Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2713: 81-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639116

RESUMO

Tissue macrophages are essential components of the immune system that also play key roles in vertebrate development and homeostasis, including in zebrafish, which has gained popularity over the years as a translational model for human disease. Commonly, zebrafish macrophages are identified based on expression of fluorescent transgenic reporters, allowing for real-time imaging in living animals. Several of these lines have also proven instrumental to isolate pure populations of macrophages in the developing embryo and larvae using fluorescence-activated cell sorting (FACS). However, the identification of tissue macrophages in adult fish is not as clear, and robust protocols are needed that would take into account changes in reporter specificity as well as the heterogeneity of mononuclear phagocytes as fish reach adulthood. In this chapter, we describe the methodology for analyzing macrophages in various tissues in the adult zebrafish by flow cytometry. Coupled with FACS, these protocols further allow for the prospective isolation of enriched populations of tissue-specific mononuclear phagocytes that can be used in downstream transcriptomic and/or epigenomic analyses. Overall, we aim at providing a guide for the zebrafish community based on our expertise investigating the adult mononuclear phagocyte system.


Assuntos
Macrófagos , Peixe-Zebra , Adulto , Animais , Humanos , Sistema Fagocitário Mononuclear , Animais Geneticamente Modificados , Corantes
2.
Dev Dyn ; 252(3): 400-414, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36285351

RESUMO

BACKGROUND: Two decades ago, the fish-specific monoclonal antibody 4C4 was found to be highly reactive to zebrafish microglia, the macrophages of the central nervous system. This has resulted in 4C4 being widely used, in combination with available fluorescent transgenic reporters to identify and isolate microglia. However, the target protein of 4C4 remains unidentified, which represents a major caveat. In addition, whether the 4C4 expression pattern is strictly restricted to microglial cells in zebrafish has never been investigated. RESULTS: Having demonstrated that 4C4 is able to capture its native antigen from adult brain lysates, we used immunoprecipitation/mass-spectrometry, coupled to recombinant expression analyses, to identify its target. The cognate antigen was found to be a paralog of Galectin 3 binding protein (Lgals3bpb), known as MAC2-binding protein in mammals. Notably, 4C4 did not recognize other paralogs, demonstrating specificity. Moreover, our data show that Lgals3bpb expression, while ubiquitous in microglia, also identifies leukocytes in the periphery, including populations of gut and liver macrophages. CONCLUSIONS: The 4C4 monoclonal antibody recognizes Lgals3bpb, a predicted highly glycosylated protein whose function in the microglial lineage is currently unknown. Identification of Lgals3bpb as a new pan-microglia marker will be fundamental in forthcoming studies using the zebrafish model.


Assuntos
Anticorpos Monoclonais , Microglia , Animais , Microglia/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Peixe-Zebra , Galectina 3/metabolismo , Macrófagos/metabolismo , Mamíferos
3.
Cell ; 185(2): 379-396.e38, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35021063

RESUMO

The liver is the largest solid organ in the body, yet it remains incompletely characterized. Here we present a spatial proteogenomic atlas of the healthy and obese human and murine liver combining single-cell CITE-seq, single-nuclei sequencing, spatial transcriptomics, and spatial proteomics. By integrating these multi-omic datasets, we provide validated strategies to reliably discriminate and localize all hepatic cells, including a population of lipid-associated macrophages (LAMs) at the bile ducts. We then align this atlas across seven species, revealing the conserved program of bona fide Kupffer cells and LAMs. We also uncover the respective spatially resolved cellular niches of these macrophages and the microenvironmental circuits driving their unique transcriptomic identities. We demonstrate that LAMs are induced by local lipid exposure, leading to their induction in steatotic regions of the murine and human liver, while Kupffer cell development crucially depends on their cross-talk with hepatic stellate cells via the evolutionarily conserved ALK1-BMP9/10 axis.


Assuntos
Evolução Biológica , Hepatócitos/metabolismo , Macrófagos/metabolismo , Proteogenômica , Animais , Núcleo Celular/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Homeostase , Humanos , Células de Kupffer/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Lipídeos/química , Fígado/metabolismo , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células Mieloides/metabolismo , Obesidade/patologia , Proteoma/metabolismo , Transdução de Sinais , Transcriptoma/genética
4.
Angiogenesis ; 25(2): 159-179, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34524600

RESUMO

Chemerin is a multifunctional protein initially characterized in our laboratory as a chemoattractant factor for leukocyte populations. Its main functional receptor is CMKLR1. We identified previously chemerin as an anti-tumoral factor inhibiting the vascularization of tumor grafts. We show here that overexpression of bioactive chemerin in mice results in a reduction of the density of the retinal vascular network during its development and in adults. Chemerin did not affect vascular sprouting during the post-natal development of the network, but rather promoted endothelial cell apoptosis and vessel pruning. This phenotype was reversed to normal in CMKLR1-deficient mice, demonstrating the role of this receptor. Chemerin inhibited also neoangiogenesis in a model of pathological proliferative retinopathy, and in response to hind-limb ischemia. Mechanistically, PTEN and FOXO1 antagonists could almost completely restore the density of the retinal vasculature, suggesting the involvement of the PI3-kinase/AKT pathway in the chemerin-induced vessel regression process.


Assuntos
Quimiocinas , Peptídeos e Proteínas de Sinalização Intercelular , Animais , Apoptose , Quimiocinas/metabolismo , Hipóxia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos
5.
Cancers (Basel) ; 13(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34638484

RESUMO

CCRL2 belongs to the G protein-coupled receptor family and is one of the three chemerin receptors. It is considered as a non-signaling receptor, presenting chemerin to cells expressing the functional chemerin receptor ChemR23/CMKLR1 and possibly GPR1. In the present work, we investigate the role played by CCRL2 in mouse cancer models. Loss of function of Ccrl2 accelerated the development of papillomas in a chemical model of skin carcinogenesis (DMBA/TPA), whereas the growth of B16 and LLC tumor cell grafts was delayed. Delayed tumor growth was also observed when B16 and LLC cells overexpress CCRL2, while knockout of Ccrl2 in tumor cells reversed the consequences of Ccrl2 knockout in the host. The phenotypes associated with CCRL2 gain or loss of function were largely abrogated by knocking out the chemerin or Cmklr1 genes. Cells harboring CCRL2 could concentrate bioactive chemerin and promote the activation of CMKLR1-expressing cells. A reduction of neoangiogenesis was observed in tumor grafts expressing CCRL2, mimicking the phenotype of chemerin-expressing tumors. This study demonstrates that CCRL2 shares functional similarities with the family of atypical chemokine receptors (ACKRs). Its expression by tumor cells can significantly tune the effects of the chemerin/CMKLR1 system and act as a negative regulator of tumorigenesis.

6.
Oncotarget ; 12(19): 1903-1919, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34548907

RESUMO

Chemerin, a multifunctional protein acting through the receptor ChemR23/CMKLR1, is downregulated in various human tumors and was shown to display antitumoral properties in mouse models of cancer. In the present study, we report that bioactive chemerin expression by tumor cells delays the growth of B16 melanoma and Lewis lung carcinoma in vivo. A similar delay is observed when chemerin is not expressed by tumor cells but by keratinocytes of the host mice. The protective effect of chemerin is mediated by CMKLR1 and appears unrelated to the recruitment of leukocyte populations. Rather, tumors grown in the presence of chemerin display a much smaller number of blood vessels, hypoxic regions early in their development, and larger necrotic areas. These observations likely explain the slower growth of the tumors. The anti-angiogenic effects of chemerin were confirmed in a bead sprouting assay using human umbilical vein endothelial cells. These results suggest that CMKLR1 agonists might constitute therapeutic molecules inhibiting the neoangiogenesis process in solid tumors.

7.
Development ; 148(1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33298459

RESUMO

In vertebrates, the ontogeny of microglia, the resident macrophages of the central nervous system, initiates early during development from primitive macrophages. Although murine embryonic microglia then persist through life, in zebrafish these cells are transient, as they are fully replaced by an adult population originating from larval hematopoietic stem cell (HSC)-derived progenitors. Colony-stimulating factor 1 receptor (Csf1r) is a fundamental regulator of microglia ontogeny in vertebrates, including zebrafish, which possess two paralogous genes: csf1ra and csf1rb Although previous work has shown that mutation in both genes completely abrogates microglia development, the specific contribution of each paralog remains largely unknown. Here, using a fate-mapping strategy to discriminate between the two microglial waves, we uncover non-overlapping roles for csf1ra and csf1rb in hematopoiesis, and identified csf1rb as an essential regulator of adult microglia development. Notably, we demonstrate that csf1rb positively regulates HSC-derived myelopoiesis, resulting in macrophage deficiency, including microglia, in adult mutant animals. Overall, this study contributes to new insights into evolutionary aspects of Csf1r signaling and provides an unprecedented framework for the functional dissection of embryonic versus adult microglia in vivo.


Assuntos
Microglia/metabolismo , Mutação/genética , Proteínas Tirosina Quinases/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Envelhecimento/genética , Animais , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , Células Mieloides/metabolismo , Fagócitos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
9.
Elife ; 92020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32367800

RESUMO

Macrophages derive from multiple sources of hematopoietic progenitors. Most macrophages require colony-stimulating factor 1 receptor (CSF1R), but some macrophages persist in the absence of CSF1R. Here, we analyzed mpeg1:GFP-expressing macrophages in csf1r-deficient zebrafish and report that embryonic macrophages emerge followed by their developmental arrest. In larvae, mpeg1+ cell numbers then increased showing two distinct types in the skin: branched, putative Langerhans cells, and amoeboid cells. In contrast, although numbers also increased in csf1r-mutants, exclusively amoeboid mpeg1+ cells were present, which we showed by genetic lineage tracing to have a non-hematopoietic origin. They expressed macrophage-associated genes, but also showed decreased phagocytic gene expression and increased epithelial-associated gene expression, characteristic of metaphocytes, recently discovered ectoderm-derived cells. We further demonstrated that juvenile csf1r-deficient zebrafish exhibit systemic macrophage depletion. Thus, csf1r deficiency disrupts embryonic to adult macrophage development. Zebrafish deficient for csf1r are viable and permit analyzing the consequences of macrophage loss throughout life.


Immune cells called macrophages are found in all organs in the body. These cells are highly effective at eating and digesting large particles including dead cells and debris, and microorganisms such as bacteria. Macrophages are also instrumental in shaping developing organs and repairing tissues during life. Macrophages were, until recently, thought to be constantly replenished from cells circulating in the bloodstream. However, it turns out that separate populations of macrophages become established in most tissues during embryonic development and are maintained throughout life without further input. Previous studies of zebrafish, rodents and humans have shown that, when a gene called CSF1R is non-functional, macrophages are absent from many organs including the brain. However, some tissue-specific macrophages still persist, and it was not clear why these cells do not rely on the CSF1R gene while others do. Kuil et al. set out to decipher the precise requirement for the CSF1R gene in macrophage development in living zebrafish. The experiments used zebrafish that make a green fluorescent protein in their macrophages. As these fish are transparent, this meant that Kuil et al. could observe the cells within the living fish and isolate them to determine which genes are switched on and off. This approach revealed that zebrafish with a mutated version of the CSF1R gene make macrophages as embryos but that these cells then fail to multiply and migrate into the developing organs. This results in fewer macrophages in the zebrafish's tissues, and an absence of these cells in the brain. Kuil et al. went on to show that new macrophages did emerge in zebrafish that were about two to three weeks old. However, unexpectedly, these new cells were not regular macrophages. Instead, they were a new recently identified cell-type called metaphocytes, which share similarities with macrophages but have a completely different origin, move faster and do not eat particles. Zebrafish lacking the CSF1R gene thus lose nearly all their macrophages but retain metaphocytes. These macrophage-free mutant zebrafish constitute an unprecedented tool for further studies looking to discriminate the different roles of macrophages and metaphocytes.


Assuntos
Macrófagos/fisiologia , Microglia/fisiologia , Proteínas Tirosina Quinases/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Proliferação de Células , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Microglia/metabolismo , Receptores Proteína Tirosina Quinases , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
10.
Cell Mol Life Sci ; 77(20): 4081-4091, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32405721

RESUMO

In most vertebrates, the yolk sac (YS) represents the very first tissue where blood cells are detected. Therefore, it was thought for a long time that it generated all the blood cells present in the embryo. This model was challenged using different animal models, and we now know that YS hematopoietic precursors are mostly transient although their contribution to the adult system cannot be excluded. In this review, we aim at properly define the different waves of blood progenitors that are produced by the YS and address the fate of each of them. Indeed, in the last decade, many evidences have emphasized the role of the YS in the emergence of several myeloid tissue-resident adult subsets. We will focus on the development of microglia, the resident macrophages in the central nervous system, and try to untangle the recent controversy about their origin.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Saco Vitelino/fisiologia , Animais , Humanos , Macrófagos/fisiologia , Microglia/fisiologia , Células Mieloides/fisiologia
11.
J Leukoc Biol ; 107(3): 431-443, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31909502

RESUMO

The mononuclear phagocytic system consists of many cells, in particular macrophages, scattered throughout the body. However, there is increasing evidence for the heterogeneity of tissue-resident macrophages, leading to a pressing need for new tools to discriminate mononuclear phagocytic system subsets from other hematopoietic lineages. Macrophage-expressed gene (Mpeg)1.1 is an evolutionary conserved gene encoding perforin-2, a pore-forming protein associated with host defense against pathogens. Zebrafish mpeg1.1:GFP and mpeg1.1:mCherry reporters were originally established to specifically label macrophages. Since then more than 100 peer-reviewed publications have made use of mpeg1.1-driven transgenics for in vivo studies, providing new insights into key aspects of macrophage ontogeny, activation, and function. Whereas the macrophage-specific expression pattern of the mpeg1.1 promoter has been firmly established in the zebrafish embryo, it is currently not known whether this specificity is maintained through adulthood. Here we report direct evidence that beside macrophages, a subpopulation of B-lymphocytes is marked by mpeg1.1 reporters in most adult zebrafish organs. These mpeg1.1+ lymphoid cells endogenously express mpeg1.1 and can be separated from mpeg1.1+ macrophages by virtue of their light-scatter characteristics using FACS. Remarkably, our analyses also revealed that B-lymphocytes, rather than mononuclear phagocytes, constitute the main mpeg1.1-positive population in irf8null myeloid-defective mutants, which were previously reported to recover tissue-resident macrophages in adulthood. One notable exception is skin macrophages, whose development and maintenance appear to be independent from irf8, similar to mammals. Collectively, our findings demonstrate that irf8 functions in myelopoiesis are evolutionary conserved and highlight the need for alternative macrophage-specific markers to study the mononuclear phagocytic system in adult zebrafish.


Assuntos
Linfócitos B/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Linfócitos B/citologia , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/genética , Células Mieloides/metabolismo , Fagocitose , Análise de Célula Única , Pele/citologia , Pele/metabolismo , Distribuição Tecidual , Transgenes , Proteínas de Peixe-Zebra/genética
12.
Front Oncol ; 9: 1253, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803622

RESUMO

Chemerin is a multifunctional protein acting mainly through the G protein-coupled receptor ChemR23/CMKLR1/Chemerin1. Its expression is frequently downregulated in human tumors, including in melanoma and squamous cell carcinoma of the skin and anti-tumoral properties of chemerin were reported in mouse tumor graft models. In the present study, we report the development of spontaneous skin tumors in aged ChemR23-deficient mice. In order to test the potential therapeutic benefit of chemerin analogs, a transgenic model in which bioactive chemerin is over-expressed by basal keratinocytes was generated. These animals are characterized by increased levels of chemerin immunoreactivity and bioactivity in the skin and the circulation. In a chemical carcinogenesis model, papillomas developed later, were less numerous, and their progression to carcinomas was delayed. Temporal control of chemerin expression by doxycycline allowed to attribute its effects to late stages of carcinogenesis. The protective effects of chemerin were partly abrogated by ChemR23 invalidation. These results demonstrate that chemerin is able to delay very significantly tumor progression in a model that recapitulates closely the evolution of solid cancer types in human and suggest that the chemerin-ChemR23 system might constitute an interesting target for therapeutic intervention in the cancer field.

13.
Cell Rep ; 24(1): 130-141, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972775

RESUMO

Microglia, the tissue-resident macrophages of the CNS, represent major targets for therapeutic intervention in a wide variety of neurological disorders. Efficient reprogramming protocols to generate microglia-like cells in vitro using patient-derived induced pluripotent stem cells will, however, require a precise understanding of the cellular and molecular events that instruct microglial cell fates. This remains a challenge since the developmental origin of microglia during embryogenesis is controversial. Here, using genetic tracing in zebrafish, we uncover primitive macrophages as the unique source of embryonic microglia. We also demonstrate that this initial population is transient, with primitive microglia later replaced by definitive microglia that persist throughout adulthood. The adult wave originates from cmyb-dependent hematopoietic stem cells. Collectively, our work challenges the prevailing model establishing erythro-myeloid progenitors as the sole and direct microglial precursor and provides further support for the existence of multiple waves of microglia, which originate from distinct hematopoietic precursors.


Assuntos
Embrião não Mamífero/citologia , Macrófagos/citologia , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Desenvolvimento Embrionário , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Cinética , Macrófagos/metabolismo
14.
Adv Hematol ; 2012: 596925, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049557

RESUMO

The novel immune-type receptors (NITRs), which have been described in numerous bony fish species, are encoded by multigene families of inhibitory and activating receptors and are predicted to be functional orthologs to the mammalian natural killer cell receptors (NKRs). Within the zebrafish NITR family, nitr9 is the only gene predicted to encode an activating receptor. However, alternative RNA splicing generates three distinct nitr9 transcripts, each of which encodes a different isoform. Although nitr9 transcripts have been detected in zebrafish lymphocytes, the specific hematopoietic lineage(s) that expresses Nitr9 remains to be determined. In an effort to better understand the role of NITRs in zebrafish immunity, anti-Nitr9 monoclonal antibodies were generated and evaluated for the ability to recognize the three Nitr9 isoforms. The application of these antibodies to flow cytometry should prove to be useful for identifying the specific lymphocyte lineages that express Nitr9 and may permit the isolation of Nitr9-expressing cells that can be directly assessed for cytotoxic (e.g., NK) function.

15.
Blood ; 117(26): 7126-35, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21406720

RESUMO

The evolutionarily conserved immune system of the zebrafish (Danio rerio), in combination with its genetic tractability, position it as an excellent model system in which to elucidate the origin and function of vertebrate immune cells. We recently reported the existence of antigen-presenting mononuclear phagocytes in zebrafish, namely macrophages and dendritic cells (DCs), but have been impaired in further characterizing the biology of these cells by the lack of a specific transgenic reporter line. Using regulatory elements of a class II major histocompatibility gene, we generated a zebrafish reporter line expressing green fluorescent protein (GFP) in all APCs, macrophages, DCs, and B lymphocytes. Examination of mhc2dab:GFP; cd45:DsRed double-transgenic animals demonstrated that kidney mhc2dab:GFP(hi); cd45:DsRed(hi) cells were exclusively mature monocytes/macrophages and DCs, as revealed by morphologic and molecular analyses. Mononuclear phagocytes were found in all hematolymphoid organs, but were most abundant in the intestine and spleen, where they up-regulate the expression of inflammatory cytokines upon bacterial challenge. Finally, mhc2dab:GFP and cd45:DsRed transgenes mark mutually exclusive cell subsets in the lymphoid fraction, enabling the delineation of the major hematopoietic lineages in the adult zebrafish. These findings suggest that mhc2dab:GFP and cd45:DsRed transgenic lines will be instrumental in elucidating the immune response in the zebrafish.


Assuntos
Sistema Fagocitário Mononuclear/imunologia , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Modelos Biológicos , Imagem Molecular , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Sistema Fagocitário Mononuclear/citologia , Sistema Fagocitário Mononuclear/metabolismo , Especificidade de Órgãos , Sequências Reguladoras de Ácido Nucleico , Imagem Corporal Total , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
Immunogenetics ; 62(2): 117-22, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20012603

RESUMO

Novel immune-type receptors (NITRs) are encoded by large multi-gene families and share structural and signaling similarities to mammalian natural killer receptors (NKRs). NITRs have been identified in multiple bony fish species, including zebrafish, and may be restricted to this large taxonomic group. Thirty-nine NITR genes that can be classified into 14 families are encoded on zebrafish chromosomes 7 and 14. Herein, we demonstrate the expression of multiple NITR genes in the zebrafish ovary and during embryogenesis. All 14 families of zebrafish NITRs are expressed in hematopoietic kidney, spleen and intestine as are immunoglobulin and T cell antigen receptors. Furthermore, all 14 families of NITRs are shown to be expressed in the lymphocyte lineage, but not in the myeloid lineage, consistent with the hypothesis that NITRs function as NKRs. Sequence analyses of NITR amplicons identify known alleles and reveal additional alleles within the nitr1, nitr2, nitr3, and nitr5 families, reflecting the recent evolution of this gene family.


Assuntos
Receptores Imunológicos/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Animais , Embrião não Mamífero/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Especificidade de Órgãos , Ovário/metabolismo , Receptores Imunológicos/imunologia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/imunologia
17.
J Immunol ; 183(10): 6489-99, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19841182

RESUMO

Chemerin is the ligand of the ChemR23 receptor and a chemoattractant factor for human immature dendritic cells (DCs), macrophages, and NK cells. In this study, we characterized the mouse chemerin/ChemR23 system in terms of pharmacology, structure-function, distribution, and in vivo biological properties. Mouse chemerin is synthesized as an inactive precursor (prochemerin) requiring, as in human, the precise processing of its C terminus for generating an agonist of ChemR23. Mouse ChemR23 is highly expressed in immature plasmacytoid DCs and at lower levels in myeloid DCs, macrophages, and NK cells. Mouse prochemerin is expressed in most epithelial cells acting as barriers for pathogens but not in leukocytes. Chemerin promotes calcium mobilization and chemotaxis on DCs and macrophages and these functional responses were abrogated in ChemR23 knockout mice. In a mouse model of acute lung inflammation induced by LPS, chemerin displayed potent anti-inflammatory properties, reducing neutrophil infiltration and inflammatory cytokine release in a ChemR23-dependent manner. ChemR23 knockout mice were unresponsive to chemerin and displayed an increased neutrophil infiltrate following LPS challenge. Altogether, the mouse chemerin/ChemR23 system is structurally and functionally conserved between human and mouse, and mouse can therefore be considered as a good model for studying the anti-inflammatory role of this system in the regulation of immune responses and inflammatory diseases.


Assuntos
Fatores Quimiotáticos/metabolismo , Células Dendríticas/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrófagos/imunologia , Pneumonia/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Doença Aguda , Equorina/imunologia , Equorina/metabolismo , Animais , Apoproteínas/imunologia , Apoproteínas/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Cálcio/imunologia , Cálcio/metabolismo , Quimiocinas , Fatores Quimiotáticos/imunologia , Fatores Quimiotáticos/farmacologia , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/imunologia , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peptídeos/imunologia , Peptídeos/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Receptores de Quimiocinas , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
18.
J Leukoc Biol ; 84(6): 1530-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18753310

RESUMO

Chemerin is a potent chemotactic factor that was identified recently as the ligand of ChemR23, a G protein-coupled receptor expressed by mononuclear phagocytes, dendritic cells (DCs), and NK cells. Chemerin is synthesized as a secreted precursor, prochemerin, which is poorly active on ChemR23. However, prochemerin can be converted rapidly into a full ChemR23 agonist by proteolytic removal of a carboxy-terminal peptide. This maturation step is mediated by the neutrophil-derived serine proteases elastase and cathepsin G. In the present work, we have investigated proteolytic events that negatively control chemerin activity. We demonstrate here that neutrophil-derived proteinase 3 (PR3) and mast cell (MC) chymase are involved in the generation of specific chemerin variants, which are inactive, as they do not induce calcium release or DC chemotaxis. Mass spectrometry analysis showed that PR3 specifically converts prochemerin into a chemerin form, lacking the last eight carboxy-terminal amino acids, and is inactive on ChemR23. Whereas PR3 had no effect on bioactive chemerin, MC chymase was shown to abolish chemerin activity by the removal of additional amino acids from its C-terminus. This effect was shown to be specific to bioactive chemerin (chemerin-157 and to a lesser extent, chemerin-156), as MC chymase does not use prochemerin as a substrate. These mechanisms, leading to the production of inactive variants of chemerin, starting from the precursor or the active variants, highlight the complex interplay of proteases regulating the bioactivity of this novel mediator during early innate immune responses.


Assuntos
Quimiocinas/metabolismo , Quimases/fisiologia , Células Dendríticas/metabolismo , Mastócitos/enzimologia , Mieloblastina/fisiologia , Neutrófilos/enzimologia , Equorina/metabolismo , Animais , Apoproteínas/metabolismo , Células da Medula Óssea/metabolismo , Células CHO , Cálcio/metabolismo , Células Cultivadas , Quimiotaxia , Cricetinae , Cricetulus , Meios de Cultivo Condicionados/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/metabolismo , Neutrófilos/citologia , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
J Exp Med ; 201(1): 83-93, 2005 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-15623572

RESUMO

Chemotaxis of dendritic cells (DCs) and monocytes is a key step in the initiation of an adequate immune response. Formyl peptide receptor (FPR) and FPR-like receptor (FPRL)1, two G protein-coupled receptors belonging to the FPR family, play an essential role in host defense mechanisms against bacterial infection and in the regulation of inflammatory reactions. FPRL2, the third member of this structural family of chemoattractant receptors, is characterized by its specific expression on monocytes and DCs. Here, we present the isolation from a spleen extract and the functional characterization of F2L, a novel chemoattractant peptide acting specifically through FPRL2. F2L is an acetylated amino-terminal peptide derived from the cleavage of the human heme-binding protein, an intracellular tetrapyrolle-binding protein. The peptide binds and activates FPRL2 in the low nanomolar range, which triggers intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases through the G(i) class of heterotrimeric G proteins. When tested on monocytes and monocyte-derived DCs, F2L promotes calcium mobilization and chemotaxis. Therefore, F2L appears as a new natural chemoattractant peptide for DCs and monocytes, and the first potent and specific agonist of FPRL2.


Assuntos
Cálcio/metabolismo , Fatores Quimiotáticos/genética , Quimiotaxia/imunologia , Células Dendríticas/imunologia , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais/genética , Sequência de Aminoácidos , Anticorpos Monoclonais , Proteínas de Transporte/metabolismo , Fatores Quimiotáticos/metabolismo , Quimiotaxia/genética , Primers do DNA , Células Dendríticas/metabolismo , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Proteínas Ligantes de Grupo Heme , Hemeproteínas/metabolismo , Humanos , Ligantes , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos , Receptores de Formil Peptídeo/agonistas , Receptores de Lipoxinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
20.
J Biol Chem ; 279(11): 9956-62, 2004 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-14701797

RESUMO

Chemerin is a novel protein identified as the natural ligand of ChemR23 (chemerinR), a previously orphan G protein-coupled receptor expressed in immature dendritic cells and macrophages. Chemerin is synthesized as a secreted precursor, prochemerin, which is poorly active, but converted into a full agonist of chemerinR by proteolytic removal of the last six amino acids. In the present work, we have synthesized a number of peptides derived from the C-terminal domain of human prochemerin and have investigated their functional properties as agonists or antagonists of human chemerinR. We found that the nonapeptide (149)YFPGQFAFS(157) (chemerin-9), corresponding to the C terminus of processed chemerin, retained most of the activity of the full-size protein, with regard to agonism toward the chemerinR. Extension of this peptide at its N terminus did not increase the activity, whereas further truncations rapidly resulted in inactive compounds. The C-terminal end of the peptide appeared crucial for its activity, as addition of a single amino acid or removal of two amino acids modified the potency by four orders of magnitude. Alanine-scanning mutagenesis identified residues Tyr(149), Phe(150), Gly(152), Phe(154), and Phe(156) as the key positions for chemerinR activation. A modified peptide (YHSFFFPGQFAFS) was synthesized and iodinated, and a radioligand binding assay was established. It was found that the ability of the various peptides to activate the chemerin receptor was strictly correlated with their affinity in the binding assay. These results confirm that a precise C-terminal processing is required for the generation of a chemerinR agonist. The possibility to restrict a medium sized protein to a nonapeptide, while keeping a low nanomolar affinity for its receptor is unusual among G protein-coupled receptors ligands. The identification of these short bioactive peptides will considerably accelerate the pharmacological analysis of chemerin-chemerinR interactions.


Assuntos
Quimiocinas/química , Receptores de Quimiocinas/química , Alanina/química , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Células Dendríticas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Macrófagos/metabolismo , Dados de Sequência Molecular , Mutagênese , Mutagênese Sítio-Dirigida , Peptídeos/química , Ligação Proteica , Precursores de Proteínas/química , Estrutura Terciária de Proteína , Ensaio Radioligante , Receptores de Quimiocinas/agonistas , Receptores de Quimiocinas/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA