Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Trials ; 24(1): 401, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312095

RESUMO

BACKGROUND: The decline in skeletal muscle mass experienced following a short-term period (days to weeks) of muscle disuse is mediated by impaired rates of muscle protein synthesis (MPS). Previous RCTs of exercise or nutrition prehabilitation interventions designed to mitigate disuse-induced muscle atrophy have reported limited efficacy. Hence, the aim of this study is to investigate the impact of a complex prehabilitation intervention that combines ß-lactoglobulin (a novel milk protein with a high leucine content) supplementation with resistance exercise training on disuse-induced changes in free-living integrated rates of MPS in healthy, young adults. METHODS/DESIGN: To address this aim, we will recruit 24 healthy young (18-45 years) males and females to conduct a parallel, double-blind, 2-arm, randomised placebo-controlled trial. The intervention group will combine a 7-day structured resistance exercise training programme with thrice daily dietary supplementation with 23 g of ß-lactoglobulin. The placebo group will combine the same training programme with an energy-matched carbohydrate (dextrose) control. The study protocol will last 16 days for each participant. Day 1 will be a familiarisation session and days 2-4 will be the baseline period. Days 5-11 represent the 'prehabilitation period' whereby participants will combine resistance training with their assigned dietary supplementation regimen. Days 12-16 represent the muscle disuse-induced 'immobilisation period' whereby participants will have a single leg immobilised in a brace and continue their assigned dietary supplementation regimen only (i.e. no resistance training). The primary endpoint of this study is the measurement of free-living integrated rates of MPS using deuterium oxide tracer methodology. Measurements of MPS will be calculated at baseline, over the 7-day prehabilitation period and over the 5-day immobilisation period separately. Secondary endpoints include measurements of muscle mass and strength that will be collected on days 4 (baseline), 11 (end of prehabilitation) and 16 (end of immobilisation). DISCUSSION: This novel study will establish the impact of a bimodal prehabilitation strategy that combines ß-lactoglobulin supplementation and resistance exercise training in modulating MPS following a short-term period of muscle disuse. If successful, this complex intervention may be translated to clinical practice with application to patients scheduled to undergo, for example, hip or knee replacement surgery. TRIAL REGISTRATION: NCT05496452. Registered on August 10, 2022. PROTOCOL VERSION: 16-12-2022/1.


Assuntos
Proteínas Musculares , Treinamento Resistido , Feminino , Masculino , Humanos , Adulto Jovem , Músculos , Lactoglobulinas , Suplementos Nutricionais , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Eur J Sport Sci ; 23(8): 1666-1676, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37010103

RESUMO

We aimed to investigate the influence of 4-wk of fish oil (FO) supplementation on markers of muscle damage, inflammation, muscle soreness, and muscle function during acute recovery from eccentric exercise in moderately trained males. Sixteen moderately-trained males ingested 5 g/d of FO (n = 8) or soybean oil (placebo) capsules (n = 8) for 4-wk prior to- and 3-d following an acute eccentric exercise bout. Eccentric exercise consisted of 12 sets of isokinetic knee extension and knee flexion. Indices of muscle damage, soreness, function and inflammation were measured at baseline and during exercise recovery. Eccentric exercise elicited an increase in muscle soreness (p < 0.010) and thigh volume (p < 0.001), and reduced peak isometric torque by 31.7 ± 6.9%, (p < 0.05, 95% CI 10.6-52.8) during 3-d of recovery. Blood omega-3 polyunsaturated fatty acid concentration was 14.9 ± 2.4% higher in FO than PLA (p < 0.01, 95% CI 9.8-20.1). However, FO did not ameliorate the cumulative creatine kinase response (expressed as AUC; p = 0.368), inflammation (p = 0.400), muscle soreness (p > 0.140), or muscle function (p > 0.249) following eccentric exercise. FO supplementation confers no clear benefit in terms of ameliorating the degree of muscle damage, or facilitating the muscle repair process, during acute eccentric exercise recovery. These data suggest that FO supplementation does not provide an effective nutritional strategy to promote exercise recovery, at least in moderately-trained young men.Abbreviations: ANOVA: Analysis of variance; AUC: Area under curve; CI: Confidence interval; CK: Creatine kinase; CMJ: Countermovement jump; COX: Cyclooxygenase; CRP: C-reactive protein; DHA: Docosahexaenoic acid; DOMS: Delayed-onset muscle soreness; EIMD: Exercise-induced muscle damage; En%: Energy percent; EPA: Eicosapentaenoic acid; FO: Fish oil; IL-6: Interleukin-6; LDH: Lactate dehydrogenase; LOX: Lipoxygenase; Mb: Myoglobin; mTOR: Mechanistic target of rapamycin; PLA: Placebo; ROM: Range of motion; ROS: Reactive oxygen species; SD: Standard deviation; SEM: Standard error of the mean; TNF-α: Tumour necrosis factor alpha; VAS: Visual analogue scale; Ω3-PUFA: Omega-3 polyunsaturated fatty acids; Ω6-PUFA: Omega-6 polyunsaturated fatty acidsHighlightsThe anti-inflammatory properties of omega-3 polyunsaturated fatty acids, alongside their propensity to incorporate into the muscle phospholipid membrane underpins the idea that fish oil supplementation may attenuate muscle damage and promote muscle repair following eccentric-based exercise.Four weeks of high-dose (5 g/d) fish oil supplementation prior to eccentric exercise failed to attenuate the rise in creatine kinase concentration and muscle soreness during acute exercise recovery in physically-active young men.Future studies are warranted to investigate the efficacy of combining omega-3 polyunsaturated fatty acids with other nutrients (i.e. protein/amino acids) for the promotion of muscle recovery following eccentric-based damaging exercise.


Assuntos
Ácidos Graxos Ômega-3 , Óleos de Peixe , Masculino , Humanos , Mialgia , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Inflamação , Exercício Físico/fisiologia , Músculos , Creatina Quinase , Poliésteres/farmacologia , Poliésteres/uso terapêutico , Músculo Esquelético/fisiologia
3.
J Cachexia Sarcopenia Muscle ; 14(1): 30-44, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36414567

RESUMO

Probiotics have shown potential to counteract sarcopenia, although the extent to which they can influence domains of sarcopenia such as muscle mass and strength in humans is unclear. The aim of this systematic review and meta-analysis was to explore the impact of probiotic supplementation on muscle mass, total lean mass and muscle strength in human adults. A literature search of randomized controlled trials (RCTs) was conducted through PubMed, Scopus, Web of Science and Cochrane Library from inception until June 2022. Eligible RCTs compared the effect of probiotic supplementation versus placebo on muscle and total lean mass and global muscle strength (composite score of all muscle strength outcomes) in adults (>18 years). To evaluate the differences between groups, a meta-analysis was conducted using the random effects inverse-variance model by utilizing standardized mean differences. Twenty-four studies were included in the systematic review and meta-analysis exploring the effects of probiotics on muscle mass, total lean mass and global muscle strength. Our main analysis (k = 10) revealed that muscle mass was improved following probiotics compared with placebo (SMD: 0.42, 95% CI: 0.10-0.74, I2  = 57%, P = 0.009), although no changes were revealed in relation to total lean mass (k = 12; SMD: -0.03, 95% CI: -0.19 - 0.13, I2  = 0%, P = 0.69). Interestingly, a significant increase in global muscle strength was also observed among six RCTs (SMD: 0.69, 95% CI: 0.33-1.06, I2  = 64%, P = 0.0002). Probiotic supplementation enhances both muscle mass and global muscle strength; however, no beneficial effects were observed in total lean mass. Investigating the physiological mechanisms underpinning different ageing groups and elucidating appropriate probiotic strains for optimal gains in muscle mass and strength are warranted.


Assuntos
Probióticos , Sarcopenia , Adulto , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Probióticos/uso terapêutico , Força Muscular/fisiologia , Músculos
4.
PLoS One ; 17(9): e0273766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36067173

RESUMO

Cancer cachexia is accompanied by muscle atrophy, sharing multiple common catabolic pathways with sarcopenia, including mitochondrial dysfunction. This study investigated gene expression from skeletal muscle tissues of older healthy adults, who are at risk of age-related sarcopenia, to identify potential gene biomarkers whose dysregulated expression and protein interference were involved in non-small cell lung cancer (NSCLC). Screening of the literature resulted in 14 microarray datasets (GSE25941, GSE28392, GSE28422, GSE47881, GSE47969, GSE59880 in musculoskeletal ageing; GSE118370, GSE33532, GSE19804, GSE18842, GSE27262, GSE19188, GSE31210, GSE40791 in NSCLC). Differentially expressed genes (DEGs) were used to construct protein-protein interaction networks and retrieve clustering gene modules. Overlapping module DEGs were ranked based on 11 topological algorithms and were correlated with prognosis, tissue expression, and tumour purity in NSCLC. The analysis revealed that the dysregulated expression of the mammalian mitochondrial ribosomal proteins, Mitochondrial Ribosomal Protein S26 (MRPS26), Mitochondrial Ribosomal Protein S17 (MRPS17), Mitochondrial Ribosomal Protein L18 (MRPL18) and Mitochondrial Ribosomal Protein L51 (MRPL51) were linked to reduced survival and tumour purity in NSCLC while tissue expression of the same genes followed an opposite direction in healthy older adults. These results support a potential link between the mitochondrial ribosomal microenvironment in ageing muscle and NSCLC. Further studies comparing changes in sarcopenia and NSCLC associated cachexia are warranted.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Sarcopenia , Idoso , Envelhecimento/genética , Caquexia/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Neoplasias Pulmonares/patologia , Mitocôndrias/metabolismo , Proteínas Ribossômicas/genética , Sarcopenia/genética , Sarcopenia/patologia , Microambiente Tumoral
6.
J Cachexia Sarcopenia Muscle ; 13(3): 1642-1652, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35261183

RESUMO

BACKGROUND: Vitamin D supplementation is proposed as a potentially effective nutritional intervention to mitigate the risk of sarcopenia. The aim of this systematic review and meta-analysis was to investigate the impact of vitamin D supplementation monotherapy on indices of sarcopenia in community-dwelling older adults. METHODS: A comprehensive search of the literature was conducted in PubMed, Web of Science, Scopus, and Cochrane Library. Eligible randomized controlled trials (RCTs) compared the effect of vitamin D supplementation (as monotherapy) with placebo on indices of sarcopenia in older (>50 years) adults. Using the random effects inverse-variance model, we calculated the mean difference (MD) in handgrip strength (HGS), short physical performance battery (SPPB), timed up and go (TUG), and appendicular lean mass (ALM) between groups. We also calculated the standardized mean difference (SMD) in general muscle strength and general physical performance (composite plot of all muscle strength and physical performance outcomes, respectively) between groups. RESULTS: Ten RCTs were included in the meta-analysis. A significant decrease in SPPB scores was observed with vitamin D supplementation compared with placebo (MD: -0.23; 95% CI -0.40 to -0.06; I2  = 0%; P = 0.007). Vitamin D supplementation conferred no effect on HGS (MD: -0.07 kg; 95% CI -0.70 to 0.55; I2  = 51%, P = 0.82), TUG (MD: 0.07 s; 95% CI -0.08 to 0.22; I2  = 0%, P = 0.35), ALM (MD: 0.06 kg/m2 ; 95% CI: -0.32 to 0.44; I2  = 73%, P = 0.77), general muscle strength (SMD: -0.01; 95% CI -0.17 to 0.15; I2  = 42%, P = 0.90), or general physical performance (SMD: -0.02; 95% CI -0.23 to 0.18; I2  = 71%, P = 0.83). CONCLUSIONS: Vitamin D supplementation did not improve any sarcopenia indices in community-dwelling older adults and may compromise some aspects of physical performance. Future studies are warranted to investigate the impact of vitamin D supplementation on individual indices of SPPB, including mobility and balance, in older adults.


Assuntos
Sarcopenia , Idoso , Suplementos Nutricionais , Humanos , Vida Independente , Sarcopenia/tratamento farmacológico , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico
7.
Nutr Res Rev ; 35(2): 197-206, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34027849

RESUMO

This narrative review provides mechanistic insight into the biological link between smoking and/or chronic excess alcohol consumption, and increased risk of developing sarcopenia. Although the combination of excessive alcohol consumption and smoking is often associated with ectopic adipose deposition, this review is focused on the context of a reduced caloric intake (leading to energy deficit) that also may ensue due to either lifestyle habit. Smoking is a primary cause of periodontitis and chronic obstructive pulmonary disease that both induce swallowing difficulties, inhibit taste and mastication, and are associated with increased risk of muscle atrophy and mitochondrial dysfunction. Smoking may contribute to physical inactivity, energy deficit via reduced caloric intake, and increased systemic inflammation, all of which are factors known to suppress muscle protein synthesis rates. Moreover, chronic excess alcohol consumption may result in gut microbiota dysbiosis and autophagy-induced hyperammonemia, initiating the up-regulation of muscle protein breakdown and down-regulation of muscle protein synthesis via activation of myostatin, AMPK and REDD1, and deactivation of IGF-1. Future research is warranted to explore the link between oral healthcare management and personalised nutrition counselling in light of potential detrimental consequences of chronic smoking on musculoskeletal health outcomes in older adults. Experimental studies should investigate the impact of smoking and chronic excess alcohol consumption on the gut-brain axis, and explore biomarkers of smoking-induced oral disease progression. The implementation of behavioural change interventions and health policies regarding smoking and alcohol intake habits may mitigate the clinical and financial burden of sarcopenia on the healthcare system.


Assuntos
Sarcopenia , Humanos , Idoso , Sarcopenia/etiologia , Ingestão de Energia , Fumar/efeitos adversos , Proteínas Musculares , Consumo de Bebidas Alcoólicas/efeitos adversos
8.
Physiol Rep ; 8(16): e14529, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845565

RESUMO

Understanding human physiological responses to high-fat energy excess (HFEE) may help combat the development of metabolic disease. We aimed to investigate the impact of manipulating the n-3PUFA content of HFEE diets on whole-body and skeletal muscle markers of insulin sensitivity. Twenty healthy males were overfed (150% energy, 60% fat, 25% carbohydrate, 15% protein) for 6 d. One group (n = 10) received 10% of fat intake as n-3PUFA rich fish oil (HF-FO), and the other group consumed a mix of fats (HF-C). Oral glucose tolerance tests with stable isotope tracer infusions were conducted before, and following, HFEE, with muscle biopsies obtained in basal and insulin-stimulated states for measurement of membrane phospholipids, ceramides, mitochondrial enzyme activities, and PKB and AMPKα2 activity. Insulin sensitivity and glucose disposal did not change following HFEE, irrespective of group. Skeletal muscle ceramide content increased following HFEE (8.5 ± 1.2 to 12.1 ± 1.7 nmol/mg, p = .03), irrespective of group. No change in mitochondrial enzyme activity was observed following HFEE, but citrate synthase activity was inversely associated with the increase in the ceramide content (r=-0.52, p = .048). A time by group interaction was observed for PKB activity (p = .003), with increased activity following HFEE in HF-C (4.5 ± 13.0mU/mg) and decreased activity in HF-FO (-10.1 ± 20.7 mU/mg) following HFEE. Basal AMPKα2 activity increased in HF-FO (4.1 ± 0.6 to 5.3 ± 0.7mU/mg, p = .049), but did not change in HF-C (4.6 ± 0.7 to 3.8 ± 0.9mU/mg) following HFEE. We conclude that early skeletal muscle signaling responses to HFEE appear to be modified by dietary n-3PUFA content, but the potential impact on future development of metabolic disease needs exploring.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/metabolismo , Hiperfagia/metabolismo , Músculo Esquelético/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Adolescente , Adulto , Ceramidas/metabolismo , Humanos , Masculino , Estresse Oxidativo , Fosfolipídeos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Front Nutr ; 6: 102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380384

RESUMO

Background: A detrimental consequence of diet-induced weight loss, common in athletes who participate in weight cutting sports, is muscle loss. Dietary omega-3 polyunsaturated fatty acids (n-3PUFA) exhibit a protective effect on the loss of muscle tissue during catabolic situations such as injury-simulated leg immobilization. This study aimed to investigate the influence of dietary n-3PUFA supplementation on changes in body composition and muscle strength following short-term diet-induced weight loss in resistance-trained men. Methods: Twenty resistance-trained young (23 ± 1 years) men were randomly assigned to a fish oil group that supplemented their diet with 4 g n-3PUFA, 18 g carbohydrate, and 5 g protein (FO) or placebo group containing an equivalent carbohydrate and protein content (CON) over a 6 week period. During weeks 1-3, participants continued their habitual diet. During week 4, participants received all food items to control energy balance and a macronutrient composition of 50% carbohydrate, 35% fat, and 15% protein. During weeks 5 and 6, participants were fed an energy-restricted diet equivalent to 60% habitual energy intake. Body composition and strength were measured during weeks 1, 4, and 6. Results: The decline in total body mass (FO = -3.0 ± 0.3 kg, CON = -2.6 ± 0.3 kg), fat free mass (FO = -1.4 ± 0.3 kg, CON = -1.2 ± 0.3 kg) and fat mass (FO = -1.4 ± 0.2 kg, CON = -1.3 ± 0.3 kg) following energy restriction was similar between groups (all p > 0.05; d: 0.16-0.39). Non-dominant leg extension 1 RM increased (6.1 ± 3.4%) following energy restriction in FO (p < 0.05, d = 0.29), with no changes observed in CON (p > 0.05, d = 0.05). Dominant leg extension 1 RM tended to increase following energy restriction in FO (p = 0.09, d = 0.29), with no changes in CON (p > 0.05, d = 0.06). Changes in leg press 1 RM, maximum voluntary contraction and muscular endurance following energy restriction were similar between groups (p > 0.05, d = 0.05). Conclusion: Any possible improvements in muscle strength during short-term weight loss with n-3PUFA supplementation are not related to the modulation of FFM in resistance-trained men.

10.
Int J Sport Nutr Exerc Metab ; 28(1): 26-36, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28871832

RESUMO

Soccer players often experience eccentric exercise-induced muscle damage given the physical demands of soccer match-play. Since long chain n-3 polyunsaturated fatty acids (n-3PUFA) enhance muscle sensitivity to protein supplementation, dietary supplementation with a combination of fish oil-derived n-3PUFA, protein, and carbohydrate may promote exercise recovery. This study examined the influence of adding n-3PUFA to a whey protein, leucine, and carbohydrate containing beverage over a six-week supplementation period on physiological markers of recovery measured over three days following eccentric exercise. Competitive soccer players were assigned to one of three conditions (2 × 200 mL): a fish oil supplement beverage (FO; n = 10) that contained n-3PUFA (1100 mg DHA/EPA-approximately 550 mg DHA, 550 mg EPA), whey protein (15 g), leucine (1.8 g), and carbohydrate (20 g); a protein supplement beverage (PRO; n = 10) that contained whey protein (15 g), leucine (1.8 g), and carbohydrate (20 g); and a carbohydrate supplement beverage (CHO; n = 10) that contained carbohydrate (24 g). Eccentric exercise consisted of unilateral knee extension/flexion contractions on both legs separately. Maximal force production was impaired by 22% during the 72-hour recovery period following eccentric exercise (p < 0.05). Muscle soreness, expressed as area under the curve (AUC) during 72-hour recovery, was less in FO (1948 ± 1091 mm × 72 h) than PRO (4640 ± 2654 mm × 72 h, p < 0.05) and CHO (4495 ± 1853 mm × 72 h, p = 0.10). Blood concentrations of creatine kinase, expressed as AUC, were ~60% lower in FO compared to CHO (p < 0.05) and tended to be lower (~39%, p = 0.07) than PRO. No differences in muscle function, soccer performance, or blood c-reactive protein concentrations were observed between groups. In conclusion, the addition of n-3PUFA to a beverage containing whey protein, leucine, and carbohydrate ameliorates the increase in muscle soreness and blood concentrations of creatine kinase following eccentric exercise in competitive soccer players.


Assuntos
Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Mialgia/terapia , Futebol , Fenômenos Fisiológicos da Nutrição Esportiva , Atletas , Proteína C-Reativa/análise , Creatina Quinase/sangue , Carboidratos da Dieta/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Humanos , Leucina/administração & dosagem , Masculino , Músculo Esquelético/fisiologia , Proteínas do Soro do Leite/administração & dosagem , Adulto Jovem
11.
Physiol Rep ; 4(6)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27009278

RESUMO

Fish oil (FO) supplementation potentiates muscle protein synthesis (MPS) in response to a hyperaminoacidemic-hyperinsulinemic infusion. Whether FO supplementation potentiates MPS in response to protein ingestion or when protein ingestion is combined with resistance exercise (RE) remains unknown. In a randomized, parallel group design, 20 healthy males were randomized to receive 5 g/day of either FO or coconut oil control (CO) for 8 weeks. After supplementation, participants performed a bout of unilateral RE followed by ingestion of 30 g of whey protein. Skeletal muscle biopsies were obtained before and after supplementation for assessment of muscle lipid composition and relevant protein kinase activities. Infusion of L-[ring-(13)C6] phenylalanine was used to measure basal myofibrillar MP Sat rest (REST), in a nonexercised leg following protein ingestion (FED) and following RE and protein ingestion (FEDEX).MPS was significantly elevated above REST during FEDEX in both the FO and CO groups, but there was no effect of supplementation. There was a significant increase in MPS in both groups above REST during FED but no effect of supplementation. Supplementation significantly decreased pan PKB activity at RESTin the FO group but not the CO group. There was a significant increase from REST at post-RE for PKB and AMPKα2 activity in the CO group but not in the FO group. In FEDEX, there was a significant increase in p70S6K1 activity from REST at 3 h in the CO group only. These data highlight that 8 weeks of FO supplementation alters kinase signaling activity in response to RE plus protein ingestion without influencing MPS.


Assuntos
Anabolizantes/administração & dosagem , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Treinamento Resistido , Proteínas Quinases Ativadas por AMP/metabolismo , Biópsia , Humanos , Masculino , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Fosfolipídeos/metabolismo , Fosforilação , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Escócia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
12.
Biogerontology ; 17(3): 529-46, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26878863

RESUMO

The preservation of skeletal muscle mass and strength with advancing age are, we propose, critical aspects of ageing with health and vitality. Physical inactivity and poor nutrition are known to accelerate the gradual age-related decline in muscle mass and strength-sarcopenia-however, both are subject to modification. The main purpose of this review is to present the latest, evidence-based recommendations for physical activity and exercise, as well as diet for older adults that would help in preserving muscle mass and strength. We take the position that future physical activity/exercise guidelines need to make specific reference to resistance exercise and highlight the benefits of higher-intensity aerobic exercise training, alongside advocating older adults perform aerobic-based physical activity and household tasks (e.g., carrying groceries). In terms of dietary recommendations, greater emphasis should be placed on optimal rather than minimum protein intakes for older adults. Indeed, guidelines that endorse a daily protein intake of 1.2-1.5 g/kg BM/day, which are levels 50-90 % greater than the current protein Recommendation Dietary Allowance (0.8 g/kg BM/day), are likely to help preserve muscle mass and strength and are safe for healthy older adults. Being cognisant of factors (e.g., reduced appetite) that may preclude older adults from increasing their total daily protein intake, we echo the viewpoint of other active researchers in advocating that protein recommendations for older adults be based on a per meal approach in order to maximize muscle protein synthesis (MPS). On this basis, assuming three meals are consumed daily, a protein dose of 0.4-0.5 g/kg BM should be contained in each meal. We are beginning to understand ways in which to increase the utilization of ingested protein for the stimulation of MPS, namely by increasing the proportion of leucine contained in a given dose of protein, co-ingesting other nutrients (e.g., carbohydrate and fat or supplementation with n-3 polyunsaturated fatty acids) or being physically active prior to protein intake. Clearly, developing simple lifestyle interventions targeted at preserving muscle mass and strength with advancing age is crucial for facilitating longer, healthier lives into older age.


Assuntos
Dietoterapia/normas , Condicionamento Físico Humano/normas , Guias de Prática Clínica como Assunto , Sarcopenia/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Terapia Combinada/normas , Medicina Baseada em Evidências , Estilo de Vida Saudável , Humanos
13.
J Physiol ; 589(Pt 16): 4011-25, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21746787

RESUMO

The aim of the present study was to determine mitochondrial and myofibrillar muscle protein synthesis (MPS) when carbohydrate (CHO) or carbohydrate plus protein (C+P) beverages were ingested following prolonged cycling exercise. The intracellular mechanisms thought to regulate MPS were also investigated. In a single-blind, cross-over study, 10 trained cyclists (age 29 ± 6 years, VO2max 66.5 ± 5.1 ml kg(−1) min(−1)) completed two trials in a randomized order. Subjects cycled for 90 min at 77 ± 1% VO2max before ingesting a CHO (25 g of carbohydrate) or C+P (25 g carbohydrate + 10 g whey protein) beverage immediately and 30 min post-exercise. A primed constant infusion of L-[ring-(13)C6]phenylalanine began 1.5 h prior to exercise and continued until 4 h post-exercise. Muscle biopsy samples were obtained to determine myofibrillar and mitochondrial MPS and the phosphorylation of intracellular signalling proteins. Arterialized blood samples were obtained throughout the protocol. Plasma amino acid and urea concentrations increased following ingestion of C+P only. Serum insulin concentration increased more for C+P than CHO. Myofibrillar MPS was ∼35% greater for C+P compared with CHO (0.087 ± 0.007 and 0.057 ± 0.006% h(−1), respectively; P = 0.025). Mitochondrial MPS rates were similar for C+P and CHO (0.082 ± 0.011 and 0.086 ± 0.018% h(−1), respectively). mTOR(Ser2448) phosphorylation was greater for C+P compared with CHO at 4 h post-exercise (P < 0.05). p70S6K(Thr389) phosphorylation increased at 4 h post-exercise for C+P (P < 0.05), whilst eEF2(Thr56) phosphorylation increased by ∼40% at 4 h post-exercise for CHO only (P < 0.01). The present study demonstrates that the ingestion of protein in addition to carbohydrate stimulates an increase in myofibrillar, but not mitochondrial, MPS following prolonged cycling. These data indicate that the increase in myofibrillar MPS for C+P could, potentially, be mediated through p70S6K, downstream of mTOR, which in turn may suppress the rise in eEF2 on translation elongation.


Assuntos
Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Proteínas Mitocondriais/biossíntese , Proteínas Musculares/biossíntese , Miofibrilas/metabolismo , Resistência Física/fisiologia , Adulto , Bebidas , Estudos Cross-Over , Humanos , Masculino , Proteínas Musculares/fisiologia , Miofibrilas/fisiologia , Método Simples-Cego , Adulto Jovem
14.
Med Sci Sports Exerc ; 41(1): 144-54, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19092695

RESUMO

PURPOSE: We examined the impact of an acute bout of resistance-type exercise on mixed muscle protein synthesis in the fed state. METHODS: After a standardized breakfast, 10 untrained males completed a single, unilateral lower-limb resistance-type exercise session. A primed, continuous infusion of l-[ring-C6]phenylalanine was combined with muscle biopsy collection from both the exercised (Ex) and the nonexercised (NEx) leg to assess the impact of local muscle contractions on muscle protein synthesis rates after food intake. Western blotting with phosphospecific and pan antibodies was used to determine the phosphorylation status of AMP-activated kinase (AMPK), 4E-binding protein (4E-BP1), mammalian target of rapamycin (mTOR), and p70 ribosomal protein S6 kinase (S6K1). RESULTS: Muscle protein synthesis rates were approximately 20% higher in Ex compared with NEx (0.098% +/- 0.005% vs 0.083% +/- 0.002%.h, respectively, P < 0.01). In the fed state, resistance-type exercise did not elevate AMPK phosphorylation. However, the phosphorylation status of 4E-BP1 was approximately 20% lower after cessation of exercise in Ex compared with NEx (P < 0.05). Conversely, 4E-BP1 phosphorylation was significantly higher in Ex compared with NEx after 6 h of recovery (P < 0.05) with no changes in mTOR phosphorylation. S6 phosphorylation was greater in Ex versus NEx after cessation of exercise (P < 0.05), although S6K1 phosphorylation at T was not up-regulated (P > 0.05). CONCLUSION: We conclude that resistance-type exercise performed in a fed state further elevates postprandial muscle protein synthesis rates, which is accompanied by an increase in S6 and 4E-BP1 phosphorylation state.


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Período Pós-Prandial , Treinamento Resistido , Adulto , Biópsia , Composição Corporal , Humanos , Masculino , Músculo Esquelético/metabolismo , Fator de Iniciação 3 em Procariotos , Estudos Prospectivos , Proteínas Quinases , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA