount of sulfonic acid. As shown by Sies and colleagues, singlet oxygen is a by-product. Although removal of superoxide by GSH may be a minor pathway, GSH and superoxide have a strong physiological connection. GSH is an efficient free radical scavenger, and when it does so, thiyl radicals are generated. These further react to generate superoxide. Therefore, radical scavenging by GSH and other thiols is a source of superoxide and hydrogen peroxide, and to be an antioxidant pathway, there must be efficient removal of these species.
Assuntos
Glutationa/metabolismo , Compostos de Sulfidrila/metabolismo , Superóxidos/metabolismo , HumanosRESUMO
Peroxiredoxin 2 (Prx2) is a thiol protein that functions as an antioxidant, regulator of cellular peroxide concentrations, and sensor of redox signals. Its redox cycle is widely accepted to involve oxidation by a peroxide and reduction by thioredoxin/thioredoxin reductase. Interactions of Prx2 with other thiols are not well characterized. Here we show that the active site Cys residues of Prx2 form stable mixed disulfides with glutathione (GSH). Glutathionylation was reversed by glutaredoxin 1 (Grx1), and GSH plus Grx1 was able to support the peroxidase activity of Prx2. Prx2 became glutathionylated when its disulfide was incubated with GSH and when the reduced protein was treated with H2O2 and GSH. The latter reaction occurred via the sulfenic acid, which reacted sufficiently rapidly (k = 500 m(-1) s(-1)) for physiological concentrations of GSH to inhibit Prx disulfide formation and protect against hyperoxidation to the sulfinic acid. Glutathionylated Prx2 was detected in erythrocytes from Grx1 knock-out mice after peroxide challenge. We conclude that Prx2 glutathionylation is a favorable reaction that can occur in cells under oxidative stress and may have a role in redox signaling. GSH/Grx1 provide an alternative mechanism to thioredoxin and thioredoxin reductase for Prx2 recycling.
Assuntos
Glutarredoxinas , Glutationa , Peroxirredoxinas , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Domínio Catalítico , Linhagem Celular , Cisteína , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/química , Glutationa/genética , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/química , Camundongos , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/química , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismoRESUMO
Mammalian 2-cysteine peroxiredoxins (Prxs) are susceptible to hyperoxidation by excess H2O2. The cytoplasmic family member Prx2 hyperoxidizes more readily than mitochondrial Prx3 due to slower dimerization of the sulfenic acid (SpOH) intermediate. Four variant amino acids near the C-terminus have been shown to contribute to this difference. We have performed kinetic analysis of the relationship between hyperoxidation and disulfide formation, using whole-protein MS and comparing wild-type (WT) Prx2 and Prx3 with tail-swap mutants in which the four amino acids were reversed. These changes make Prx3 more sensitive and Prx2 less sensitive to hyperoxidation and accounted for â¼70% of the difference between the two proteins. The tail swap mutant of Prx3 was also more susceptible when expressed in the mitochondria of HeLa cells. The hyperoxidized product at lower excesses of H2O2 was a semi-hyperoxidized dimer with one active site disulfide and the other a sulfinic acid. For Prx2, increasing the H2O2 concentration resulted in complete hyperoxidation. In contrast, only approximately half the Prx3 active sites underwent hyperoxidation and, even with high H2O2, the predominant product was the hyperoxidized dimer. Size exclusion chromatography (SEC) showed that the oligomeric forms of all redox states of Prx3 dissociated more readily into dimeric units than their Prx2 counterparts. Notably the species with one disulfide and one hyperoxidized active site was decameric for Prx2 and dimeric for Prx3. Reduction and re-oxidation of the hyperoxidized dimer of Prx3 produced hyperoxidized monomers, implying dissociation and rearrangement of the subunits of the functional homodimer.
Assuntos
Peroxirredoxina III/metabolismo , Peroxirredoxinas/metabolismo , Sequência de Aminoácidos , Células HeLa , Humanos , Cinética , Dados de Sequência Molecular , Mutação , Oxirredução , Peroxirredoxina III/química , Peroxirredoxina III/genética , Peroxirredoxinas/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de AminoácidosRESUMO
BACKGROUND: The thiol protein peroxiredoxin 2 (Prx2) is a major red blood cell (RBC) antioxidant that breaks down hydroperoxides and in the process is converted to an oxidized disulfide. Our objective was to determine whether Prx2 becomes oxidized during storage of RBCs, to understand the underlying mechanism, and to find ways of preventing the accumulation of the oxidized form. STUDY DESIGN AND METHODS: RBCs were stored for up to 6 weeks under simulated blood banking conditions and Prx2 oxidation was monitored by nonreducing gel electrophoresis. The ability of the cells to reverse Prx2 oxidation after storage and to respond to added hydrogen peroxide was also evaluated. RESULTS: Prx2 remained predominantly reduced during the first 3 weeks of storage, and then the oxidized form accumulated progressively. In contrast to fresh cells, oxidation was not reversed by incubation with glucose. Storage of RBCs in a high-pH, low-chloride, and high-phosphate/bicarbonate buffer (EAS-76v6) largely prevented accumulation of oxidized Prx for at least 6 weeks, and dihydrolipoic acid (DHLA), but not Rejuvesol, N-acetylcysteine, or α-lipoic acid, was able to reverse or protect against Prx2 oxidation. Additional, Prx2 oxidation occurred when hydrogen peroxide was added. However, this was reversible, suggesting that the reductive capacity was compromised in some but not in all cells. CONCLUSION: Prx2 remains mostly reduced in a high-pH storage solution with buffering capacity. Addition of DHLA to stored RBCs might be advantageous. Prx2 redox status could be used as a biomarker for the quality of stored RBCs.