Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(4): e0063322, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35856564

RESUMO

Oxidative stress causes cellular damage, including DNA mutations, protein dysfunction, and loss of membrane integrity. Here, we discovered that a TrmB (transcription regulator of mal operon) family protein (Pfam PF01978) composed of a single winged-helix DNA binding domain (InterPro IPR002831) can function as thiol-based transcriptional regulator of oxidative stress response. Using the archaeon Haloferax volcanii as a model system, we demonstrate that the TrmB-like OxsR is important for recovery of cells from hypochlorite stress. OxsR is shown to bind specific regions of genomic DNA, particularly during hypochlorite stress. OxsR-bound intergenic regions were found proximal to oxidative stress operons, including genes associated with thiol relay and low molecular weight thiol biosynthesis. Further analysis of a subset of these sites revealed OxsR to function during hypochlorite stress as a transcriptional activator and repressor. OxsR was shown to require a conserved cysteine (C24) for function and to use a CG-rich motif upstream of conserved BRE/TATA box promoter elements for transcriptional activation. Protein modeling suggested the C24 is located at a homodimer interface formed by antiparallel α helices, and that oxidation of this cysteine would result in the formation of an intersubunit disulfide bond. This covalent linkage may promote stabilization of an OxsR homodimer with the enhanced DNA binding properties observed in the presence of hypochlorite stress. The phylogenetic distribution TrmB family proteins, like OxsR, that have a single winged-helix DNA binding domain and conserved cysteine residue suggests this type of redox signaling mechanism is widespread in Archaea. IMPORTANCE TrmB-like proteins, while not yet associated with redox stress, are found in bacteria and widespread in archaea. Here, we expand annotation of a large group of TrmB-like single winged-helix DNA binding domain proteins from diverse archaea to function as thiol-based transcriptional regulators of oxidative stress response. Using Haloferax volcanii as a model, we reveal that the TrmB-like OxsR functions during hypochlorite stress as a transcriptional activator and repressor of an extensive gene coexpression network associated with thiol relay and other related activities. A conserved cysteine residue of OxsR serves as the thiol-based sensor for this function and likely forms an intersubunit disulfide bond during hypochlorite stress that stabilizes a homodimeric configuration with enhanced DNA binding properties. A CG-rich DNA motif in the promoter region of a subset of sites identified to be OxsR-bound is required for regulation; however, not all sites have this motif, suggesting added complexity to the regulatory network.


Assuntos
Proteínas Arqueais , Fatores de Transcrição , Archaea/genética , Proteínas Arqueais/genética , Cisteína/metabolismo , Dissulfetos , Ácido Hipocloroso , Oxirredução , Estresse Oxidativo , Filogenia , Compostos de Sulfidrila , Fatores de Transcrição/metabolismo
2.
J Food Biochem ; 45(10): e13939, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34545598

RESUMO

The application of gibberellic acid (GA3 ) treatment to the postharvest quality maintenance of white button mushroom (Agaricus bisporus) was investigated. The optimum concentration of exogenous GA3 was 100 mg/L. At this concentration, the color change was inhibited, the firmness was maintained, and the weight loss and respiratory rates were reduced. The GA3 group had significantly lower malonaldehyde (MDA) content and membrane permeability. Reactive oxygen species accumulation was reduced due to the regulation of polyphenol oxidase (PPO), peroxidase (POD), and superoxide dismutase (SOD) enzyme activities. Moreover, the production of endogenous gaseous signaling molecule hydrogen sulfide (H2 S) was triggered by GA3 treatment, which enhanced cystathionine γ-lyase (AbCSE) and cystathionine ß-synthase (AbCBS) activities alongside the corresponding gene expressions. The preservation of button mushroom postharvest storage quality by GA3 was most likely due to the regulation of reactive oxygen species metabolism and hydrogen sulfide biosynthesis. PRACTICAL APPLICATIONS: Mushroom is rich in nutrients and functional substances. However, due to the lack of cuticle, high respiration rate, and moisture content, mushroom's postharvest quality deteriorates rapidly. A safe and effective reagent that prevents the senescence and quality deterioration of harvested mushroom is urgently needed. The effects of plant hormone GA3 on the postharvest quality of edible fungi remain unclear. The present study provided convincing evidence that 100 mg L-1 of GA3 effectively maintained postharvest button mushroom quality by regulating reactive oxygen species metabolism and hydrogen sulfide biosynthesis.


Assuntos
Agaricus , Sulfeto de Hidrogênio , Antioxidantes/farmacologia , Conservação de Alimentos , Giberelinas
3.
Mol Ther Methods Clin Dev ; 8: 65-74, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29687031

RESUMO

Improvements to T cell culture systems that promote long-term engraftment and function of adoptively transferred T cells will likely result in superior clinical benefit to more individuals. To this end, we recently developed a chemically defined cell culture medium that robustly expands all T cell subsets in the absence of human serum. Using a humanized mouse model, we observed that T cells expanded in the absence of human serum provided durable control of tumors, whereas T cells expanded in medium supplemented with human serum only mediated transient control of tumor growth. Importantly, our new medium effectively expanded more differentiated T cells from multiple myeloma patients in the absence of serum. These patient-derived T cells were also able to provide durable control of B cell tumors in vivo, and this long-term control of cancer was lost when T cells were expanded in the presence of serum. Thus, engineered T cells expanded in an optimized medium in the absence of serum may have improved therapeutic potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA