Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Redox Biol ; 72: 103144, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613920

RESUMO

Nitric oxide (NO) is a key signalling molecule released by vascular endothelial cells that is essential for vascular health. Low NO bioactivity is associated with cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure and NO donors are a mainstay of drug treatment. However, many NO donors are associated with the development of tolerance and adverse effects, so new formulations for controlled and targeted release of NO would be advantageous. Herein, we describe the design and characterisation of a novel NO delivery system via the reaction of acidified sodium nitrite with thiol groups that had been introduced by cysteamine conjugation to porous graphene oxide nanosheets, thereby generating S-nitrosated nanosheets. An NO electrode, ozone-based chemiluminescence and electron paramagnetic resonance spectroscopy were used to measure NO released from various graphene formulations, which was sustained at >5 × 10-10 mol cm-2 min-1 for at least 3 h, compared with healthy endothelium (cf. 0.5-4 × 10-10 mol cm-2 min-1). Single cell Raman micro-spectroscopy showed that vascular endothelial and smooth muscle cells (SMCs) took up graphene nanostructures, with intracellular NO release detected via a fluorescent NO-specific probe. Functionalised graphene had a dose-dependent effect to promote proliferation in endothelial cells and to inhibit growth in SMCs, which was associated with cGMP release indicating intracellular activation of canonical NO signalling. Chemiluminescence detected negligible production of toxic N-nitrosamines. Our findings demonstrate the utility of porous graphene oxide as a NO delivery vehicle to release physiologically relevant amounts of NO in vitro, thereby highlighting the potential of these formulations as a strategy for the treatment of cardiovascular diseases.


Assuntos
Grafite , Óxido Nítrico , Grafite/química , Óxido Nítrico/metabolismo , Humanos , Nanoestruturas/química , Porosidade , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos
2.
Antioxidants (Basel) ; 13(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38539802

RESUMO

The addition of hydrogen peroxide (H2O2) to cultured cells is widely used as a method to modulate redox-regulated cellular pathways, including the induction of programmed cell death in cell culture experiments and the testing of pro- and antioxidant compounds. Here, we assessed the effect on the cellular response to H2O2 of pre-adapting squamous cell carcinoma cells (A431) to the standard cell culture oxygenation of 18.6% O2, compared to cells pre-adapted to a physiological skin O2 concentration (3.0% O2). We showed that cells pre-adapted to 18.6% O2 resisted H2O2-induced cell death compared to cells pre-adapted to 3.0% O2 for 96 h prior to treatment with H2O2. Moreover, the enzymatic activities of catalase and glutathione reductase, as well as the protein expression levels of catalase, were higher in cells pre-adapted to 18.6% O2 compared to cells pre-adapted to 3.0% O2. H2O2-resistant cells, pre-adapted to 18.6% O2, exhibited increased nuclear Nrf-2 levels. It is concluded that A431 cells pre-adapted to standard cell culture oxygenation conditions resist H2O2-induced cell death. This effect may be related to their heightened activation of Nrf-2.

3.
Antioxidants (Basel) ; 13(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38247506

RESUMO

Phenethyl isothiocyanate (PEITC) is a secondary metabolic product yielded upon the hydrolysis of gluconasturtiin and it is highly accumulated in the flowers of watercress. The aim of the current study was to assess the role of a naturally derived PEITC-enriched extract in the induction of oxidative stress and to evaluate its anti-melanoma potency through the regulation of its metabolism with the concurrent production of the N-acetyl cysteine conjugated by-product. For this purpose, an in vitro melanoma model was utilized consisting of human primary (A375) cells as well as metastatic (COLO-679) malignant melanoma cells together with non-tumorigenic immortalized keratinocytes (HaCaT). Cytotoxicity was assessed via the Alamar Blue assay whereas the antioxidant/prooxidant activity of PEITC was determined via spectrophotometric assays. Finally, kinetic characterization of the end-product of PEITC metabolism was monitored via UPLC coupled to a tandem mass spectrometry (MS/MS). Our results indicate that although PhEF showed very minor antioxidant activity in a cell-free system, in a cell-based system, it can modulate the activity of key enzyme(s) involved in cellular antioxidant defense mechanism(s). In addition, we have shown that PhEF induces lipid and protein oxidation in a concentration-dependent manner, while its cytotoxicity is not only dependent on PEITC itself but also on its N-acetylated cysteine conjugated form.

4.
Nutrients ; 15(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37764828

RESUMO

The aim of the current study was to (i) extract isolated fractions of watercress flowers enriched in polyphenols, phenethyl isothiocyanate and glucosinolates and (ii) characterize the anticancer mode of action of non-lethal, sub-lethal and lethal concentrations of the most potent extract fraction in primary (A375) and metastatic (COLO-679) melanoma cells as well as non-tumorigenic immortalized keratinocyte (HaCaT) cells. Cytotoxicity was assessed via the Alamar Blue assay, whereas ultrastructural alterations in mitochondria and the endoplasmic reticulum were determined via transmission electron microscopy. Mitochondrial membrane depolarization was determined using Mito-MP dye, whereas apoptosis was evaluated through the activation of caspases-3, -8 and -9. Among all extract fractions, the phenethyl isothiocyanate-enriched one (PhEF) possessed significant cytotoxicity against A375 and COLO-679 cells, while HaCaT cells remained relatively resistant at sub-lethal and lethal concentrations. Additionally, ultrastructural subcellular alterations associated with apoptosis were observed by means of increased mitochondrial area and perimeter, decreased cristae density and a shorter distance of the endoplasmic reticulum to the mitochondria, all taking place during "early" time points (2-4 h) of exposure. Moreover, PhEF induced mitochondrial membrane depolarization associated with "late" time points (24 h) of exposure, thereby leading to the activation of intrinsic apoptosis. Finally, the inhibition of cytosolic Ca2+ efflux reduced levels of caspases-9 and -3 activity, suggesting the involvement of Ca2+ efflux in modulating the activation of intrinsic apoptosis. To conclude, our data demonstrate an association of "early" ultrastructural alterations in mitochondria and the endoplasmic reticulum with the "late" induction of intrinsic apoptosis via the modulation of Ca2+ efflux.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Apoptose , Extratos Vegetais/farmacologia , Melanoma Maligno Cutâneo
5.
Front Plant Sci ; 13: 998755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457522

RESUMO

Watercress (Nasturtium officinale) is a rich source of secondary metabolites with disease-preventing and/or health-promoting properties. Herein, we have utilized extraction procedures to isolate fractions of polyphenols, glucosinolates and isothiocyanates to determine their identification, and quantification. In doing so, we have utilized reproducible analytical methodologies based on liquid chromatography with tandem mass spectrometry by either positive or negative ion mode. Due to the instability and volatility of isothiocyanates, we followed an ammonia derivatization protocol which converts them into respective ionizable thiourea derivatives. The analytes' content distribution map was created on watercress flowers, leaves and stems. We have demonstrated that watercress contains significantly higher levels of gluconasturtiin, phenethyl isothiocyanate, quercetin-3-O-rutinoside and isorhamnetin, among others, with their content decreasing from flowers (82.11 ± 0.63, 273.89 ± 0.88, 1459.30 ± 12.95 and 289.40 ± 1.37 ng/g of dry extract respectively) to leaves (32.25 ± 0.74, 125.02 ± 0.52, 1197.86 ± 4.24 and 196.47 ± 3.65 ng/g of det extract respectively) to stems (9.20 ± 0.11, 64.7 ± 0.9, 41.02 ± 0.18, 65.67 ± 0.84 ng/g of dry extract respectivbely). Pearson's correlation analysis has shown that the content of isothiocyanates doesn't depend only on the bioconversion of individual glucosinolates but also on other glucosinolates of the same group. Overall, we have provided comprehensive analytical data of the major watercress metabolites thereby providing an opportunity to exploit different parts of watercress for potential therapeutic applications.

6.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35215254

RESUMO

Watercress is an enriched source of phenethyl isothiocyanate (PEITC), among other phytochemicals, with an antioxidant capacity. The aim of this study was to (i) chemically characterize and (ii) biologically evaluate the profile of the main health-promoting compounds contained in edible (i.e., mixture of leaves and lateral buds) and non-edible (i.e., stems) parts of watercress in an in vitro model of malignant melanoma consisting of human malignant melanoma (A375), non-melanoma (A431) and keratinocyte (HaCaT) cells. The extraction of the main constituents of watercress was performed by subjecting the freeze-dried edible and non-edible samples through different extraction protocols, whereas their concentration was obtained utilizing analytical methodologies. In addition, cell viability was evaluated by the Alamar Blue assay, whereas levels of oxidative stress and apoptosis were determined by commercially available kits. The edible watercress sample contained a higher amount of various nutrients and phytochemicals in the hexane fraction compared to the non-edible one, as evidenced by the presence of PEITC, phenolics, flavonoids, pigments, ascorbic acid, etc. The cytotoxicity potential of the edible watercress sample in the hexane fraction was considerably higher than the non-edible one in A375 cells, whereas A431 and HaCaT cells appeared to be either more resistant or minimally affected, respectively. Finally, levels of oxidative stress and apoptotic induction were increased in both watercress samples, but the magnitude of the induction was much higher in the edible than the non-edible watercress samples. Herein, we provide further evidence documenting the potential development of watercress extracts (including watercress waste by-products) as promising anti-cancer agent(s) against malignant melanoma cells.

7.
Cancers (Basel) ; 11(3)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845739

RESUMO

Overexpression and secretion of the enzymes cathepsin D (CathD) and cathepsin L (CathL) is associated with metastasis in several human cancers. As a superfamily, extracellularly, these proteins may act within the tumor microenvironment to drive cancer progression, proliferation, invasion and metastasis. Therefore, it is important to discover novel therapeutic treatment strategies to target CathD and CathL and potentially impede metastasis. Graphene oxide (GO) could form the basis of such a strategy by acting as an adsorbent for pro-metastatic enzymes. Here, we have conducted research into the potential of targeted anti-metastatic therapy using GO to adsorb these pro-tumorigenic enzymes. Binding of CathD/L to GO revealed that CathD/L were adsorbed onto the surface of GO through its cationic and hydrophilic residues. This work could provide a roadmap for the rational integration of CathD/L-targeting agents into clinical settings.

8.
Free Radic Biol Med ; 125: 3-14, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859343

RESUMO

The management of patients with autoimmune rheumatic diseases such as rheumatoid arthritis (RA) remains a significant challenge. Often the rheumatologist is restricted to treating and relieving the symptoms and consequences and not the underlying cause of the disease. Oxidative stress occurs in many autoimmune diseases, along with the excess production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The sources of such reactive species include NADPH oxidases (NOXs), the mitochondrial electron transport chain, nitric oxide synthases, nitrite reductases, and the hydrogen sulfide producing enzymes cystathionine-ß synthase and cystathionine-γ lyase. Superoxide undergoes a dismutation reaction to generate hydrogen peroxide which, in the presence of transition metal ions (e.g. ferrous ions), forms the hydroxyl radical. The enzyme myeloperoxidase, present in inflammatory cells, produces hypochlorous acid, and in healthy individuals ROS and RNS production by phagocytic cells is important in microbial killing. Both low molecular weight antioxidant molecules and antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and peroxiredoxin remove ROS. However, when ROS production exceeds the antioxidant protection, oxidative stress occurs. Oxidative post-translational modifications of proteins then occur. Sometimes protein modifications may give rise to neoepitopes that are recognized by the immune system as 'non-self' and result in the formation of autoantibodies. The detection of autoantibodies against specific antigens, might improve both early diagnosis and monitoring of disease activity. Promising diagnostic autoantibodies include anti-carbamylated proteins and anti-oxidized type II collagen antibodies. Some of the most promising future strategies for redox-based therapeutic compounds are the activation of endogenous cellular antioxidant systems (e.g. Nrf2-dependent pathways), inhibition of disease-relevant sources of ROS/RNS (e.g. isoform-specific NOX inhibitors), or perhaps specifically scavenging disease-related ROS/RNS via site-specific antioxidants.


Assuntos
Artrite Reumatoide/fisiopatologia , Doenças Autoimunes/fisiopatologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Oxirredução
9.
Free Radic Biol Med ; 120: 246-254, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29555590

RESUMO

The generation of 3-nitrotyrosine, within proteins, is a post-translational modification resulting from oxidative or nitrative stress. It has been suggested that this modification could be used as a biomarker for inflammatory diseases. Despite the superiority of mass spectrometry-based determinations of nitrotyrosine, in a high-throughput clinical setting the measurement of nitrotyrosine by an enzyme-linked immunosorbent assay (ELISA) is likely to be more cost-effective. ELISAs offer an alternative means to detect nitrotyrosine, but many commercially available ELISAs are insufficiently sensitive to detect nitrotyrosine in healthy human serum. Here, we report the development, validation and clinical application of a novel electrochemiluminescence-based ELISA for nitrotyrosine which provides superior sensitivity (e.g. a 50-fold increase in sensitivity compared with one of the tested commercial colorimetric ELISAs). This nitrotyrosine ELISA has the following characteristics: a lower limit of quantitation of 0.04 nM nitrated albumin equivalents; intra- and inter-assay coefficients of variation of 6.5% and 11.3%, respectively; a mean recovery of 106 ±â€¯3% and a mean linearity of 0.998 ±â€¯0.001. Far higher nitration levels were measured in normal human blood cell populations when compared to plasma. Mass spectrometry was used to validate the new ELISA method. The analysis of the same set of chemically modified albumin samples using the ELISA method and mass spectrometry showed good agreement for the relative levels of nitration present in each sample. The assay was applied to serum samples from patients undergoing elective surgery which induces the human inflammatory response. Matched samples were collected before and one day after surgery. An increase in nitration was detected following surgery (median (IQR): 0.59 (0.00-1.34) and 0.97 (0.00-1.70) nitrotyrosine (fmol of nitrated albumin equivalents/mg protein) for pre- and post-surgery respectively. The reported assay is suitable for nitrotyrosine determination in patient serum samples, and may also be applicable as a means to determine oxidative stress in primary and cultured cell populations.


Assuntos
Biomarcadores/análise , Ensaio de Imunoadsorção Enzimática/métodos , Medições Luminescentes/métodos , Estresse Oxidativo/fisiologia , Tirosina/análogos & derivados , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tirosina/análise
10.
Redox Biol ; 15: 34-40, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29197802

RESUMO

Graphene has a promising future in applications such as disease diagnosis, cancer therapy, drug/gene delivery, bio-imaging and antibacterial approaches owing to graphene's unique physical, chemical and mechanical properties alongside minimal toxicity to normal cells, and photo-stability. However, these unique features and bioavailability of graphene are fraught with uncertainties and concerns for environmental and occupational exposure. Changes in the physicochemical properties of graphene affect biological responses including reactive oxygen species (ROS) production. Lower production of ROS by currently available theranostic agents, e.g. magnetic nanoparticles, carbon nanotubes, gold nanostructures or polymeric nanoparticles, restricts their clinical application in cancer therapy. Oxidative stress induced by graphene accumulated in living organs is due to acellular factors which may affect physiological interactions between graphene and target tissues and cells. Acellular factors include particle size, shape, surface charge, surface containing functional groups, and light activation. Cellular responses such as mitochondrial respiration, graphene-cell interactions and pH of the medium are also determinants of ROS production. The mechanisms of ROS production by graphene and the role of ROS for cancer treatment, are poorly understood. The aim of this review is to set the theoretical basis for further research in developing graphene-based theranostic platforms.


Assuntos
Grafite/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Estresse Oxidativo/genética , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Am J Hypertens ; 30(7): 707-712, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430835

RESUMO

BACKGROUND: Inorganic nitrate from the oxidation of endogenously synthesized nitric oxide (NO) or consumed in the diet can be reduced to NO via a complex enterosalivary circulation pathway. The relationship between total nitrate exposure by measured urinary nitrate excretion and blood pressure in a large population sample has not been assessed previously. METHODS: For this cross-sectional study, 24-hour urinary nitrate excretion was measured by spectrophotometry in the 919 participants from the InChianti cohort at baseline and blood pressure measured with a mercury sphygmomanometer. RESULTS: After adjusting for age and sex only, diastolic blood pressure was 1.9 mm Hg lower in subjects with ≥2 mmol urinary nitrate excretion compared with those excreting <1 mmol nitrate in 24 hours: systolic blood pressure was 3.4 mm Hg (95% confidence interval (CI): -3.5 to -0.4) lower in subjects for the same comparison. Effect sizes in fully adjusted models (for age, sex, potassium intake, use of antihypertensive medications, diabetes, HS-CRP, or current smoking status) were marginally larger: systolic blood pressure in the ≥2 mmol urinary nitrate excretion group was 3.9 (CI: -7.1 to -0.7) mm Hg lower than in the comparison <1 mmol excretion group. CONCLUSIONS: Modest differences in total nitrate exposure are associated with lower blood pressure. These differences are at least equivalent to those seen from substantial (100 mmol) reductions in sodium intake.


Assuntos
Hipertensão/fisiopatologia , Hipertensão/urina , Nitratos/urina , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/urina , Pressão Sanguínea , Determinação da Pressão Arterial/instrumentação , Estudos Transversais , Feminino , Humanos , Hipertensão/diagnóstico , Itália , Masculino , Pessoa de Meia-Idade , Espectrofotometria , Esfigmomanômetros , Fatores de Tempo , Urinálise/métodos , Adulto Jovem
12.
Nitric Oxide ; 63: 13-20, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28024935

RESUMO

Uptake of inorganic nitrate (NO3-) into the salivary circulation is a rate-limiting step for dietary NO3- metabolism in mammals. It has been suggested that salivary NO3- uptake occurs in competition with inorganic iodide (I-). Therefore, this study tested the hypothesis that I- supplementation would interfere with NO3- metabolism and blunt blood pressure reductions after dietary NO3- supplementation. Nine healthy adults (4 male, mean ± SD, age 20 ± 1 yr) reported to the laboratory for initial baseline assessment (control) and following six day supplementation periods with 140 mL·day-1 NO3--rich beetroot juice (8.4 mmol NO3-·day-1) and 198 mg potassium gluconate·day-1 (nitrate), and 140 mL·day-1 NO3--rich beetroot juice and 450 µg potassium iodide·day-1 (nitrate + iodide) in a randomized, cross-over experiment. Salivary [I-] was higher in the nitrate + iodide compared to the control and NIT trials (P < 0.05). Salivary and plasma [NO3-] and [NO2-] were higher in the nitrate and nitrate + iodide trials compared to the control trial (P < 0.05). Plasma [NO3-] was higher (474 ± 127 vs. 438 ± 117 µM) and the salivary-plasma [NO3-] ratio was lower (14 ± 6 vs. 20 ± 6 µM), indicative of a lower salivary NO3- uptake, in the nitrate + iodide trial compared to the nitrate trial (P < 0.05). Plasma and salivary [NO2-] were not different between the nitrate and nitrate + iodide trials (P > 0.05). Systolic blood pressure was lower than control (112 ± 13 mmHg) in the nitrate (106 ± 13 mmHg) and nitrate + iodide (106 ± 11 mmHg) trials (P < 0.05), with no differences between the nitrate and nitrate + iodide trials (P > 0.05). In conclusion, co-ingesting NO3- and I- perturbed salivary NO3- uptake, but the increase in salivary and plasma [NO2-] and the lowering of blood pressure were similar compared to NO3- ingestion alone. Therefore, increased dietary I- intake, which is recommended in several countries worldwide as an initiative to offset hypothyroidism, does not appear to compromise the blood pressure reduction afforded by increased dietary NO3- intake.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Suplementos Nutricionais , Iodetos/metabolismo , Nitratos/metabolismo , Pressão Arterial/efeitos dos fármacos , Beta vulgaris , Feminino , Sucos de Frutas e Vegetais , Humanos , Iodetos/administração & dosagem , Masculino , Nitratos/administração & dosagem , Nitratos/sangue , Nitritos/sangue , Nitritos/metabolismo , Saliva/metabolismo , Adulto Jovem
13.
Nitric Oxide ; 61: 29-37, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27744007

RESUMO

Dietary supplementation with inorganic nitrate (NO3-) has been reported to improve cardiovascular health indices in healthy adults. Cigarette smoking increases circulating thiocyanate (SCN-), which has been suggested to competitively inhibit salivary nitrate (NO3-) uptake, a rate-limiting step in dietary NO3- metabolism. Therefore, this study tested the hypothesis that dietary NO3- supplementation would be less effective at increasing the circulating plasma nitrite concentration ([NO2-]) and lowering blood pressure in smokers (S) compared to non-smokers (NS). Nine healthy smokers and eight healthy non-smoking controls reported to the laboratory at baseline (CON) and following six day supplementation periods with 140 mL day-1 NO3--rich (8.4 mmol NO3- day-1; NIT) and NO3--depleted (0.08 mmol NO3- day-1; PLA) beetroot juice in a cross-over experiment. Plasma and salivary [SCN-] were elevated in smokers compared to non-smokers in all experimental conditions (P < 0.05). Plasma and salivary [NO3-] and [NO2-] were elevated in the NIT condition compared to CON and PLA conditions in smokers and non-smokers (P < 0.05). However, the change in salivary [NO3-] (S: 3.5 ± 2.1 vs. NS: 7.5 ± 4.4 mM), plasma [NO3-] (S: 484 ± 198 vs. NS: 802 ± 199 µM) and plasma [NO2-] (S: 218 ± 128 vs. NS: 559 ± 419 nM) between the CON and NIT conditions was lower in the smokers compared to the non-smokers (P < 0.05). Salivary [NO2-] increased above CON to a similar extent with NIT in smokers and non-smokers (P > 0.05). Systolic blood pressure was lowered compared to PLA with NIT in non-smokers (P < 0.05), but not smokers (P > 0.05). These findings suggest that dietary NO3- metabolism is compromised in smokers leading to an attenuated blood pressure reduction compared to non-smokers after NO3- supplementation. These observations may provide novel insights into the cardiovascular risks associated with cigarette smoking and suggest that this population may be less likely to benefit from improved cardiovascular health if they increase dietary NO3- intake.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Nitratos/uso terapêutico , Fumar/metabolismo , Tiocianatos/análise , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Nitratos/administração & dosagem , Nitratos/farmacologia , Saliva/química , Saliva/efeitos dos fármacos , Adulto Jovem
14.
Nitric Oxide ; 59: 10-20, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27378312

RESUMO

This study tested the hypothesis that watermelon juice supplementation would improve nitric oxide bioavailability and exercise performance. Eight healthy recreationally-active adult males reported to the laboratory on two occasions for initial testing without dietary supplementation (control condition). Thereafter, participants were randomly assigned, in a cross-over experimental design, to receive 16 days of supplementation with 300 mL·day(-1) of a watermelon juice concentrate, which provided ∼3.4 g l-citrulline·day(-1) and an apple juice concentrate as a placebo. Participants reported to the laboratory on days 14 and 16 of supplementation to assess the effects of the interventions on blood pressure, plasma [l-citrulline], plasma [l-arginine], plasma [nitrite], muscle oxygenation and time-to-exhaustion during severe-intensity exercise. Compared to control and placebo, plasma [l-citrulline] (29 ± 4, 22 ± 6 and 101 ± 23 µM), [l-arginine] (74 ± 9, 67 ± 13 and 116 ± 9 µM) and [nitrite] (102 ± 29, 106 ± 21 and 201 ± 106 nM) were higher after watermelon juice supplementation (P < 0.01). However, systolic blood pressure was higher in the watermelon juice (130 ± 11) and placebo (131 ± 9) conditions compared to the control condition (124 ± 8 mmHg; P < 0.05). The skeletal muscle oxygenation index during moderate-intensity exercise was greater in the watermelon juice condition than the placebo and control conditions (P < 0.05), but time-to-exhaustion during the severe-intensity exercise test (control: 478 ± 80, placebo: 539 ± 108, watermelon juice: 550 ± 143 s) was not significantly different between conditions (P < 0.05). In conclusion, while watermelon juice supplementation increased baseline plasma [nitrite] and improved muscle oxygenation during moderate-intensity exercise, it increased resting blood pressure and did not improve time-to-exhaustion during severe-intensity exercise. These findings do not support the use of watermelon juice supplementation as a nutritional intervention to lower blood pressure or improve endurance exercise performance in healthy adults.


Assuntos
Citrullus , Suplementos Nutricionais , Sucos de Frutas e Vegetais , Óxido Nítrico/análise , Resistência Física , Arginina/sangue , Pressão Arterial , Glicemia/análise , Citrulina/sangue , Frequência Cardíaca , Humanos , Ácido Láctico/sangue , Masculino , Malus , Nitritos/sangue , Consumo de Oxigênio , Troca Gasosa Pulmonar , Adulto Jovem
15.
Redox Biol ; 9: 90-99, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27454766

RESUMO

Methyl-aminolevulinate-based photodynamic therapy (MAL-PDT) is utilised clinically for the treatment of non-melanoma skin cancers and pre-cancers and the hydroxypyridinone iron chelator, CP94, has successfully been demonstrated to increase MAL-PDT efficacy in an initial clinical pilot study. However, the biochemical and photochemical processes leading to CP94-enhanced photodynamic cell death, beyond the well-documented increases in accumulation of the photosensitiser protoporphyrin IX (PpIX), have not yet been fully elucidated. This investigation demonstrated that MAL-based photodynamic cell killing of cultured human squamous carcinoma cells (A431) occurred in a predominantly necrotic manner following the generation of singlet oxygen and ROS. Augmenting MAL-based photodynamic cell killing with CP94 co-treatment resulted in increased PpIX accumulation, MitoSOX-detectable ROS generation (probably of mitochondrial origin) and necrotic cell death, but did not affect singlet oxygen generation. We also report (to our knowledge, for the first time) the detection of intracellular PpIX-generated singlet oxygen in whole cells via electron paramagnetic resonance spectroscopy in conjunction with a spin trap.


Assuntos
Ácido Aminolevulínico/análogos & derivados , Quelantes de Ferro/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Piridonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Aminolevulínico/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Histidina/farmacologia , Humanos , Metaloporfirinas/farmacologia , Fotoquimioterapia , Protoporfirinas/metabolismo
16.
Oxid Med Cell Longev ; 2015: 496271, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26113954

RESUMO

Advanced oxidation protein products (AOPP) are reportedly elevated in the plasma of patients with a number of diseases, including diabetes mellitus, that involve oxidative stress. However, the accurate measurement of AOPP in human plasma is hampered by the formation of a precipitate following the addition of potassium iodide and glacial acetic acid according to the published assay procedure. Here we describe a modification of the AOPP assay which eliminates interference by precipitation and provides a robust, reliable, and reproducible protocol for the measurement of iodide oxidising capacity in plasma samples (intra-assay CV 1.7-5.3%, interassay CV 5.3-10.5%). The improved method revealed a significant association of AOPP levels with age (p < 0.05) and hypertension (p = 0.01) in EDTA-anticoagulated plasma samples from 52 patients with diabetes and 38 nondiabetic control subjects, suggesting a possible link between plasma oxidising capacity and endothelial and/or vascular dysfunction. There was no significant difference between AOPP concentrations in diabetic (74.8 ± 7.2 µM chloramine T equivalents) and nondiabetic (75.5 ± 7.0 µM chloramine T equivalents) individuals.


Assuntos
Produtos da Oxidação Avançada de Proteínas/sangue , Diabetes Mellitus Tipo 2/patologia , Estresse Oxidativo , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Hipertensão/complicações , Masculino , Pessoa de Meia-Idade , Fumar
17.
J Appl Physiol (1985) ; 117(12): 1460-70, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25301896

RESUMO

We tested the hypothesis that the time constants (τ) of postexercise T2* MRI signal intensity (an index of O2 delivery) and muscle [PCr] (an index of metabolic perturbation, measured by (31)P-MRS) in hypoxia would be accelerated after dietary nitrate (NO3 (-)) supplementation. In a double-blind crossover design, eight moderately trained subjects underwent 5 days of NO3 (-) (beetroot juice, BR; 8.2 mmol/day NO3 (-)) and placebo (PL; 0.003 mmol/day NO3 (-)) supplementation in four conditions: normoxic PL (N-PL), hypoxic PL (H-PL; 13% O2), normoxic NO3 (-) (N-BR), and hypoxic NO3 (-) (H-BR). The single-leg knee-extension protocol consisted of 10 min of steady-state exercise and 24 s of high-intensity exercise. The [PCr] recovery τ was greater in H-PL (30 ± 4 s) than H-BR (22 ± 4 s), N-PL (24 ± 4 s) and N-BR (22 ± 4 s) (P < 0.05) and the maximal rate of mitochondrial ATP resynthesis (Qmax) was lower in the H-PL (1.12 ± 0.16 mM/s) compared with H-BR (1.35 ± 0.26 mM/s), N-PL (1.47 ± 0.28 mM/s), and N-BR (1.40 ± 0.21 mM/s) (P < 0.05). The τ of postexercise T2* signal intensity was greater in H-PL (47 ± 14 s) than H-BR (32 ± 10 s), N-PL (38 ± 9 s), and N-BR (27 ± 6 s) (P < 0.05). The postexercise [PCr] and T2* recovery τ were correlated in hypoxia (r = 0.60; P < 0.05), but not in normoxia (r = 0.28; P > 0.05). These findings suggest that the NO3 (-)-NO2 (-)-NO pathway is a significant modulator of muscle energetics and O2 delivery during hypoxic exercise and subsequent recovery.


Assuntos
Beta vulgaris , Dieta , Metabolismo Energético/efeitos dos fármacos , Hipóxia/metabolismo , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Nitratos/administração & dosagem , Oxigênio/sangue , Trifosfato de Adenosina/metabolismo , Administração Oral , Adolescente , Adulto , Bebidas , Biomarcadores/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Inglaterra , Feminino , Humanos , Hipóxia/sangue , Hipóxia/fisiopatologia , Cinética , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Consumo de Oxigênio , Fosfocreatina/metabolismo , Preparações de Plantas , Raízes de Plantas , Recuperação de Função Fisiológica , Adulto Jovem
18.
Anal Chem ; 86(14): 6748-52, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24957698

RESUMO

Thiols and disulfides are ubiquitous and important analytical targets. However, their redox properties, in particular on gold sensor electrodes, are complex and obscured by strong adsorption. Here, a gold-gold dual-plate microtrench dual-electrode sensor with feedback signal amplification is demonstrated to give well-defined (but kinetically limited) steady-state voltammetric current responses for the cysteine-cystine redox cycle in nondegassed aqueous buffer media at pH 7 down to micromolar concentration levels.


Assuntos
Cisteína/análise , Cisteína/química , Cistina/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Cistina/química , Eletrodos , Desenho de Equipamento , Ouro , Oxirredução
19.
Arthritis Res Ther ; 15(5): R167, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24286210

RESUMO

INTRODUCTION: The aim of this study was to test the naturally occurring organosulfur compound dipropyltetrasulfide (DPTTS), found in plants, which has antibiotic and anticancer properties, as a treatment for HOCl-induced systemic sclerosis in the mouse. METHODS: The prooxidative, antiproliferative, and cytotoxic effects of DPTTS were evaluated ex vivo on fibroblasts from normal and HOCl mice. In vivo, the antifibrotic and immunomodulating properties of DPTTS were evaluated in the skin and lungs of HOCl mice. RESULTS: H2O2 production was higher in fibroblasts derived from HOCl mice than in normal fibroblasts (P < 0.05). DPTTS did not increase H2O2 production in normal fibroblasts, but DPTTS dose-dependently increased H2O2 production in HOCl fibroblasts (P < 0.001 with 40 µM DPTTS). Because H2O2 reached a lethal threshold in cells from HOCl mice, the antiproliferative, cytotoxic, and proapoptotic effects of DPTTS were significantly higher in HOCl fibroblasts than for normal fibroblasts. In vivo, DPTTS decreased dermal thickness (P < 0.001), collagen content in skin (P < 0.01) and lungs (P < 0.05), αSMA (P < 0.01) and pSMAD2/3 (P < 0.01) expression in skin, formation of advanced oxidation protein products and anti-DNA topoisomerase-1 antibodies in serum (P < 0.05) versus untreated HOCl mice. Moreover, in HOCl mice, DPTTS reduced splenic B-cell counts (P < 0.01), the proliferative rates of B-splenocytes stimulated by lipopolysaccharide (P < 0.05), and T-splenocytes stimulated by anti-CD3/CD28 mAb (P < 0.001). Ex vivo, it also reduced the production of IL-4 and IL-13 by activated T cells (P < 0.05 in both cases). CONCLUSIONS: The natural organosulfur compound DPTTS prevents skin and lung fibrosis in the mouse through the selective killing of diseased fibroblasts and its immunomodulating properties. DPTTS may be a potential treatment for systemic sclerosis.


Assuntos
Fibroblastos/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Escleroderma Sistêmico/prevenção & controle , Sulfetos/farmacologia , Actinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autoanticorpos/sangue , Autoanticorpos/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , DNA Topoisomerases Tipo I/imunologia , Relação Dose-Resposta a Droga , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/metabolismo , Fibrose/prevenção & controle , Citometria de Fluxo , Ácido Hipocloroso , Interleucina-13/metabolismo , Interleucina-4/imunologia , Interleucina-4/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/imunologia , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Proteínas Smad/metabolismo
20.
Wound Repair Regen ; 21(6): 860-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24134224

RESUMO

Hyperbaric oxygen (HBO) therapy is an effective treatment for diabetic chronic wounds. HBO reduces inflammation and accelerates wound healing, by mechanisms that remain unclear. Here we examined a mechanism by which HBO may reduce neutrophil recruitment, through changes in endothelial and neutrophil adhesion molecule expression and function. Human umbilical vein endothelial cells and neutrophils were exposed to selected chronic wound conditions, comprising hypoxia in the presence of lipopolysaccharide and tumor necrosis factor-alpha, and then treated with HBO. We observed neutrophil adhesion to endothelial cells following treatment with chronic wound conditions, which was reversed by HBO treatment. This was partly explained by reduced expression of endothelial intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 by HBO. No changes in neutrophil adhesion molecule expression (CD18, CD11b, CD62L, CD31) were observed following HBO treatment. However, HBO decreased hydrogen peroxide generation by neutrophils, and induced nitrous oxide-related protein modifications. The transnitrosating agent S-nitroso-L-cysteine ethyl ester (600 µM) also reduced neutrophil adhesion to human umbilical vein endothelial cell monolayers, and the iNOS inhibitor 1400 W (10 µM) and HgCl2, which promotes the decomposition of S-nitrosothiols (1 mM), reversed the effect of HBO, suggesting that S-nitrosation may inhibit neutrophil-endothelial cell adhesion. This study indicates that HBO could reduce inflammation in wounds through reduced neutrophil recruitment, mediated by S-nitrosation.


Assuntos
Complicações do Diabetes/patologia , Oxigenoterapia Hiperbárica , Inflamação/patologia , Úlcera/patologia , Cicatrização , Adesão Celular , Células Cultivadas , Doença Crônica , Complicações do Diabetes/imunologia , Complicações do Diabetes/terapia , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/imunologia , Inflamação/terapia , Mediadores da Inflamação/metabolismo , Interleucina-8/metabolismo , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Nitrosação , Fator de Necrose Tumoral alfa/metabolismo , Úlcera/imunologia , Úlcera/terapia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA