Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 9: 2333, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356797

RESUMO

Activation of the T cell receptor (TCR) on the T cell through ligation with antigen-MHC complex of an antigen-presenting cell (APC) is an essential process in the activation of T cells and induction of the subsequent adaptive immune response. Upon activation, the TCR, together with its associated co-receptor CD3 complex, assembles in signaling microclusters that are transported to the center of the organizational structure at the T cell-APC interface termed the immunological synapse (IS). During IS formation, local cell surface receptors and associated intracellular molecules are reorganized, ultimately creating the typical bull's eye-shaped pattern of the IS. CD6 is a surface glycoprotein receptor, which has been previously shown to associate with CD3 and co-localize to the center of the IS in static conditions or stable T cell-APC contacts. In this study, we report the use of different experimental set-ups analyzed with microscopy techniques to study the dynamics and stability of CD6-TCR/CD3 interaction dynamics and stability during IS formation in more detail. We exploited antibody spots, created with microcontact printing, and antibody-coated beads, and could demonstrate that CD6 and the TCR/CD3 complex co-localize and are recruited into a stimulatory cluster on the cell surface of T cells. Furthermore, we demonstrate, for the first time, that CD6 forms microclusters co-localizing with TCR/CD3 microclusters during IS formation on supported lipid bilayers. These co-localizing CD6 and TCR/CD3 microclusters are both radially transported toward the center of the IS formed in T cells, in an actin polymerization-dependent manner. Overall, our findings further substantiate the role of CD6 during IS formation and provide novel insight into the dynamic properties of this CD6-TCR/CD3 complex interplay. From a methodological point of view, the biophysical approaches used to characterize these receptors are complementary and amenable for investigation of the dynamic interactions of other membrane receptors.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Fenômenos Biofísicos , Complexo CD3/metabolismo , Linfócitos T/fisiologia , Actinas/química , Actinas/metabolismo , Antígenos CD/química , Antígenos de Diferenciação de Linfócitos T/química , Linhagem Celular Tumoral , Imunofluorescência , Humanos , Sinapses Imunológicas/fisiologia , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Complexo Receptor-CD3 de Antígeno de Linfócitos T/química , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo
2.
Chembiochem ; 16(4): 602-10, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25663649

RESUMO

In cellular signal transduction, scaffold proteins provide binding sites to organize signaling proteins into supramolecular complexes and act as nodes in the signaling network. Furthermore, multivalent interactions between the scaffold and other signaling proteins contribute to the formation of protein microclusters. Such microclusters are prominent in early T cell signaling. Here, we explored the minimal structural requirement for a scaffold protein by coupling multiple copies of a proline-rich peptide corresponding to an interaction motif for the SH3 domain of the adaptor protein GADS to an N-(2-hydroxypropyl)methacrylamide polymer backbone. When added to GADS-containing cell lysates, these scaffolds (but not individual peptides) promoted the binding of GADS to peptide microarrays. This can be explained by the cross-linking of GADS into larger complexes. Furthermore, following import into Jurkat T cell leukemia cells, this synthetic scaffold enhanced the formation of microclusters of signaling proteins.


Assuntos
Peptídeos/química , Ácidos Polimetacrílicos/química , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/química , Humanos , Células Jurkat , Peptídeos/farmacologia , Ácidos Polimetacrílicos/farmacologia , Prolina/química , Prolina/farmacologia , Domínios de Homologia de src
3.
Mol Pharm ; 9(5): 1077-86, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22497602

RESUMO

With significant progress in delivery technologies, peptides and peptidomimetics are receiving increasing attention as potential therapeutics also for intracellular applications. However, analyses of the intracellular behavior of peptides are a challenge; therefore, knowledge on the intracellular pharmacokinetics of peptides is limited. So far, most research has focused on peptide degradation in the context of antigen processing, rather than on peptide stability. Here, we studied the structure-activity relationship of peptides with respect to intracellular residence time and proteolytic breakdown. The peptides comprised a collection of interaction motifs of SH2 and SH3 domains with different charge but that were of similar size and carried an N-terminal fluorescein moiety. First, we show that electroporation is a highly powerful technique to introduce peptides with different charge and hydrophobicity in uniform yields. Remarkably, the peptides differed strongly in retention of intracellular fluorescence with half-lives ranging from only 1 to more than 10 h. Residence times were greatly increased for retro-inverso peptides, demonstrating that rapid loss of fluorescence is a function of peptide degradation rather than the physicochemical characteristics of the peptide. Differences in proteolytic sensitivity were further confirmed using fluorescence correlation spectroscopy as a separation-free analytical technique to follow degradation in crude cell lysates and also in intact cells. The results provide a straightforward analytical access to a better understanding of the principles of peptide stability inside cells and will therefore greatly assist the development of bioactive peptides.


Assuntos
Peptídeos/farmacocinética , Sequência de Aminoácidos , Linhagem Celular , Eletroporação , Citometria de Fluxo , Fluorescência , Humanos , Modelos Teóricos , Dados de Sequência Molecular , Peptídeos/química , Peptidomiméticos , Espectrometria de Fluorescência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA