Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Surg Endosc ; 38(6): 3241-3252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653899

RESUMO

BACKGROUND: The learning curve in minimally invasive surgery (MIS) is lengthened compared to open surgery. It has been reported that structured feedback and training in teams of two trainees improves MIS training and MIS performance. Annotation of surgical images and videos may prove beneficial for surgical training. This study investigated whether structured feedback and video debriefing, including annotation of critical view of safety (CVS), have beneficial learning effects in a predefined, multi-modal MIS training curriculum in teams of two trainees. METHODS: This randomized-controlled single-center study included medical students without MIS experience (n = 80). The participants first completed a standardized and structured multi-modal MIS training curriculum. They were then randomly divided into two groups (n = 40 each), and four laparoscopic cholecystectomies (LCs) were performed on ex-vivo porcine livers each. Students in the intervention group received structured feedback after each LC, consisting of LC performance evaluations through tutor-trainee joint video debriefing and CVS video annotation. Performance was evaluated using global and LC-specific Objective Structured Assessments of Technical Skills (OSATS) and Global Operative Assessment of Laparoscopic Skills (GOALS) scores. RESULTS: The participants in the intervention group had higher global and LC-specific OSATS as well as global and LC-specific GOALS scores than the participants in the control group (25.5 ± 7.3 vs. 23.4 ± 5.1, p = 0.003; 47.6 ± 12.9 vs. 36 ± 12.8, p < 0.001; 17.5 ± 4.4 vs. 16 ± 3.8, p < 0.001; 6.6 ± 2.3 vs. 5.9 ± 2.1, p = 0.005). The intervention group achieved CVS more often than the control group (1. LC: 20 vs. 10 participants, p = 0.037, 2. LC: 24 vs. 8, p = 0.001, 3. LC: 31 vs. 8, p < 0.001, 4. LC: 31 vs. 10, p < 0.001). CONCLUSIONS: Structured feedback and video debriefing with CVS annotation improves CVS achievement and ex-vivo porcine LC training performance based on OSATS and GOALS scores.


Assuntos
Colecistectomia Laparoscópica , Competência Clínica , Gravação em Vídeo , Colecistectomia Laparoscópica/educação , Humanos , Suínos , Animais , Feminino , Masculino , Curva de Aprendizado , Currículo , Adulto , Estudantes de Medicina , Feedback Formativo , Adulto Jovem , Retroalimentação
2.
Ann Surg ; 279(4): 665-670, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389886

RESUMO

OBJECTIVE: The goal of the current study was to investigate the perioperative outcomes of robotic pancreaticoduodenectomy (RPD) and open pancreaticoduodenectomy (OPD) in a high-volume center. BACKGROUND: Despite RPDs prospective advantages over OPD, current evidence comparing the 2 has been limited and has prompted further investigation. The aim of this study was to compare both approaches while including the learning curve phase for RPD. METHODS: A 1:1 propensity score-matched analysis of a prospective database of RPD with OPD (2017-2022) at a high-volume center was performed. The main outcomes were overall- and pancreas-specific complications. RESULTS: Of 375 patients who underwent PD (OPD n=276; RPD n=99), 180 were included in propensity score-matched analysis (90 per group). RPD was associated with less blood loss [500 (300-800) vs 750 (400-1000) mL; P =0.006] and more patients without a complication (50% vs 19%; P <0.001). Operative time was longer [453 (408-529) vs 306 (247-362) min; P <0.001]; in patients with ductal adenocarcinoma, fewer lymph nodes were harvested [24 (18-27) vs 33 (27-39); P <0.001] with RPD versus OPD. There were no significant differences for major complications (38% vs 47%; P =0.291), reoperation rate (14% vs 10%; P =0.495), postoperative pancreatic fistula (21% vs 23%; P =0.858), and patients with the textbook outcome (62% vs 55%; P =0.452). CONCLUSIONS: Including the learning phase, RPD can be safely implemented in high-volume settings and shows potential for improved perioperative outcomes versus OPD. Pancreas-specific morbidity was unaffected by the robotic approach. Randomized trials with specifically trained pancreatic surgeons and expanded indications for the robotic approach are needed.


Assuntos
Laparoscopia , Neoplasias Pancreáticas , Procedimentos Cirúrgicos Robóticos , Humanos , Pancreaticoduodenectomia/efeitos adversos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Pontuação de Propensão , Pâncreas/cirurgia , Complicações Pós-Operatórias/etiologia , Curva de Aprendizado , Estudos Retrospectivos , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/complicações , Laparoscopia/efeitos adversos
3.
Surg Endosc ; 38(3): 1379-1389, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148403

RESUMO

BACKGROUND: Image-guidance promises to make complex situations in liver interventions safer. Clinical success is limited by intraoperative organ motion due to ventilation and surgical manipulation. The aim was to assess influence of different ventilatory and operative states on liver motion in an experimental model. METHODS: Liver motion due to ventilation (expiration, middle, and full inspiration) and operative state (native, laparotomy, and pneumoperitoneum) was assessed in a live porcine model (n = 10). Computed tomography (CT)-scans were taken for each pig for each possible combination of factors. Liver motion was measured by the vectors between predefined landmarks along the hepatic vein tree between CT scans after image segmentation. RESULTS: Liver position changed significantly with ventilation. Peripheral regions of the liver showed significantly higher motion (maximal Euclidean motion 17.9 ± 2.7 mm) than central regions (maximal Euclidean motion 12.6 ± 2.1 mm, p < 0.001) across all operative states. The total average motion measured 11.6 ± 0.7 mm (p < 0.001). Between the operative states, the position of the liver changed the most from native state to pneumoperitoneum (14.6 ± 0.9 mm, p < 0.001). From native state to laparotomy comparatively, the displacement averaged 9.8 ± 1.2 mm (p < 0.001). With pneumoperitoneum, the breath-dependent liver motion was significantly reduced when compared to other modalities. Liver motion due to ventilation was 7.7 ± 0.6 mm during pneumoperitoneum, 13.9 ± 1.1 mm with laparotomy, and 13.5 ± 1.4 mm in the native state (p < 0.001 in all cases). CONCLUSIONS: Ventilation and application of pneumoperitoneum caused significant changes in liver position. Liver motion was reduced but clearly measurable during pneumoperitoneum. Intraoperative guidance/navigation systems should therefore account for ventilation and intraoperative changes of liver position and peripheral deformation.


Assuntos
Movimentos dos Órgãos , Pneumoperitônio , Suínos , Animais , Pneumoperitônio/diagnóstico por imagem , Pneumoperitônio/etiologia , Laparotomia , Fígado/diagnóstico por imagem , Fígado/cirurgia , Respiração
4.
Sci Rep ; 13(1): 20299, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985848

RESUMO

At the beginning of the COVID-19 pandemic, it was assumed that SARS-CoV-2 could be transmitted through surgical smoke generated by electrocauterization. Minimally invasive surgery (MIS) was targeted due to potentially higher concentrations of the SARS-CoV-2 particles in the pneumoperitoneum. Some surgical societies even recommended open surgery instead of MIS to prevent the potential spread of SARS-CoV-2 from the pneumoperitoneum. This study aimed to detect SARS-CoV-2 in surgical smoke during open and MIS. Patients with SARS-CoV-2 infection who underwent open surgery or MIS at Heidelberg University Hospital were included in the study. A control group of patients without SARS-CoV-2 infection undergoing MIS or open surgery was included for comparison. The trial was approved by the Ethics Committee of Heidelberg University Medical School (S-098/2021). The following samples were collected: nasopharyngeal and intraabdominal swabs, blood, urine, surgical smoke, and air samples from the operating room. An SKC BioSampler was used to sample the surgical smoke from the pneumoperitoneum during MIS and the approximate surgical field during open surgery in 15 ml of sterilized phosphate-buffered saline. An RT-PCR test was performed on all collected samples to detect SARS-CoV-2 viral particles. Twelve patients with proven SARS-CoV-2 infection underwent open abdominal surgery. Two SARS-CoV-2-positive patients underwent an MIS procedure. The control group included 24 patients: 12 underwent open surgery and 12 MIS. One intraabdominal swab in a patient with SARS-CoV-2 infection was positive for SARS-CoV-2. However, during both open surgery and MIS, none of the surgical smoke samples showed any detectable viral particles of SARS-CoV-2. The air samples collected at the end of the surgical procedure showed no viral particles of SARS-CoV-2. Major complications (CD ≥ IIIa) were more often observed in SARS-CoV-2 positive patients (10 vs. 4, p = 0.001). This study showed no detectable viral particles of SARS-CoV-2 in surgical smoke sampled during MIS and open surgery. Thus, the discussed risk of transmission of SARS-CoV-2 via surgical smoke could not be confirmed in the present study.


Assuntos
COVID-19 , Pneumoperitônio , Humanos , Pandemias/prevenção & controle , Estudos Prospectivos , SARS-CoV-2 , Fumaça , Carga Viral
5.
Surg Endosc ; 37(10): 7839-7848, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37612445

RESUMO

INTRODUCTION: The learning curve in minimally invasive surgery (MIS) is steep compared to open surgery. One of the reasons is that training in the operating room in MIS is mainly limited to verbal instructions. The iSurgeon telestration device with augmented reality (AR) enables visual instructions, guidance, and feedback during MIS. This study aims to compare the effects of the iSurgeon on the training of novices performing repeated laparoscopic cholecystectomy (LC) on a porcine liver compared to traditional verbal instruction methods. METHODS: Forty medical students were randomized into the iSurgeon and the control group. The iSurgeon group performed 10 LCs receiving interactive visual guidance. The control group performed 10 LCs receiving conventional verbal guidance. The performance assessment using Objective Structured Assessments of Technical Skills (OSATS) and Global Operative Assessment of Laparoscopic Skills (GOALS) scores, the total operating time, and complications were compared between the two groups. RESULTS: The iSurgeon group performed LCs significantly better (global GOALS 17.3 ± 2.6 vs. 16 ± 2.6, p ≤ 0.001, LC specific GOALS 7 ± 2 vs. 5.9 ± 2.1, p ≤ 0.001, global OSATS 25.3 ± 4.3 vs. 23.5 ± 3.9, p ≤ 0.001, LC specific OSATS scores 50.8 ± 11.1 vs. 41.2 ± 9.4, p ≤ 0.001) compared to the control group. The iSurgeon group had significantly fewer intraoperative complications in total (2.7 ± 2.0 vs. 3.6 ± 2.0, p ≤ 0.001) than the control group. There was no difference in operating time (79.6 ± 25.7 vs. 84.5 ± 33.2 min, p = 0.087). CONCLUSION: Visual guidance using the telestration device with AR, iSurgeon, improves performance and lowers the complication rates in LCs in novices compared to conventional verbal expert guidance.


Assuntos
Realidade Aumentada , Colecistectomia Laparoscópica , Laparoscopia , Humanos , Suínos , Animais , Colecistectomia Laparoscópica/educação , Competência Clínica , Laparoscopia/educação , Currículo
7.
Surg Endosc ; 35(12): 7049-7057, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33398570

RESUMO

BACKGROUND: Hepatectomy, living donor liver transplantations and other major hepatic interventions rely on precise calculation of the total, remnant and graft liver volume. However, liver volume might differ between the pre- and intraoperative situation. To model liver volume changes and develop and validate such pre- and intraoperative assistance systems, exact information about the influence of lung ventilation and intraoperative surgical state on liver volume is essential. METHODS: This study assessed the effects of respiratory phase, pneumoperitoneum for laparoscopy, and laparotomy on liver volume in a live porcine model. Nine CT scans were conducted per pig (N = 10), each for all possible combinations of the three operative (native, pneumoperitoneum and laparotomy) and respiratory states (expiration, middle inspiration and deep inspiration). Manual segmentations of the liver were generated and converted to a mesh model, and the corresponding liver volumes were calculated. RESULTS: With pneumoperitoneum the liver volume decreased on average by 13.2% (112.7 ml ± 63.8 ml, p < 0.0001) and after laparotomy by 7.3% (62.0 ml ± 65.7 ml, p = 0.0001) compared to native state. From expiration to middle inspiration the liver volume increased on average by 4.1% (31.1 ml ± 55.8 ml, p = 0.166) and from expiration to deep inspiration by 7.2% (54.7 ml ± 51.8 ml, p = 0.007). CONCLUSIONS: Considerable changes in liver volume change were caused by pneumoperitoneum, laparotomy and respiration. These findings provide knowledge for the refinement of available preoperative simulation and operation planning and help to adjust preoperative imaging parameters to best suit the intraoperative situation.


Assuntos
Laparoscopia , Transplante de Fígado , Animais , Hepatectomia , Humanos , Imageamento Tridimensional , Laparotomia , Fígado/diagnóstico por imagem , Fígado/cirurgia , Doadores Vivos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA