Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(8): e0012473, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39213433

RESUMO

BACKGROUND: Filarial nematodes cause severe illnesses in humans and canines including limb deformities and disfigurement, heart failure, blindness, and death, among others. There are no vaccines, and current drugs against filarial nematodes infections have only modest effects and are prone to complications. METHODOLOGY/PRINCIPAL FINDINGS: We identified a gene (herein called DiMT) encoding an S-adenosyl-L-methionine (SAM)-dependent methyltransferase with orthologs in parasite filarial worms but not in mammals. By in silico analysis, DiMT possesses catalytic sites for binding SAM and catecholamines with high affinity. We expressed and purified recombinant DiMT protein and used it as an enzyme in a series of SAM-dependent methylation assays. DiMT acted specifically as a catechol-O-methyltransferase (COMT), catalyzing catabolic methylation of dopamine, and depicted Michaelis Menten kinetics on substrate and co-substrate. Among a set of SAM-dependent methyltransferase inhibitors, we identified compounds that bound with high affinity to DiMT's catalytic sites and inhibited its enzymatic activity. By testing the efficacy of DiMT inhibitors against microfilariae of Dirofilaria immitis in culture, we identified three inhibitors with concentration- and time-dependent effect of killing D. immitis microfilariae. Importantly, RNAi silencing of a DiMT ortholog in Caenorhabditis elegans has been shown to be lethal, likely as a result of excessive accumulation of active catecholamines that inhibit worm locomotion, pharyngeal pumping and fecundity. CONCLUSIONS/SIGNIFICANCE: Together, we have unveiled DiMT as an essential COMT that is conserved in parasitic filarial nematodes, but is significantly different from mammalian COMTs and, therefore, is a viable target for development of novel drugs against filarial nematode infections.


Assuntos
Catecol O-Metiltransferase , Animais , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Catecol O-Metiltransferase/química , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/efeitos dos fármacos , Inibidores de Catecol O-Metiltransferase/farmacologia , Inibidores Enzimáticos/farmacologia , Cães
2.
Gut Microbes ; 16(1): 2297897, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189373

RESUMO

Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. Cryptosporidium infection induced a strong interferon response from enterocytes, possibly driven, in part, by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.


Assuntos
Criptosporidiose , Cryptosporidium , Microbioma Gastrointestinal , Rotavirus , Lactente , Humanos , Interferon lambda , Células Epiteliais , Zea mays
3.
Artigo em Inglês | MEDLINE | ID: mdl-35462232

RESUMO

Parasitic diseases such as toxoplasmosis and cryptosporidiosis remain serious global health challenges, not only to humans but also to domestic animals and wildlife. With only limited treatment options available, Toxoplasma gondii and Cryptosporidium parvum (the causative agents of toxoplasmosis and cryptosporidiosis, respectively) constitute a substantial health threat especially to young children and immunocompromised individuals. Herein, we report the synthesis and biological evaluation of a series of novel (1-benzyl-4-triazolyl)-indole-2-carboxamides and related compounds that show efficacy against T. gondii and C. parvum. Closely related analogs 7c (JS-2-30) and 7e (JS-2-44) showed low micromolar activity with IC50 indices ranging between 2.95 µM and 7.63 µM against both T. gondii and C. parvum, whereas the compound representing (1-adamantyl)-4-phenyl-triazole, 11b (JS-2-41), showed very good activity with an IC50 of 1.94 µM, and good selectivity against T. gondii in vitro. Importantly, compounds JS-2-41 and JS-2-44 showed appreciable in vivo efficacy in decreasing the number of T. gondii cysts in the brains of Brown Norway rats. Together, these results indicate that (1-benzyl-4-triazolyl)-indole-2-carboxamides and (1-adamantyl)-4-phenyl-triazoles are potential hits for medicinal chemistry explorations in search for novel antiparasitic agents for effective treatment of cryptosporidiosis and toxoplasmosis.


Assuntos
Antiprotozoários , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Toxoplasma , Toxoplasmose , Animais , Antiprotozoários/uso terapêutico , Criança , Pré-Escolar , Criptosporidiose/tratamento farmacológico , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Toxoplasmose/tratamento farmacológico , Triazóis/farmacologia
4.
Int J Parasitol Drugs Drug Resist ; 15: 126-133, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33647675

RESUMO

Cryptosporidium parvum is a protozoan parasite that infects intestinal epithelial cells causing malabsorption and severe diarrhea. The monoterpene thymol has been reported to have antifungal and antibacterial properties but less is known about the antiparasitic effect of this compound. Terpenes are sometimes unsuitable for therapeutic and food applications because of their instability. Esterification of terpenes eliminates this disadvantage. The present study evaluates the effects of thymol (Th) and a thymol ester, thymol octanoate (TO), against C. parvum infectivity in vitro. The cytotoxicity IC50 value for TO after 24 h of treatment was 309.6 µg/mL, significantly higher than that of Th (122.5 µg/mL) in a human adenocarcinoma cell line (HCT-8). In the same way, following 48 h of treatment, the cytotoxicity IC50 value for TO was significantly higher (139 µg/mL) than that of Th (75.5 µg/mL). These results indicate that esterification significantly reduces Th cytotoxicity. Dose-dependent effects were observed for TO and Th when both parasite invasion and parasite growth assays were evaluated. When evaluated for their activity against C. parvum growth cultured in vitro in HCT-8 cells, the anti-cryptosporidial IC50 values were 35.5 and 7.5 µg/mL, for TO and Th, respectively. Together, these findings indicate that esterified thymol has anti-cryptosporidial effect comparable with its parental compound thymol, but with improved safety margins in mammalian cells and better physicochemical properties that could make it more suitable for diverse applications as an antiparasitic agent.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Técnicas de Cultura de Células , Ésteres/farmacologia , Humanos , Timol/farmacologia
5.
J Parasit Dis ; 44(1): 221-229, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32174728

RESUMO

Apigenin-7-O-glucoside, a flavonoid glucoside known to inhibit cancer cell growth, fungi growth, both intra and extracellular reactive oxygen species generation, causing cell arrest and damage to the plasma membrane, was tested alone or in combination with a dihydrofolate inhibitor (pyrimethamine) against Toxoplasma gondii (T. gondii) growth. The anti-T. gondii activity was carried out using a high throughput antiparasitic drug screening cell-based assay known as 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H tetrazolium, monosodium salt (WST-8) and fluorescence plate reader. The 50% effective concentration inhibition and 95% confidence interval values for individual and combination treatments against T. gondii were 0.80 (0.38-1.29) µg/mL, 1.05 (0.275-2.029) µg/mL, and 0.40 (0-1.06) µg/mL for apigenin-7-O-glucoside, pyrimethamine, and apigenin-7-O-glucoside plus pyrimethamine, respectively. Interestingly, the apigenin-7-O-glucoside plus pyrimethamine combination showed an additive inhibition effect against T. gondii growth in vitro using the fractional inhibitory concentration index method. It was discovered that the apigenin-7-O-glucoside combination with pyrimethamine had a high selectivity index 62.5, which implies 62-fold inhibition activity against the parasite versus human foreskin fibroblast cell cytotoxicity. This new combination hit is novel and will have the potential for future effective, safe, and less costly anti-Toxoplasma drug development, if its in vivo activity shows similar findings.

6.
Methods Mol Biol ; 2052: 351-372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31452172

RESUMO

Cryptosporidium parvum has a complex life cycle consisting of asexual and sexual phases that culminate in oocyst formation in vivo. The most widely used cell culture platforms to study C. parvum only support a few days of growth and do not allow the parasite to proceed past the sexual stages to complete oocyst formation. Additionally, these cell culture platforms are mostly adenocarcinoma cell lines, which do not adequately model the parasite's natural environment in the small intestine. We describe here a method to create primary intestinal epithelial cell monolayers that support long-term C. parvum growth. Monolayers were derived from mouse intestinal stem cells grown as spheroids and plated onto transwells, allowing for separate apical and basolateral compartments. In the apical chamber, the cell growth medium was removed to create an "air-liquid interface" that enhanced host cell differentiation and supported long-term C. parvum growth. The use of primary intestinal cells to grow C. parvum in vitro will be a valuable tool for studying host-parasite interactions using a convenient in vitro model that more closely resembles the natural niche in the intestine.


Assuntos
Técnicas de Cultura de Células/métodos , Cryptosporidium parvum/crescimento & desenvolvimento , Células Epiteliais/parasitologia , Interações Hospedeiro-Parasita/genética , Mucosa Intestinal/parasitologia , Oocistos/crescimento & desenvolvimento , Animais , Técnicas de Cultura de Células/instrumentação , Cryptosporidium parvum/genética , Cryptosporidium parvum/patogenicidade , Mucosa Intestinal/citologia , Mucosa Intestinal/diagnóstico por imagem , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Oocistos/isolamento & purificação , Reação em Cadeia da Polimerase , Esferoides Celulares/citologia , Células-Tronco/citologia , Fluxo de Trabalho
7.
Cell Host Microbe ; 26(1): 123-134.e8, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31231046

RESUMO

Despite being a frequent cause of severe diarrheal disease in infants and an opportunistic infection in immunocompromised patients, Cryptosporidium research has lagged due to a lack of facile experimental methods. Here, we describe a platform for complete life cycle development and long-term growth of C. parvum in vitro using "air-liquid interface" (ALI) cultures derived from intestinal epithelial stem cells. Transcriptomic profiling revealed that differentiating epithelial cells grown under ALI conditions undergo profound changes in metabolism and development that enable completion of the parasite life cycle in vitro. ALI cultures support parasite expansion > 100-fold and generate viable oocysts that are transmissible in vitro and to mice, causing infection and animal death. Transgenic parasite lines created using CRISPR/Cas9 were used to complete a genetic cross in vitro, demonstrating Mendelian segregation of chromosomes during meiosis. ALI culture provides an accessible model that will enable innovative studies into Cryptosporidium biology and host interactions.


Assuntos
Criptosporidiose/patologia , Criptosporidiose/parasitologia , Cryptosporidium/patogenicidade , Células Epiteliais/parasitologia , Interações Hospedeiro-Patógeno , Modelos Teóricos , Animais , Células Cultivadas , Cryptosporidium/crescimento & desenvolvimento , Genética Microbiana/métodos , Camundongos Endogâmicos C57BL , Técnicas Microbiológicas/métodos
8.
Parasitol Res ; 116(12): 3387-3400, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29086004

RESUMO

Toxoplasma gondii is a ubiquitous intracellular zoonotic parasite estimated to affect about 30-90% of the world's human population. The most affected are immunocompromised individuals such as HIV-AIDS and cancer patients, organ and tissue transplant recipients, and congenitally infected children. No effective and safe drugs and vaccines are available against all forms of the parasite. We report here the antagonistic and indifferent activity of the combination of five different formulations of pure synthetic 3-deoxyanthocyaninidin (3-DA) chloride compounds against T. gondii tachyzoites and the synergistic and additive interaction against a human foreskin fibroblast (HFF) cell line in vitro using fluorescence microscopy, trypan blue assay, and fractional inhibitory concentration index. The individual and the combined pure 3-DA compounds were observed to have effective inhibition against T. gondii parasites with less cytotoxic effect in a ratio of 1:1. The IC50 values for parasite inhibition ranged from 1.88 µg/mL (1.51-2.32 µg/mL) for luteolinindin plus 7-methoxyapigeninindin (LU/7-MAP) and 2.23 µg/mL (1.66-2.97 µg/mL) for apigeninindin plus 7-methoxyapigeninindin (AP/7-MAP) combinations at 95% confidence interval (CI) after 48 h of culture. We found LU/7-MAP to be antagonistic and AP/7-MAP to be indifferent in interaction against T. gondii growth. Both individual and combination 3-DA compounds not only depicted very strong inhibitory activity against T. gondii, but also had synergistic and additive cytotoxic effects against HFF cells. These synthetic 3-DAs have potential as antiparasitic agents for the treatment of human toxoplasmosis.


Assuntos
Antocianinas/farmacologia , Antiparasitários/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico , Animais , Bioensaio , Linhagem Celular , Criança , Fibroblastos/parasitologia , Humanos , Testes de Sensibilidade Parasitária , Toxoplasmose/parasitologia
9.
Int J Parasitol Drugs Drug Resist ; 6(1): 44-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27054063

RESUMO

The essential phosphobase methylation pathway for synthesis of phosphocholine is unique to nematodes, protozoa and plants, and thus an attractive antiparasitic molecular target. Herein, we screened compounds from the National Cancer Institute (Developmental Therapeutics Program Open Chemical Repository) for specific inhibitory activity against Haemonchus contortus phosphoethanolamine methyltransferases (HcPMT1 and HcPMT2), and tested candidate compounds for anthelmintic activity against adult and third-stage larvae of H. contortus. We identified compound NSC-641296 with IC50 values of 8.3 ± 1.1 µM and 5.1 ± 1.8 µM for inhibition of the catalytic activity of HcPMT1 alone and HcPMT1/HcPMT2 combination, respectively. Additionally we identified compound NSC-668394 with inhibitory IC50 values of 5.9 ± 0.9 µM and 2.8 ± 0.6 µM for HcPMT1 alone and HcPMT1/HcPMT2 combination, respectively. Of the two compounds, NSC-641296 depicted significant anthelmintic activity against third-stage larvae (IC50 = 15 ± 2.9 µM) and adult stages (IC50 = 7 ± 2.9 µM) of H. contortus, with optimal effective in vitro concentrations being 2-fold and 4-fold, respectively, lower than its cytotoxic IC50 (29 ± 2.1 µM) in a mammalian cell line. Additionally, we identified two compounds, NSC-158011 and NSC-323241, with low inhibitory activity against the combined activity of HcPMT1 and HcPMT2, but both compounds did not show any anthelmintic activity against H. contortus. The identification of NSC-641296 that specifically inhibits a unique biosynthetic pathway in H. contortus and has anthelmintic activity against both larval and adult stages of H. contortus, provides impetus for the development of urgently needed new efficacious anthelmintics to address the prevailing problem of anthelmintic-resistant H. contortus.


Assuntos
Antinematódeos/farmacologia , Haemonchus/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Animais , Linhagem Celular , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Haemonchus/enzimologia , Haemonchus/genética , Concentração Inibidora 50 , Larva/efeitos dos fármacos , Metiltransferases/genética , Alinhamento de Sequência
10.
Infect Immun ; 82(7): 2670-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24686056

RESUMO

ALOX12 is a gene encoding arachidonate 12-lipoxygenase (12-LOX), a member of a nonheme lipoxygenase family of dioxygenases. ALOX12 catalyzes the addition of oxygen to arachidonic acid, producing 12-hydroperoxyeicosatetraenoic acid (12-HPETE), which can be reduced to the eicosanoid 12-HETE (12-hydroxyeicosatetraenoic acid). 12-HETE acts in diverse cellular processes, including catecholamine synthesis, vasoconstriction, neuronal function, and inflammation. Consistent with effects on these fundamental mechanisms, allelic variants of ALOX12 are associated with diseases including schizophrenia, atherosclerosis, and cancers, but the mechanisms have not been defined. Toxoplasma gondii is an apicomplexan parasite that causes morbidity and mortality and stimulates an innate and adaptive immune inflammatory reaction. Recently, it has been shown that a gene region known as Toxo1 is critical for susceptibility or resistance to T. gondii infection in rats. An orthologous gene region with ALOX12 centromeric is also present in humans. Here we report that the human ALOX12 gene has susceptibility alleles for human congenital toxoplasmosis (rs6502997 [P, <0.000309], rs312462 [P, <0.028499], rs6502998 [P, <0.029794], and rs434473 [P, <0.038516]). A human monocytic cell line was genetically engineered using lentivirus RNA interference to knock down ALOX12. In ALOX12 knockdown cells, ALOX12 RNA expression decreased and levels of the ALOX12 substrate, arachidonic acid, increased. ALOX12 knockdown attenuated the progression of T. gondii infection and resulted in greater parasite burdens but decreased consequent late cell death of the human monocytic cell line. These findings suggest that ALOX12 influences host responses to T. gondii infection in human cells. ALOX12 has been shown in other studies to be important in numerous diseases. Here we demonstrate the critical role ALOX12 plays in T. gondii infection in humans.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Toxoplasmose Congênita/genética , Alelos , Araquidonato 12-Lipoxigenase/química , Araquidonato 12-Lipoxigenase/genética , Ácido Araquidônico/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Linhagem Celular , Estudos de Coortes , Citocinas/genética , Citocinas/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Variação Genética , Humanos , Masculino , Monócitos/metabolismo , Monócitos/parasitologia , Plasmídeos/genética , Interferência de RNA , RNA Interferente Pequeno , Toxoplasmose Congênita/imunologia , Toxoplasmose Congênita/parasitologia
11.
Parasitol Res ; 112(4): 1513-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354941

RESUMO

In recent years, the emergence of highly pathogenic Trypanosoma evansi strains in the Philippines has resulted in substantial losses in livestock production. In this study, we isolated T. evansi from infected-water buffaloes in the Philippines and analyzed their virulence using mice and cattle. A total of 10 strains of T. evansi were isolated. Evaluation of the virulence of each strain using mice depicted significant differences among the strains in the prepatent period, the level of parasitemia, and the survival time of the infected animals. In mice infected with the highly pathogenic T. evansi, signs of excessive inflammation such as marked splenomegaly and increase more than 6-fold in the number of leukocytes were observed at 8 days post-infection. To study the virulence of the parasite strains in cattle (which are the common T. evansi hosts in Philippines), cattle were infected with the T. evansi isolates that showed high and low virulence in mice. The rate of parasite growth and the length of the prepatent periods were found to be similar to those observed in mice for the respective strains. The cattle infected with the highly pathogenic strain developed anemia and a marked decrease in leukocyte counts. To determine the cause of the pathological changes, we analyzed the expression levels of inflammatory cytokines and observed up-regulation of tumor necrosis factor-α in anemic infected cattle. Our findings suggest that the epidemic of T. evansi in the Philippines is characterized by T. evansi strains with varying virulences from low to very high pathogenicity in cattle.


Assuntos
Búfalos/parasitologia , Trypanosoma/genética , Trypanosoma/patogenicidade , Tripanossomíase/patologia , Tripanossomíase/parasitologia , Anemia/parasitologia , Anemia/patologia , Animais , Bovinos , Clonagem Molecular , Citocinas/sangue , Modelos Animais de Doenças , Contagem de Leucócitos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Parasitemia/patologia , Filipinas , Esplenomegalia/parasitologia , Esplenomegalia/patologia , Análise de Sobrevida , Trypanosoma/isolamento & purificação , Virulência
12.
Hum Immunol ; 73(1): 1-10, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22027386

RESUMO

The ability of CD8(+) T cells to act as cytolytic effectors and produce interferon-γ (IFN-γ) was demonstrated to mediate resistance to Toxoplasma gondii in murine models because of the recognition of peptides restricted by murine major histocompatibility complex (MHC) class I molecules. However, no T gondii-specific HLA-B07-restricted peptides were proven protective against T gondii. Recently, 2 T gondii-specific HLA-B*0702-restricted T cell epitopes, GRA7(20-28) (LPQFATAAT) and GRA3(27-35) (VPFVVFLVA), displayed high-affinity binding to HLA-B*0702 and elicited IFN-γ from peripheral blood mononuclear cells of seropositive HLA-B*07 persons. Herein, these peptides were evaluated to determine whether they could elicit IFN-γ in splenocytes of HLA-B*0702 transgenic mice when administered with adjuvants and protect against subsequent challenge. Peptide-specific IFN-γ-producing T cells were identified by enzyme-linked immunosorbent spot and proliferation assays utilizing splenic T lymphocytes from human lymphocyte antigen (HLA) transgenic mice. When HLA-B*0702 mice were immunized with one of the identified epitopes, GRA7(20-28) in conjunction with a universal CD4(+) T cell epitope (PADRE) and adjuvants (CD4(+) T cell adjuvant, GLA-SE, and TLR2 stimulatory Pam(2)Cys for CD8(+) T cells), this immunization induced CD8(+) T cells to produce IFN-γ and protected mice against high parasite burden when challenged with T gondii. This work demonstrates the feasibility of bioinformatics followed by an empiric approach based on HLA binding to test this biologic activity for identifying protective HLA-B*0702-restricted T gondii peptides and adjuvants that elicit protective immune responses in HLA-B*0702 mice.


Assuntos
Epitopos de Linfócito T/imunologia , Antígeno HLA-B7/imunologia , Interferon gama/imunologia , Peptídeos/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Adjuvantes Imunológicos/administração & dosagem , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito T/genética , Feminino , Antígeno HLA-B7/genética , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptídeos/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/prevenção & controle , Vacinação/métodos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
13.
J Immunol ; 184(12): 7040-6, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20488797

RESUMO

The P2X7R is highly expressed on the macrophage cell surface, and activation of infected cells by extracellular ATP has been shown to kill intracellular bacteria and parasites. Furthermore, single nucleotide polymorphisms that decrease receptor function reduce the ability of human macrophages to kill Mycobacterium tuberculosis and are associated with extrapulmonary tuberculosis. In this study, we show that macrophages from people with the 1513C (rs3751143, NM_002562.4:c.1487A>C) loss-of-function P2X7R single nucleotide polymorphism are less effective in killing intracellular Toxoplasma gondii after exposure to ATP compared with macrophages from people with the 1513A wild-type allele. Supporting a P2X7R-specific effect on T. gondii, macrophages from P2X7R knockout mice (P2X7R-/-) are unable to kill T. gondii as effectively as macrophages from wild-type mice. We show that P2X7R-mediated T. gondii killing occurs in parallel with host cell apoptosis and is independent of NO production.


Assuntos
Macrófagos/imunologia , Receptores Purinérgicos P2/genética , Toxoplasmose/genética , Animais , Apoptose/imunologia , Separação Celular , Citometria de Fluxo , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/biossíntese , Óxido Nítrico/imunologia , Polimorfismo de Nucleotídeo Único , Receptores Purinérgicos P2/imunologia , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X7 , Toxoplasma , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Toxoplasmose Animal/genética , Toxoplasmose Animal/metabolismo
14.
J Biol Chem ; 283(12): 7894-900, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18178564

RESUMO

The PfPMT enzyme of Plasmodium falciparum, the agent of severe human malaria, is a member of a large family of known and predicted phosphoethanolamine methyltransferases (PMTs) recently identified in plants, worms, and protozoa. Functional studies in P. falciparum revealed that PfPMT plays a critical role in the synthesis of phosphatidylcholine via a plant-like pathway involving serine decarboxylation and phosphoethanolamine methylation. Despite their important biological functions, PMT structures have not yet been solved, and nothing is known about which amino acids in these enzymes are critical for catalysis and binding to S-adenosyl-methionine and phosphoethanolamine substrates. Here we have performed a mutational analysis of PfPMT focused on 24 residues within and outside the predicted catalytic motif. The ability of PfPMT to complement the choline auxotrophy of a yeast mutant defective in phospholipid methylation enabled us to characterize the activity of the PfPMT mutants. Mutations in residues Asp-61, Gly-83 and Asp-128 dramatically altered PfPMT activity and its complementation of the yeast mutant. Our analyses identify the importance of these residues in PfPMT activity and set the stage for advanced structural understanding of this class of enzymes.


Assuntos
Metiltransferases/genética , Metiltransferases/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos/fisiologia , Substituição de Aminoácidos , Animais , Catálise , Etanolaminas/metabolismo , Teste de Complementação Genética , Humanos , Malária Falciparum/enzimologia , Malária Falciparum/genética , Metilação , Mutação de Sentido Incorreto , Fosfatidilcolinas/biossíntese , S-Adenosilmetionina/genética , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
15.
Proc Natl Acad Sci U S A ; 103(24): 9286-91, 2006 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-16751273

RESUMO

The human malaria parasite Plasmodium falciparum relies on the acquisition of host purines for its survival within human erythrocytes. Purine salvage by the parasite requires specialized transporters at the parasite plasma membrane (PPM), but the exact mechanism of purine entry into the infected erythrocyte, and the primary purine source used by the parasite, remain unknown. Here, we report that transgenic parasites lacking the PPM transporter PfNT1 (P. falciparum nucleoside transporter 1) are auxotrophic for hypoxanthine, inosine, and adenosine under physiological conditions and are viable only if these normally essential nutrients are provided at excess concentrations. Transport measurements across the PPM revealed a severe reduction in hypoxanthine uptake in the knockout, whereas adenosine and inosine transport were only partially affected. These data provide compelling evidence for a sequential pathway for exogenous purine conversion into hypoxanthine using host enzymes followed by PfNT1-mediated transport into the parasite. The phenotype of the conditionally lethal mutant establishes PfNT1 as a critical component of purine salvage in P. falciparum and validates PfNT1 as a potential therapeutic target.


Assuntos
Membrana Celular/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Purinas/metabolismo , Animais , Animais Geneticamente Modificados , Meios de Cultura/química , Eritrócitos/parasitologia , Marcação de Genes , Humanos , Proteínas de Membrana Transportadoras/genética , Fenótipo , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
16.
Exp Parasitol ; 107(1-2): 47-57, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15208037

RESUMO

Drug resistance of trypanosomes is now a problem, but its underlying mechanisms are not fully understood. Cellular uptake of the major trypanocidal drugs is thought to occur through an adenosine transporter. The adenosine transporter-1 gene, TbAT1, encoding a P2-like nucleoside transporter has previously been cloned from Trypanosoma brucei brucei, and when expressed in yeast, it showed very similar substrate specificity to the P2-nucleoside transporter, but could not transport diamidines (pentamidine and diminazene). We have cloned and sequenced a similar gene (TevAT1) from Trypanosoma evansi and found it to have 99.7% identity to the TbAT1 gene. To elucidate the role of the TevAT1 gene on diamidine trypanocidal effect, we genetically engineered T. evansi for conditional knock-out of the TevAT1 gene by RNA interference (RNAi). Induction of the RNAi resulted in 10-fold depletion of TevAT1 mRNA, with concomitantly significant resistance to diminazene aceturate (berenil). The induced parasites propagated normally and attained peak cell density at an in vitro concentration of berenil, 5.5-fold higher than the IC(100) of the wild-type. TevAT1 knock-out had no effect on the trypanocidal activity of suramin and antrycide, but conferred some resistance to samorin. Our findings validate the significance of the TevAT1 adenosine transporter-1 gene in mediating the trypanocidal effect of diamidines in T. evansi. Further, we show for the first time that RNAi gene silencing in T. evansi can be induced using plasmids designed for T. brucei. We also demonstrate the usefulness of real-time PCR in rapidly quantifying mRNA levels in trypanosomes.


Assuntos
Diminazena/análogos & derivados , Diminazena/farmacologia , Proteínas de Membrana Transportadoras/genética , Interferência de RNA/fisiologia , Tripanossomicidas/farmacologia , Trypanosoma/genética , Tripanossomíase/tratamento farmacológico , Animais , Sequência de Bases , Northern Blotting , Southern Blotting , Clonagem Molecular , DNA de Protozoário/química , Cervos , Diminazena/uso terapêutico , Resistência a Medicamentos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Proteínas de Transporte de Nucleosídeos , Testes de Sensibilidade Parasitária , Fenantridinas/farmacologia , Reação em Cadeia da Polimerase , Compostos de Quinolínio/farmacologia , RNA Mensageiro/análise , Suramina/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma/efeitos dos fármacos , Trypanosoma/metabolismo , Tripanossomíase/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA