Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396719

RESUMO

Preeclampsia (PE) is characterized by maternal hypertension and placental dysfunction, often leading to fetal growth restriction (FGR). It is associated with an overexpression of the anti-angiogenic sFLT1 protein, which originates from the placenta and serves as a clinical biomarker to predict PE. To analyze the impact of sFLT1 on placental function and fetal growth, we generated transgenic mice with placenta-specific human sFLT1 (hsFLT1) overexpression. Immunohistochemical, morphometrical, and molecular analyses of the placentas on 14.5 dpc and 18.5 dpc were performed with a focus on angiogenesis, nutrient transport, and inflammation. Additionally, fetal development upon placental hsFLT1 overexpression was investigated. Dams exhibited a mild increase in serum hsFLT1 levels upon placental hsFLT1 expression and revealed growth restriction of the fetuses in a sex-specific manner. Male FGR fetuses expressed higher amounts of placental hsFLT1 mRNA compared to females. FGR placentas displayed an altered morphology, hallmarked by an increase in the spongiotrophoblast layer and changes in labyrinthine vascularization. Further, FGR placentas showed a significant reduction in placental glycogen storage and nutrient transporter expression. Moreover, signs of hypoxia and inflammation were observed in FGR placentas. The transgenic spongiotrophoblast-specific hsFLT1 mouse line demonstrates that low hsFLT1 serum levels are sufficient to induce significant alterations in fetal and placental development in a sex-specific manner.


Assuntos
Retardo do Crescimento Fetal , Pré-Eclâmpsia , Camundongos , Animais , Gravidez , Humanos , Masculino , Feminino , Camundongos Transgênicos , Retardo do Crescimento Fetal/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/genética , Inflamação/genética
3.
J Cachexia Sarcopenia Muscle ; 12(4): 933-954, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34120411

RESUMO

BACKGROUND: Cardioprotection by preventing or repairing mitochondrial damage is an unmet therapeutic need. To understand the role of cardiomyocyte mitochondria in physiopathology, the reliable characterization of the mitochondrial morphology and compartment is pivotal. Previous studies mostly relied on two-dimensional (2D) routine transmission electron microscopy (TEM), thereby neglecting the real three-dimensional (3D) mitochondrial organization. This study aimed to determine whether classical 2D TEM analysis of the cardiomyocyte ultrastructure is sufficient to comprehensively describe the mitochondrial compartment and to reflect mitochondrial number, size, dispersion, distribution, and morphology. METHODS: Spatial distribution of the complex mitochondrial network and morphology, number, and size heterogeneity of cardiac mitochondria in isolated adult mouse cardiomyocytes and adult wild-type left ventricular tissues (C57BL/6) were assessed using a comparative 3D imaging system based on focused ion beam-scanning electron microscopy (FIB-SEM) nanotomography. For comparison of 2D vs. 3D data sets, analytical strategies and mathematical comparative approaches were performed. To confirm the value of 3D data for mitochondrial changes, we compared the obtained values for number, coverage area, size heterogeneity, and complexity of wild-type cardiomyocyte mitochondria with data sets from mice lacking the cytosolic and mitochondrial protein BNIP3 (BCL-2/adenovirus E1B 19-kDa interacting protein 3; Bnip3-/- ) using FIB-SEM. Mitochondrial respiration was assessed on isolated mitochondria using the Seahorse XF analyser. A cardiac biopsy was obtained from a male patient (48 years) suffering from myocarditis. RESULTS: The FIB-SEM nanotomographic analysis revealed that no linear relationship exists for mitochondrial number (r = 0.02; P = 0.9511), dispersion (r = -0.03; P = 0.9188), and shape (roundness: r = 0.15, P = 0.6397; elongation: r = -0.09, P = 0.7804) between 3D and 2D results. Cumulative frequency distribution analysis showed a diverse abundance of mitochondria with different sizes in 3D and 2D. Qualitatively, 2D data could not reflect mitochondrial distribution and dynamics existing in 3D tissue. 3D analyses enabled the discovery that BNIP3 deletion resulted in more smaller, less complex cardiomyocyte mitochondria (number: P < 0.01; heterogeneity: C.V. wild-type 89% vs. Bnip3-/- 68%; complexity: P < 0.001) forming large myofibril-distorting clusters, as seen in human myocarditis with disturbed mitochondrial dynamics. Bnip3-/- mice also show a higher respiration rate (P < 0.01). CONCLUSIONS: Here, we demonstrate the need of 3D analyses for the characterization of mitochondrial features in cardiac tissue samples. Hence, we observed that BNIP3 deletion physiologically acts as a molecular brake on mitochondrial number, suggesting a role in mitochondrial fusion/fission processes and thereby regulating the homeostasis of cardiac bioenergetics.


Assuntos
Tomografia com Microscopia Eletrônica , Miócitos Cardíacos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias , Dinâmica Mitocondrial , Miócitos Cardíacos/metabolismo
4.
Am J Reprod Immunol ; 86(3): e13430, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33864713

RESUMO

BACKGROUND: B7-H4, a checkpoint molecule of the B7 family, regulates a broad spectrum such as T-cell activation, cytokine secretion, tumour progression, and invasion capacities. Our previous data revealed that soluble B7-H4 (sB7-H4) blood serum levels are elevated in women at high risk for the hypertensive pregnancy disorder preeclampsia (PE) in the first trimester, as well as in patients with confirmed early/late-onset PE. AIM: We here aim to investigate the expression pattern of B7-H4 in placental tissues of PE and HELLP Syndrome versus control group. METHODS: B7-H4 protein expression and localization were investigated by immunoblotting and co-immunohistochemistry in placental chorionic villous and decidual basalis tissues. RESULTS: B7-H4 protein was prominently expressed at the cell membrane, in the cytoplasm of the syncytiotrophoblast (STB) and interstitial extravillous trophoblast (EVT). B7-H4 protein levels in placental chorionic villous tissue were significantly higher in women with early-onset/late-onset PE and HELLP, while it was decreased in decidual basalis tissues of early-onset PE and HELLP compared with controls. CONCLUSION: B7-H4 was inversely expressed in placental chorionic villous and decidual basalis tissues of PE and HELLP patients. The increase in B7-H4 in the STB in PE and HELLP may lead to excessive apical expression and release of soluble B7-H4 in the maternal circulation. In contrast, the decrease in B7-H4 in decidual basalis tissues could be related to the decrease in invasion ability of the EVT in PE. Thus, the current results strongly suggest that B7-H4 is involved in the pathogenesis of PE and HELLP.


Assuntos
Vilosidades Coriônicas/metabolismo , Decídua/metabolismo , Síndrome HELLP/metabolismo , Pré-Eclâmpsia/metabolismo , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Adulto , Vilosidades Coriônicas/imunologia , Decídua/imunologia , Feminino , Síndrome HELLP/imunologia , Humanos , Pré-Eclâmpsia/imunologia , Gravidez , Inibidor 1 da Ativação de Células T com Domínio V-Set/imunologia
5.
Front Endocrinol (Lausanne) ; 11: 597549, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304321

RESUMO

Objectives: An adequate development of the placenta includes trophoblast differentiation with the processes of trophoblast migration, invasion, cellular senescence and apoptosis which are all crucial to establishing a successful pregnancy. Altered placental development and function lead to placental diseases such as preeclampsia (PE) which is mainly characterized by insufficient trophoblast invasion and abnormally invasive placenta (AIP) disorders (Placenta accreta, increta, or percreta) which are characterized by excessive trophoblast invasion. Both of them will cause maternal and fetal morbidity/mortality. However, the etiology of these diseases is still unclear. Our previous study has shown that the matricellular protein nephroblastoma overexpressed (NOV, CCN3) induces G0/G1 cell cycle arrest, drives trophoblast cells into senescence and activates FAK and Akt kinases resulting in reduced cell proliferation and enhanced migration capability of the human trophoblast cell line SGHPL-5. The present study focuses on whether CCN3 can alter cell cycle-regulated pathways associated with trophoblast senescence and invasion activity in pathological versus gestational age-matched control placentas. Methods: Cell cycle regulator proteins were investigated by immunoblotting and qPCR. For localization of CCN3, p16, p21, and Cyclin D1 proteins, co-immunohistochemistry was performed. Results: In early-onset PE placentas, CCN3 was expressed at a significantly lower level compared to gestational age-matched controls. The decrease of CCN3 level is associated with an increase in p53, Cyclin E1 and pRb protein expression, whereas the level of cleaved Notch-1, p21, Cyclin D1, pFAK, pAKT, and pmTOR protein decreased. In term AIP placentas, the expression of CCN3 was significantly increased compared to matched term controls. This increase was correlated to an increase in p53, p16, p21, Cyclin D1, cleaved Notch-1, pFAK, pAkt, and pmTOR whereas pRb was significantly decreased. However, in late PE and early AIP placentas, no significant differences in CCN3, p16, p21, Cyclin D1, p53, and cleaved Notch-1 expression were found when matched to appropriate controls. Conclusions: CCN3 expression levels are correlated to markers of cell cycle arrest oppositely in PE and AIP by activating the FAK/AKT pathway in AIP or down-regulating in PE. This may be one mechanism to explain the different pathological features of placental diseases, PE and AIP.


Assuntos
Biomarcadores/metabolismo , Pontos de Checagem do Ciclo Celular , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Doenças Placentárias/patologia , Placenta/patologia , Pré-Eclâmpsia/patologia , Adulto , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Senescência Celular , Feminino , Humanos , Placenta/metabolismo , Doenças Placentárias/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez
6.
J Cell Physiol ; 234(1): 740-748, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30078185

RESUMO

RNA-binding proteins (RBPs) have been described for cancer cell progression and differentiation, although there is still much to learn about their mechanisms. Here, using in vivo decidualization as a model, we describe the role of RBP cold shock domain containing C2 (CSDC2) in the endometrium. Csdc2 messenger RNA expression was differentially regulated depending on time and areas of decidua development, with the most variation in antimesometrium (AM) and, to a lesser degree, in the junctional zone (JZ). Immunohistochemistry of CSDC2 showed a preferentially cytoplasmic localization at AM and JZ, and nuclear localization in underneath myometrium and mesometrium (M). Cytoplasmic localization coincided with differentiated, DESMIN-marked areas, while nuclear localization coincides with proliferative zones. Uterine suppression of CSDC2 through intrauterine-injected-specific small interfering RNA (siRNA) led to abnormal decidualization in early pregnancy, with more extended antimesometrial area and with poor M development if compared with control siRNA-injected animals. These results suggest that CSDC2 could be a regulator during decidua development.


Assuntos
Diferenciação Celular/genética , Endométrio/crescimento & desenvolvimento , Proteínas de Ligação a RNA/genética , Animais , Resposta ao Choque Frio/genética , Citoplasma/genética , Decídua/crescimento & desenvolvimento , Implantação do Embrião/genética , Endométrio/metabolismo , Feminino , Humanos , Gravidez , Domínios Proteicos/genética , RNA Interferente Pequeno/genética , Ratos , Transdução de Sinais
7.
J Cell Biochem ; 118(6): 1316-1329, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27859593

RESUMO

Since it is known that placental overexpression of the human anti-angiogenic molecule sFlt-1, the main candidate in the progression of preeclampsia, lead to intrauterine growth restriction (IUGR) in mice by lentiviral transduction of mouse blastocysts, we hypothesize that sFlt-1 influence placental morphology and physiology resulting in fetal IUGR. We therefore examined the effect of sFlt-1 on placental morphology and physiology at embryonic day 18.5 with histologic and morphometric analyses, transcript analyses, immunoblotting, and methylation studies. Interestingly, placental overexpression of sFlt-1 leads to IUGR in the fetus and results in lower placental weights. Moreover, we observed altered trophoblast differentiation with reduced expression of IGF2, resulting in a smaller placenta, a smaller labyrinth, and the loss of glycogen cells in the junctional zone. Changes in IGF2 are accompanied by small changes in its DNA methylation, whereas overall DNA methylation is unaffected. In addition, the expression of placental nutrient transporters, such as the glucose diffusion channel Cx26, is decreased. In contrast, the expression of the fatty acid transporter CD36 and the cholesterol transporter ABCA1 is significantly increased. In conclusion, placental sFlt-1 overexpression resulted in a reduction in the differentiation of the spongiotrophoblast into glycogen cells. These findings of a reduced exchange area of the labyrinth and glycogen stores, as well as decreased expression of glucose transporter, could contribute to the intrauterine growth restriction phenotype. All of these factors change the intrauterine availability of nutrients. Thus, we speculate that the alterations triggered by increased anti-angiogenesis strongly affect fetal outcome and programming. J. Cell. Biochem. 118: 1316-1329, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Retardo do Crescimento Fetal/genética , Placenta/patologia , Trofoblastos/citologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Diferenciação Celular , Conexina 26 , Conexinas/genética , Conexinas/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Epigênese Genética , Feminino , Retardo do Crescimento Fetal/patologia , Glicogênio/metabolismo , Humanos , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Placenta/metabolismo , Gravidez , Trofoblastos/metabolismo
8.
Development ; 143(5): 787-98, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811378

RESUMO

Loss of TFAP2C in mouse leads to developmental defects in the extra-embryonic compartment with lethality at embryonic day (E)7.5. To investigate the requirement of TFAP2C in later placental development, deletion of TFAP2C was induced throughout extra-embryonic ectoderm at E6.5, leading to severe placental abnormalities caused by reduced trophoblast population and resulting in embryonic retardation by E8.5. Deletion of TFAP2C in TPBPA(+) progenitors at E8.5 results in growth arrest of the junctional zone. TFAP2C regulates its target genes Cdkn1a (previously p21) and Dusp6, which are involved in repression of MAPK signaling. Loss of TFAP2C reduces activation of ERK1/2 in the placenta. Downregulation of Akt1 and reduced activation of phosphorylated AKT in the mutant placenta are accompanied by impaired glycogen synthesis. Loss of TFAP2C led to upregulation of imprinted gene H19 and downregulation of Slc38a4 and Ascl2. The placental insufficiency post E16.5 causes fetal growth restriction, with 19% lighter mutant pups. Knockdown of TFAP2C in human trophoblast choriocarcinoma JAr cells inhibited MAPK and AKT signaling. Thus, we present a model where TFAP2C in trophoblasts controls proliferation by repressing Cdkn1a and activating the MAPK pathway, further supporting differentiation of glycogen cells by activating the AKT pathway.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas da Gravidez/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição AP-2/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Cruzamentos Genéticos , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Glicogênio/metabolismo , Hibridização In Situ , Integrases/genética , Integrases/fisiologia , Masculino , Camundongos , Fosforilação , Placenta/metabolismo , Gravidez , Proteínas da Gravidez/genética , Fator de Transcrição AP-2/genética , Transgenes , Trofoblastos/metabolismo
9.
Cell Adh Migr ; 10(1-2): 163-78, 2016 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-26744771

RESUMO

During placental development, continuous invasion of trophoblasts into the maternal compartment depends on the support of proliferating extravillous trophoblasts (EVTs). Unlike tumor cells, EVTs escape from the cell cycle before invasion into the decidua and spiral arteries. This study focused on the regulation properties of glycosylated and non-glycosylated matricellular CCN1 and CCN3, primarily for proliferation control in the benign SGHPL-5 trophoblast cell line, which originates from the first-trimester placenta. Treating SGHPL-5 trophoblast cells with the glycosylated forms of recombinant CCN1 and CCN3 decreased cell proliferation by bringing about G0/G1 cell cycle arrest, which was accompanied by the upregulation of activated Notch-1 and its target gene p21. Interestingly, both CCN proteins increased senescence-associated ß-galactosidase activity and the expression of the senescence marker p16. The migration capability of SGHPL-5 cells was mostly enhanced in response to CCN1 and CCN3, by the activation of FAK and Akt kinase but not by the activation of ERK1/2. In summary, both CCN proteins play a key role in regulating trophoblast cell differentiation by inducing senescence and enhancing migration properties. Reduced levels of CCN1 and CCN3, as found in early-onset preeclampsia, could contribute to a shift from invasive to proliferative EVTs and may explain their shallow invasion properties in this disease.


Assuntos
Movimento Celular , Senescência Celular , Proteína Rica em Cisteína 61/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Transdução de Sinais , Trofoblastos/citologia , Trofoblastos/metabolismo , Biomarcadores/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Modelos Biológicos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Notch/metabolismo , Regulação para Cima , beta-Galactosidase/metabolismo
10.
PLoS One ; 10(4): e0124756, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25897495

RESUMO

Progesterone receptor and estrogen receptor participate in growth and differentiation of the different rat decidual regions. Steroid hormone receptor antagonists were used to study steroid regulation of decidualization. Here we describe a suppressive interaction between progesterone receptor (onapristone) and estrogen receptor (ICI182780) antagonists and their relation to a rescue phenomenon with concomitant regulation of Hand2, Bmp2 and p-ERK1/2 during the early decidualization steps. Phenotypes of decidua development produced by antagonist treatments were characterized by morphology, proliferation, differentiation, angiogenesis and expression of signaling molecules. We found that suppression of progesterone receptor activity by onapristone treatment resulted in resorption of the implantation sites with concomitant decrease in progesterone and estrogen receptors, PCNA, KI67 antigen, DESMIN, CCND3, CX43, Prl8a2, and signaling players such as transcription factor Hand2, Bmp2 mRNAs and p-ERK1/2. Moreover, FGF-2 and Vegfa increased as a consequence of onapristone treatment. Implantation sites from antagonist of estrogen receptor treated rats developed all decidual regions, but showed an anomalous blood vessel formation at the mesometrial part of the decidua. The deleterious effect of onapristone was partially counteracted by the impairment of estrogen receptor activity with rescue of expression levels of hormone steroid receptors, proliferation and differentiation markers, and the induction of a probably compensatory increase in signaling molecules Hand2, Bmp2 and ERK1/2 activation compared to oil treated controls. This novel drug interaction during decidualization could be applied to pathological endometrial cell proliferation processes to improve therapies using steroid hormone receptor targets.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Decídua/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Animais , Diferenciação Celular , Decídua/irrigação sanguínea , Implantação do Embrião , Estradiol/análogos & derivados , Estradiol/farmacologia , Feminino , Fulvestranto , Gonanos/farmacologia , Gravidez , Transporte Proteico , Ratos Wistar , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Progesterona/antagonistas & inibidores , Transdução de Sinais
11.
J Lipid Res ; 56(4): 821-35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25667419

RESUMO

Besides bulk amounts of SM, mammalian cells produce small quantities of the SM analog ceramide phosphoethanolamine (CPE). Little is known about the biological role of CPE or enzymes responsible for CPE production. Heterologous expression studies revealed that SM synthase (SMS)2 is a bifunctional enzyme producing both SM and CPE, whereas SMS-related protein (SMSr) serves as monofunctional CPE synthase. Acute disruption of SMSr catalytic activity in cultured cells causes a rise in endoplasmic reticulum (ER) ceramides, fragmentation of ER exit sites, and induction of mitochondrial apoptosis. To address the relevance of CPE biosynthesis in vivo, we analyzed the tissue-specific distribution of CPE in mice and generated mouse lines lacking SMSr and SMS2 catalytic activity. We found that CPE levels were >300-fold lower than SM in all tissues examined. Unexpectedly, combined inactivation of SMSr and SMS2 significantly reduced, but did not eliminate, tissue-specific CPE pools and had no obvious impact on mouse development or fertility. While SMSr is widely expressed and serves as the principal CPE synthase in the brain, blocking its catalytic activity did not affect ceramide levels or secretory pathway integrity in the brain or any other tissue. Our data provide a first inventory of CPE species and CPE-biosynthetic enzymes in mammals.


Assuntos
Biocatálise , Esfingomielinas/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Encéfalo/citologia , Encéfalo/enzimologia , Encéfalo/metabolismo , Domínio Catalítico , Sobrevivência Celular , Ativação Enzimática , Éxons/genética , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Fígado/citologia , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Mutação Puntual , Transporte Proteico , Esfingomielinas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/deficiência , Transferases (Outros Grupos de Fosfato Substituídos)/genética
12.
Biol Reprod ; 89(5): 111, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24048574

RESUMO

Connexin43 (CX43), encoded by Gja1 in the mouse, is highly expressed in decidual cells and is known to be important for the transformation of stromal cells into the compact decidua and for neoangiogenesis. Here we investigated if the dominant Gja1(Jrt) mutation encoding CX43(G60S) in mice, which results in a phenotype resembling oculodentodigital dysplasia in humans, has an impact on decidualization, angiogenesis, and implantation. We found a reduced mean weight of fetuses at Gestational Day 17.5 in dams carrying this mutation, with the growth deficiency being independent of fetal genotype. Although the mutant implantation sites exhibited a reduction in CX43 protein, with most immunoreactivity being cytoplasmic, the decidua was morphologically intact at Embryonic Days 5.5 to 7.5. However, the mutation resulted in enhanced and irregular angiogenesis and an increased level of expression of the angiogenic factor-encoding genes Vegfa, Flt1, Kdr, and Fgf2 as well as the prolactin-related gene Prl6a. Moreover, immunolocalization of VEGFA, FLT1, and KDR revealed a homogeneous distribution pattern in the mesometrial as well as antimesometrial decidua of the mutants. Most obviously, uterine NK cells are drastically diminished in the mesometrial decidua of the mutant mice. Invasion of ectoplacental cone cells was disoriented, and placentation was established more laterally in the implantation chambers. It was concluded that the CX43(G60S) mutant impairs control of decidual angiogenesis, leading to dysmorphic placentation and fetal growth restriction. This phenomenon could contribute to the reduced fetal weights and viability of pups born of Gja1(Jrt)/+ dams.


Assuntos
Conexina 43/genética , Decídua/irrigação sanguínea , Neovascularização Fisiológica/genética , Placenta/citologia , Placenta/fisiologia , Animais , Animais Recém-Nascidos , Polaridade Celular/genética , Códon sem Sentido , Feminino , Retardo do Crescimento Fetal/genética , Genes Dominantes , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Circulação Placentária/genética , Placentação/genética , Gravidez
13.
Mol Hum Reprod ; 19(4): 237-49, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23220688

RESUMO

Previous studies showed that CCN3 is deregulated in early-onset pre-eclampsia (PE), a pregnancy disease associated with impaired trophoblast invasion, which leads to reduced fetal oxygen and nutrition support. Recently, we identified the glycosylated (g-CCN3) and the non-glycosylated (ng-CCN3) form of matricellular CCN3 as key factors in regulation of trophoblast proliferation and invasion. While Jeg3 cells revealed a decreased proliferation upon stimulation with both forms of CCN3, enhanced migration and invasion properties were only found for ng-CCN3. Here, we focused on the signalling cascades mitogen-activated protein kinase (MAPK), PI3 kinase/Akt and Notch/p21 for mediating the dual function of CCN3 on trophoblast proliferation versus migration in Jeg3 cells upon stimulation with g- and ng-recombinant CCN3 (g/ng-rCCN3). Analysis of the CCN3-mediated signalling pathways showed that ng-rCCN3 stimulated migration properties by activating the Akt as well as the MAPK pathway. Moreover, cell migration stimulated by ng-rCCN3 was mediated via Akt and integrin α5ß1 but not the antiproliferative effect of CCN3. There was evidence that the Notch pathway might contribute to the antiproliferative properties of both forms of CCN3 by an increase in Notch1 expression and its target gene, the cell cycle inhibitor p21. Our data showed that the presence of both forms of CCN3 is accompanied by a balance of trophoblast proliferation and migration/invasion properties, which are triggered by different signalling pathways. Thus, a deregulated expression of g/ng-CCN3 could lead to an imbalance in proliferation versus invasion, and might contribute to the shallow trophoblast invasion observed in PE.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteína Sobre-Expressa em Nefroblastoma/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Trofoblastos/citologia , Movimento Celular , Proliferação de Células , Feminino , Humanos , Modelos Biológicos , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Trofoblastos/metabolismo
14.
Biol Reprod ; 86(4): 115, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22238282

RESUMO

Connexin expression and gap junctional intercellular communication (GJIC) mediated by connexin 43 (Cx43)/gap junction A1 (GJA1) are required for cytotrophoblast fusion into the syncytium, the outer functional layer of the human placenta. Cx43 also impacts intracellular signaling through protein-protein interactions. The transcription factor GCM1 and its downstream target ERVW-1/SYNCYTIN-1 are key players in trophoblast fusion and exert their actions through the ERVW-1 receptor SLC1A5/ASCT-2/RDR/ATB(0). To investigate the molecular role of the Cx43 protein and its interaction with this fusogenic pathway, we utilized stable Cx43-transfected cell lines established from the choriocarcinoma cell line Jeg3: wild-type Jeg3, alphahCG/Cx43 (constitutive Cx43 expression), JpUHD/Cx43 (doxycyclin-inducible Cx43 expression), or JpUHD/trCx43 (doxycyclin-inducible Cx43 carboxyterminal deleted). We hypothesized that truncation of Cx43 at its C-terminus would inhibit trophoblast fusion and protein interaction with either ERVW-1 or SLC1A5. In the alphahCG/Cx43 and JpUHD/Cx43 lines, stimulation with cAMP caused 1) increase in GJA1 mRNA levels, 2) increase in percentage of fused cells, and 3) downregulation of SLC1A5 expression. Cell fusion was inhibited by GJIC blockade using carbenoxylone. Neither Jeg3, which express low levels of Cx43, nor the JpUHD/trCx43 cell line demonstrated cell fusion or downregulation of SLC1A5. However, GCM1 and ERVW-1 mRNAs were upregulated by cAMP treatment in both Jeg3 and all Cx43 cell lines. Silencing of GCM1 prevented the induction of GJA1 mRNA by forskolin in BeWo choriocarcinoma cells, demonstrating that GCM1 is upstream of Cx43. All cell lines and first-trimester villous explants also demonstrated coimmunoprecipitation of SLC1A5 and phosphorylated Cx43. Importantly, SLC1A5 and Cx43 gap junction plaques colocalized in situ to areas of fusing cytotrophoblast, as demonstrated by the loss of E-cadherin staining in the plasma membrane in first-trimester placenta. We conclude that Cx43-mediated GJIC and SLC1A5 interaction play important functional roles in trophoblast cell fusion.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Conexina 43/fisiologia , AMP Cíclico/metabolismo , Produtos do Gene env/metabolismo , Proteínas Nucleares/genética , Placenta/metabolismo , Proteínas da Gravidez/metabolismo , Fatores de Transcrição/genética , Trofoblastos/metabolismo , Fusão Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Feminino , Humanos , Antígenos de Histocompatibilidade Menor , Gravidez , Primeiro Trimestre da Gravidez , Transdução de Sinais
15.
Hum Reprod ; 26(10): 2850-60, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21784733

RESUMO

BACKGROUND: Recently we have shown that the matricellular CCN3 protein expressed in invasive extravillous trophoblast cells (EVTs) is decreased in early-onset pre-eclampsia and is regulated by oxygen tension. Pathogenesis of pre-eclampsia relies on a shallow invasion of EVTs into the spiral arteries, which leads to hypoxia accompanied by uteroplacental insufficiency. Here we investigated the function of glycosylated and non-glycosylated CCN3 protein on cell growth as well as migration and invasion properties of the malignant trophoblast cell line Jeg3 which is a widely used model for the invasive trophoblast. METHODS AND RESULTS: Stable transfection of Jeg3 choriocarcinoma cells with full length CCN3 resulted in high expression of secreted glycosylated and cellular non-glycosylated CCN3. These cells revealed significantly reduced growth in cell numbers combined with a significantly increased migratory and invasive capacity. Matrix metalloprotease (MMP)-2 and MMP-9 activities were enhanced dependent on CCN3 expression, which could be confirmed by CCN3 knockdown studies. Using recombinant glycosylated and non-glycosylated CCN3, we revealed that CCN3 decreased growth in Jeg3 cell numbers independent of its glycosylation status, whereas only non-glycosylated CCN3 was able to enhance migration and invasion properties. CONCLUSIONS: The present results suggest that CCN3 protein regulates the decrease in Jeg3 cell numbers independent of its glycosylation status, whereas migratory and invasive properties are influenced only by non-glycosylated CCN3. An impaired balance in the expression of glycosylated and non-glycosylated CCN3 could contribute to the shallow invasion of EVTs observed in pre-eclampsia.


Assuntos
Coriocarcinoma/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/química , Artérias/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Glicosilação , Humanos , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Invasividade Neoplásica , Oxigênio/química , Pré-Eclâmpsia/metabolismo , Gravidez
16.
J Reprod Immunol ; 90(1): 9-13, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21645927

RESUMO

As a prerequisite for successful embryo implantation in mammals, before implantation ovarian hormones regulate the transformation of the endometrium into the receptive phase. During the implantation process, gene expression in the receptive endometrium is additionally modulated by the presence of a blastocyst. During this complex differentiation process, in humans as well as in rodents, gap junction connexin 26 (Cx26) is suppressed in the uterine epithelium and Cx43 is suppressed in the endometrial stromal cells during the receptive phase. In rodents, a blastocyst-mediated induction of Cx26 takes place locally in the uterine epithelial cells of the implantation chamber surrounding the blastocyst, followed by an increase in Cx43 in the cells of the developing decidua. The Cx26 induction is dependent on the presence of a blastocyst and occurs even before adhesion and invasion of the trophoblast takes place. The signal cascades involved in this blastocyst-mediated connexin induction are still elusive. The process of implantation is considered as a proinflammatory response, and inflammatory factors have been shown to be involved in the implantation process. In fact, Cx26 expression can be induced in the receptive rat endometrium by mediators of the inflammatory cascade including prostaglandin-F2α and IL1ß by an ER-independent pathway similar to the blastocyst-mediated connexin induction at the time of implantation. Thus, in the receptive endometrium induction of connexin expression may also be induced by mediators of the inflammatory signaling cascade, and the implantation-related induction of intercellular communication may in part be due to an inflammatory response.


Assuntos
Blastocisto/imunologia , Conexina 43/imunologia , Conexinas/imunologia , Implantação do Embrião/imunologia , Endométrio/imunologia , Animais , Blastocisto/metabolismo , Conexina 26 , Conexina 43/metabolismo , Conexinas/metabolismo , Implantação do Embrião/fisiologia , Endométrio/citologia , Endométrio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos
17.
Fertil Steril ; 95(7): 2390-4, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21474126

RESUMO

OBJECTIVE: To analyze the effects of delayed ovulation on embryonic development in mice, because intrafollicular oocyte development may be delayed during assisted reproductive technology (ART) treatment in humans. DESIGN: Experimental mouse study. SETTING: University hospital. ANIMAL(S): Female C57Bl/6 mice. INTERVENTION(S): Cetrorelix is used as a GnRH-antagonist in ART treatments. To assess the effect of delayed ovulation on embryonic development, cetrorelix was applied concomitantly with follicle stimulation by pregnant mare serum gonadotropin. Ovulation was induced by hCG. Controls were stimulated with pregnant mare serum gonadotropin without delaying ovulation. Suppression of ovulation was assessed from the number of tertiary follicles, ruptured follicles, and corpora lutea in mouse ovaries after cetrorelix treatment. Number and weight of embryos and placentas, as well as number of resorption sites and dead embryos, was determined on day 17.5 of pregnancy. MAIN OUTCOME MEASURE(S): Inhibition of ovulation, embryonic development. RESULT(S): Cetrorelix inhibited ovulation in mice, as shown by an increase in number of tertiary follicles concomitant with a significant inhibition of follicle rupture and corpora lutea formation. Delayed ovulation caused by Cetrorelix treatment led to a significant increase in resorption sites and a significant decrease in embryonic weight of offspring. CONCLUSION(S): Preovulatory oocyte overripeness might have an effect on fertility and embryonic development during ART treatment.


Assuntos
Fármacos para a Fertilidade Feminina/farmacologia , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/farmacologia , Indução da Ovulação/métodos , Ovulação/efeitos dos fármacos , Técnicas de Reprodução Assistida , Animais , Gonadotropina Coriônica/farmacologia , Relação Dose-Resposta a Droga , Implantação do Embrião/efeitos dos fármacos , Perda do Embrião/induzido quimicamente , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Fármacos para a Fertilidade Feminina/efeitos adversos , Idade Gestacional , Hormônio Liberador de Gonadotropina/efeitos adversos , Hormônio Liberador de Gonadotropina/farmacologia , Gonadotropinas Equinas/farmacologia , Antagonistas de Hormônios/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Indução da Ovulação/efeitos adversos , Placenta/efeitos dos fármacos , Placentação , Gravidez , Fatores de Tempo
18.
Biol Reprod ; 84(5): 1063-71, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21248290

RESUMO

Though the decidua serves a critical function in implantation, the hormonal regulated pathway in decidualization is still elusive. Here we describe in detail the regional distribution and the effects of progesterone receptors (PGR), estrogen receptors (ESR), and MAPK activation on decidualization. We showed an increase in PGR A, PGR B, ESR1, and phosphorylated MAPK3-1 proteins (p-MAPK3-1), but not in ESR2, in the decidual tissue up to Day 8 of pregnancy. PGR was predominantly found in the nuclei of mesometrial decidual cells and of undifferentiated stromal cells where it colocalizes with ESR2 and ESR1. In the antimesometrial decidua, all the receptors showed cytoplasmic localization. MAPK was activated exclusively in undifferentiated stromal cells of the junctional zone between the antimesometrial and mesometrial decidua and at the border of the antimesometrial decidua. Treatment with the progesterone antagonist onapristone and/or the estrogen antagonist faslodex reduced the extent of decidual tissue and downregulated the levels of PGR and ESR1. The expression level of ESR2 was affected only by the progesterone receptor antagonist, while neither the antiprogestin nor the antiestrogen significantly modified the p-MAPK3-1 level. The inhibition of MAPK3-1 phosphorylation by PD98059 impaired the extent of decidualization and the closure reaction of the implantation chamber, and significantly downregulated ESR1. These results confirm a role of both steroid receptors in the growth and differentiation of the different decidual regions and suggest a new function for p-MAPK3-1 in regulating expression levels of ESR1, thereby maintaining the proliferation capacity of stromal cells and limiting the differentiation process in specified regions of decidual tissues.


Assuntos
Diferenciação Celular , Proliferação de Células , Endométrio/citologia , Endométrio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Implantação do Embrião/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Feminino , Antagonistas de Hormônios/farmacologia , Fosforilação/efeitos dos fármacos , Gravidez , Proteínas da Gravidez/antagonistas & inibidores , Proteínas da Gravidez/metabolismo , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Progesterona/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos
19.
Endocrinology ; 151(6): 2835-45, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20237132

RESUMO

It is known that a hypoxic environment is critical for trophoblast migration and invasion and is fundamental for appropriate placental perfusion. Because cysteine-rich 61 (CYR61, CCN1) and nephroblastoma overexpressed (NOV, CCN3) are expressed in the extravillous trophoblast and expression levels are deregulated in preeclampsia, we investigated their regulation properties in first-trimester placental explants and in JEG3 choriocarcinoma cells upon a physiological low oxygen tension of 1-3%. In placental explants, both proteins were expressed in the extravillous trophoblast cells and were increased upon hypoxia. JEG3 cells revealed a significant up-regulation of CYR61 and NOV intracellular as well as secreted protein upon hypoxic treatment accompanied by the stabilization of the hypoxia-inducible factor-1alpha (HIF-1alpha). Treatment with dimethyloxalylglycine to mimic hypoxia and silencing of HIF-1alpha using small interfering RNA revealed that only the increase in intracellular protein expression seems to be dependent on HIF-1alpha but obviously not the secretion process. Moreover, recombinant TGF-beta3 was able to further enhance the amount of intracellular CCN proteins as well as secreted CYR61 levels under hypoxia. These results indicate that low oxygen levels trigger elevation of intracellular as well as secreted CYR61 and NOV protein probably in two independent pathways. Addition of recombinant CYR61 and NOV proteins increases migration as well as invasion properties of JEG3 trophoblast cells, which strengthen their role in supporting trophoblast migration invasion properties. In summary, CYR61 and NOV are regulated by HIF-1alpha and TGF-beta3 in the trophoblast cell line JEG3, and their enhanced secretion could be implicated in appropriate placental invasion.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Trofoblastos/metabolismo , Aminoácidos Dicarboxílicos/farmacologia , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Feminino , Humanos , Immunoblotting , Imuno-Histoquímica , Placenta/metabolismo , Reação em Cadeia da Polimerase , Gravidez , Primeiro Trimestre da Gravidez/genética , Primeiro Trimestre da Gravidez/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos
20.
J Cell Biochem ; 110(1): 129-40, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20336664

RESUMO

Connexin43 (Cx43) forms gap junction channels but also serves as a signaling center by binding to proteins via its C-terminus. We have previously demonstrated that transfection of Cx43 leads to significantly reduced proliferation of placental tumor cells through upregulating and binding of the growth regulator CCN3 (NOV) at the C-terminus of Cx43. Here, we combined fluorescence resonance energy transfer (FRET), co-immunoprecipitation and proliferation and expression assays to characterize the interaction complex of Cx43 and CCN3. FRET measurements confirmed the interaction of CCN3 with wild-type Cx43 (amino acids 1-382) and with mutants of Cx43 truncated at the C-terminus resulting in Cx43 proteins of amino acids 1-374, 1-273, 1-264, 1-257 in 293T cells. These results matched the co-immunoprecipitation data. Interestingly, although FRET revealed distinct efficiencies in interaction of Cx43 with CCN3 for all deletion constructs only wild-type Cx43 and one deletion construct (1-374) led to increased CCN3 expression. Only these interactions which were associated with increased CCN3 expression resulted in a reduced cell proliferation. Our study provides evidence that only defined binding properties between Cx43 and CCN3 leading to an upregulation of CCN3 are needed for signaling. Furthermore, the data obtained by FRET analysis allowed us to model the 3D structure of the C-terminus of Cx43 interacting with CCN3.


Assuntos
Conexina 43/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Transdução de Sinais , Sítios de Ligação , Linhagem Celular , Proliferação de Células , Conexina 43/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/metabolismo , Humanos , Imunoprecipitação , Modelos Moleculares , Proteínas Mutantes/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA