Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Control Release ; 366: 567-584, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215985

RESUMO

Trastuzumab emtansine (Kadcyla®) was the first antibody-drug conjugate (ADC) approved by the Food and Drug Administration in 2013 against a solid tumor, and the first ADC to treat human epidermal growth factor receptor 2 positive (HER2+) breast cancer. However, this second generation ADC is burden by several limitations included heterogeneity, limited activity against heterogeneous tumor (regarding antigen expression) and suboptimal tumor penetration. To address this, different development strategies are oriented towards homogeneous conjugation, new drugs, optimized linkers and/or smaller antibody formats. To reach better developed next generation ADCs, a key parameter to consider is the management of the hydrophobicity associated with the linker-drug, increasing with and limiting the drug-to-antibody ratio (DAR) of the ADC. Here, an innovative branched pegylated linker was developed, to control the hydrophobicity of the monomethyl auristatin E (MMAE) and its cathepsin B-sensitive trigger. This branched pegylated linker-MMAE was then used for the efficient generation of internalizing homogeneous ADC of DAR 8 and minibody-drug conjugate of DAR 4, targeting HER2. Both immunoconjugates were then evaluated in vitro and in vivo on breast cancer models. Interestingly, this study highlighted that the minibody-MMAE conjugate of DAR 4 was the best immunoconjugate regarding in vitro cellular internalization and cytotoxicity, gamma imaging, ex vivo biodistribution profile in mice and efficient reduction of tumor size in vivo. These results are very promising and encourage us to explore further fragment-drug conjugate development.


Assuntos
Aminobenzoatos , Neoplasias da Mama , Imunoconjugados , Oligopeptídeos , Estados Unidos , Camundongos , Humanos , Animais , Feminino , Neoplasias da Mama/tratamento farmacológico , Preparações Farmacêuticas , Distribuição Tecidual , Linhagem Celular Tumoral , Imunoconjugados/uso terapêutico , Ado-Trastuzumab Emtansina , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis
2.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35215275

RESUMO

The use of radiolabeled non-natural amino acids can provide high contrast SPECT/PET metabolic imaging of solid tumors. Among them, radiohalogenated tyrosine analogs (i.e., [123I]IMT, [18F]FET, [18F]FDOPA, [123I]8-iodo-L-TIC(OH), etc.) are of particular interest. While radioiodinated derivatives, such as [123I]IMT, are easily available via electrophilic aromatic substitutions, the production of radiofluorinated aryl tyrosine analogs was a long-standing challenge for radiochemists before the development of innovative radiofluorination processes using arylboronate, arylstannane or iodoniums salts as precursors. Surprisingly, despite these methodological advances, no radiofluorinated analogs have been reported for [123I]8-iodo-L-TIC(OH), a very promising radiotracer for SPECT imaging of prostatic tumors. This work describes a convenient synthetic pathway to obtain new radioiodinated and radiofluorinated derivatives of TIC(OH), as well as their non-radiolabeled counterparts. Using organotin compounds as key intermediates, [125I]5-iodo-L-TIC(OH), [125I]6-iodo-L-TIC(OH) and [125I]8-iodo-L-TIC(OH) were efficiently prepared with good radiochemical yield (RCY, 51-78%), high radiochemical purity (RCP, >98%), molar activity (Am, >1.5-2.9 GBq/µmol) and enantiomeric excess (e.e. >99%). The corresponding [18F]fluoro-L-TIC(OH) derivatives were also successfully obtained by radiofluorination of the organotin precursors in the presence of tetrakis(pyridine)copper(II) triflate and nucleophilic [18F]F- with 19-28% RCY d.c., high RCP (>98.9%), Am (20-107 GBq/µmol) and e.e. (>99%).

3.
Molecules ; 28(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36615280

RESUMO

The development of 64Cu-based immuno-PET radiotracers requires the use of copper-specific bifunctional chelators (BFCs) that contain functional groups allowing both convenient bioconjugation and stable copper complexes to limit in vivo bioreduction, transmetallation and/or transchelation. The excellent in vivo kinetic inertness of the pentaazamacrocyclic [64Cu]Cu-15-5 complex prompted us to investigate its potential for the 64Cu-labelling of monoclonal antibodies (mAbs), compared with the well-known NODAGA and DOTA chelators. To this end, three NODAGA, DOTA and 15-5-derived BFCs, containing a pendant azadibenzocyclooctyne moiety, were synthesised and a robust methodology was determined to form covalent bonds between them and azide-functionalised trastuzumab, an anti-HER2 mAb, using strain-promoted azide-alkyne cycloaddition. Unlike the DOTA derivative, the NODAGA- and 15-5-mAb conjugates were radiolabelled with 64Cu, obtaining excellent radiochemical yields, under mild conditions. Although all the radioimmunoconjugates showed excellent stability in PBS or mouse serum, [64Cu]Cu-15-5- and [64Cu]Cu-NODAGA-trastuzumab presented higher resistance to transchelation when challenged by EDTA. Finally, the immunoreactive fraction of the radioimmunoconjugates (88-94%) was determined in HER-2 positive BT474 human breast cancer cells, confirming that the bioconjugation and radiolabelling processes implemented had no significant impact on antigen recognition.


Assuntos
Cobre , Imunoconjugados , Humanos , Animais , Camundongos , Quelantes/química , Imunoconjugados/química , Azidas , Anticorpos Monoclonais/química , Trastuzumab , Radioisótopos de Cobre/química , Tomografia por Emissão de Pósitrons/métodos
4.
J Mater Chem B ; 9(36): 7423-7434, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34373887

RESUMO

Over the last decade, upconversion nanoparticles (UCNP) have been widely investigated in nanomedicine due to their high potential as imaging agents in the near-infrared (NIR) optical window of biological tissues. Here, we successfully develop active targeted UCNP as potential probes for dual NIR-NIR fluorescence and radioactive-guided surgery of prostate-specific membrane antigen (PSMA)(+) prostate cancers. We designed a one-pot thermolysis synthesis method to obtain oleic acid-coated spherical NaYF4:Yb,Tm@NaYF4 core/shell UCNP with narrow particle size distribution (30.0 ± 0.1 nm, as estimated by SAXS analysis) and efficient upconversion luminescence. Polyethylene glycol (PEG) ligands bearing different anchoring groups (phosphate, bis- and tetra-phosphonate-based) were synthesized and used to hydrophilize the UCNP. DLS studies led to the selection of a tetra-phosphonate PEG(2000) ligand affording water-dispersible UCNP with sustained colloidal stability in several aqueous media. PSMA-targeting ligands (i.e., glutamate-urea-lysine derivatives called KuEs) and fluorescent or radiolabelled prosthetic groups were grafted onto the UCNP surface by strain-promoted azide-alkyne cycloaddition (SPAAC). These UCNP, coated with 10 or 100% surface density of KuE ligands, did not induce cytotoxicity over 24 h incubation in LNCaP-Luc or PC3-Luc prostate cancer cell lines or in human fibroblasts for any of the concentrations evaluated. Competitive binding assays and flow cytometry demonstrated the excellent affinity of UCNP@KuE for PSMA-positive LNCaP-Luc cells compared with non-targeted UCNP@CO2H. Furthermore, the binding of UCNP@KuE to prostate tumour cells was positively correlated with the surface density of PSMA-targeting ligands and maintained after 125I-radiolabelling. Finally, a preliminary biodistribution study in LNCaP-Luc-bearing mice demonstrated the radiochemical stability of non-targeted [125I]UCNP paving the way for future in vivo assessments.


Assuntos
Antígenos de Superfície/metabolismo , Materiais Revestidos Biocompatíveis/química , Glutamato Carboxipeptidase II/metabolismo , Nanopartículas de Magnetita/química , Animais , Antígenos de Superfície/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/metabolismo , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/uso terapêutico , Reação de Cicloadição , Fluoretos/química , Glutamato Carboxipeptidase II/química , Humanos , Ligantes , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/toxicidade , Masculino , Camundongos , Ácidos Oleicos/química , Imagem Óptica , Tamanho da Partícula , Polietilenoglicóis/química , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia , Túlio/química , Distribuição Tecidual , Itérbio/química , Ítrio/química
5.
Am J Cancer Res ; 11(4): 1600-1615, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948376

RESUMO

ANXA1, first described in the context of inflammation, appears to be deregulated in many cancers and increased in melanomas compared with melanocytes. To date, few studies have investigated the role of ANXA1 in melanoma progression. Furthermore, this protein is expressed by various cell types, including immune and endothelial cells. We therefore analyzed the specific roles of ANXA1 using melanoma and stromal cells in two human cell lines (A375-MA2 and SK-MEL-28) in vitro and in Anxa1 null C57Bl6/J mice bearing B16Bl6 tumors. We report decreased proliferation in both ANXA1 siRNA A375-MA2 and SK-MEL-28, but cell-dependent effects of ANXA1 in migration in vitro. However, we also observed a significant decrease of B16Bl6 tumor growth associated with a reduction of Ki-67 positive cells in Anxa1 null mice compared with wild-type mice. Interestingly, we also found a significant reduction of spontaneous metastases, which can be attributed to decreased angiogenesis concomitantly with greater immune cell presence in the Anxa1 null stromal context. This study highlights the pejorative role of ANXA1 in both tumor and stromal cells in melanoma, due to its involvement in proliferation and angiogenesis.

6.
Cancers (Basel) ; 11(2)2019 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-30769765

RESUMO

Tetraspanins are exposed at the surface of cellular membranes, which allows for the fixation of cognate antibodies. Developing specific antibodies in conjunction with genetic data would largely contribute to deciphering their biological behavior. In this short review, we summarize the main functions of Tspan8/Co-029 and its role in the biology of tumor cells. Based on data collected from recently reported studies, the possibilities of using antibodies to target Tspan8 in immunotherapy or radioimmunotherapy approaches are also discussed.

7.
Sci Rep ; 7(1): 14918, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097747

RESUMO

Bioorthogonal chemistry represents a challenging approach in pretargeted radioimmunotherapy (PRIT). We focus here on mAb modifications by grafting an increase amount of trans-cyclooctene (TCO) derivatives (0 to 30 equivalents with respect to mAb) bearing different polyethylene glycol (PEG) linkers between mAb and TCO (i.e. PEG0 (1), PEG4 (2) and PEG12 (3)) and assessing their functionality. We used colorectal xenograft (HT29/Ts29.2) and peritoneal carcinomatosis (A431-CEA-Luc/35A7) as tumor cells/mAbs models and fluorescent tetrazines (TZ). MALDI-TOF MS shows that grafting with 2,3 increases significantly the number of TCO per mAb compared with no PEG. In vitro immunofluorescence showed that Ts29.2 and 35A7 labeling intensity is correlated with the number of TCO when using 1,3 while signals reach a maximum at 10 equivalents when using 2. Under 10 equivalents conditions, the capacity of resulting mAbs-1-3 for antigen recognition is similar when reported per grafted TCO and comparable to mAbs without TCO. In vivo, on both models, pretargeting with mAbs-2,3 followed by TZ injection induced a fluorescent signal two times lower than with mAbs-1. These findings suggest that while PEG linkers allow a better accessibility for TCO grafting, it might decrease the number of reactive TCO. In conclusion, mAb-1 represents the best candidate for PRIT.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Neoplasias Colorretais/radioterapia , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Animais , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Reação de Cicloadição , Ciclo-Octanos/química , Ciclo-Octanos/farmacologia , Ciclo-Octanos/uso terapêutico , Feminino , Humanos , Imunoconjugados/farmacologia , Camundongos , Neoplasias Peritoneais/patologia , Neoplasias Peritoneais/radioterapia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Radioimunoterapia
8.
Oncotarget ; 8(13): 22034-22047, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28423546

RESUMO

Tetraspanin 8 (TSPAN8) overexpression is correlated with poor prognosis in human colorectal cancer (CRC). A murine mAb Ts29.2 specific for human TSPAN8 provided significant efficiency for immunotherapy in CRC pre-clinical models. We therefore evaluate the feasability of targeting TSPAN8 in CRC with radiolabeled Ts29.2. Staining of tissue micro-arrays with Ts29.2 revealed that TSPAN8 espression was restricted to a few human healthy tissues. DOTA-Ts29.2 was radiolabeled with 111In or 177Lu with radiochemical purities >95%, specific activity ranging from 300 to 600 MBq/mg, and radioimmunoreactive fractions >80%. The biodistribution of [111In]DOTA-Ts29.2 in nude mice bearing HT29 or SW480 CRC xenografts showed a high specificity of tumor localization with high tumor/blood ratios (HT29: 4.3; SW480-TSPAN8: 3.9 at 72h and 120h post injection respectively). Tumor-specific absorbed dose calculations for [177Lu]DOTA-Ts29.2 was 1.89 Gy/MBq, establishing the feasibility of using radioimmunotherapy of CRC with this radiolabeled antibody. A significant inhibition of tumor growth in HT29 tumor-bearing mice treated with [177Lu]DOTA-Ts29.2 was observed compared to control groups. Ex vivo experiments revealed specific DNA double strand breaks associated with cell apoptosis in [177Lu]DOTA-Ts29.2 treated tumors compared to controls. Overall, we provide a proof-of-concept for the use of [111In/177Lu]DOTA-Ts29.2 that specifically target in vivo aggressive TSPAN8-positive cells in CRC.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Radioisótopos de Índio/uso terapêutico , Lutécio/uso terapêutico , Radioimunoterapia , Tetraspaninas/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacocinética , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Imunoconjugados/imunologia , Radioisótopos de Índio/farmacocinética , Lutécio/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Oncotarget ; 8(10): 17140-17155, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28188308

RESUMO

Melanoma is well known for its propensity for lethal metastasis and resistance to most current therapies. Tumor progression and drug resistance depend to a large extent on the interplay between tumor cells and the surrounding matrix. We previously identified Tetraspanin 8 (Tspan8) as a critical mediator of melanoma invasion, whose expression is absent in healthy skin. The present study investigated whether Tspan8 may influence cell-matrix anchorage and regulate downstream molecular pathways leading to an aggressive behavior. Using silencing and ectopic expression strategies, we showed that Tspan8-mediated invasion of melanoma cells resulted from defects in cell-matrix anchorage by interacting with ß1 integrins and by interfering with their clustering, without affecting their surface or global expression levels. These effects were associated with impaired phosphorylation of integrin-linked kinase (ILK) and its downstream target Akt-S473, but not FAK. Specific blockade of Akt or ILK activity strongly affected cell-matrix adhesion. Moreover, expression of a dominant-negative form of ILK reduced ß1 integrin clustering and cell-matrix adhesion. Finally, we observed a tumor-promoting effect of Tspan8 in vivo and a mutually exclusive expression pattern between Tspan8 and phosphorylated ILK in melanoma xenografts and human melanocytic lesions. Altogether, the in vitro, in vivo and in situ data highlight a novel regulatory role for Tspan8 in melanoma progression by modulating cell-matrix interactions through ß1 integrin-ILK axis and establish Tspan8 as a negative regulator of ILK activity. These findings emphasize the importance of targeting Tspan8 as a means of switching from low- to firm-adhesive states, mandatory to prevent tumor dissemination.


Assuntos
Integrina beta1/genética , Melanoma/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Tetraspaninas/genética , Animais , Western Blotting , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina beta1/metabolismo , Masculino , Melanoma/metabolismo , Melanoma/patologia , Camundongos Nus , Microscopia Confocal , Mutação , Invasividade Neoplásica , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Tetraspaninas/metabolismo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA