Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Immunol ; 14: 1261070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942314

RESUMO

Introduction: In oncology, anti-drug antibody (ADA) development that significantly curtails response durability has not historically risen to a level of concern. The relevance and attention ascribed to ADAs in oncology clinical studies have therefore been limited, and the extant literature on this subject scarce. In recent years, T cell engagers have gained preeminence within the prolific field of cancer immunotherapy. These drugs whose mode of action is expected to potently stimulate anti-tumor immunity, may potentially induce ADAs as an unintended corollary due to an overall augmentation of the immune response. ADA formation is therefore emerging as an important determinant in the successful clinical development of such biologics. Methods: Here we describe the immunogenicity and its impact observed to pasotuxizumab (AMG 212), a prostate-specific membrane antigen (PSMA)-targeting bispecific T cell engager (BiTE®) molecule in NCT01723475, a first-in-human (FIH), multicenter, dose-escalation study in patients with metastatic castration-resistant prostate cancer (mCRPC). To explain the disparity in ADA incidence observed between the SC and CIV arms of the study, we interrogated other patient and product-specific factors that may have explained the difference beyond the route of administration. Results: Treatment-emergent ADAs (TE-ADA) developed in all subjects treated with at least 1 cycle of AMG 212 in the subcutaneous (SC) arm. These ADAs were neutralizing and resulted in profound exposure loss that was associated with contemporaneous reversal of initial Prostate Surface Antigen (PSA) responses, curtailing durability of PSA response in patients. Pivoting from SC to a continuous intravenous (CIV) administration route remarkably yielded no subjects developing ADA to AMG 212. Through a series of stepwise functional assays, our investigation revealed that alongside a more historically immunogenic route of administration, non-tolerant T cell epitopes within the AMG 212 amino acid sequence were likely driving the high-titer, sustained ADA response observed in the SC arm. Discussion: These mechanistic insights into the AMG 212 ADA response underscore the importance of performing preclinical immunogenicity risk evaluation as well as advocate for continuous iteration to better our biologics.


Assuntos
Produtos Biológicos , Próstata , Masculino , Humanos , Análise de Causa Fundamental , Antígeno Prostático Específico/metabolismo , Anticorpos/metabolismo , Antígenos de Superfície/metabolismo , Linfócitos T
2.
Clin Pharmacol Ther ; 109(3): 605-618, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32686076

RESUMO

Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In immuno-oncology (IO) the aim is to direct the patient's own immune system to fight cancer. After remarkable successes of antibodies targeting PD1/PD-L1 and CTLA4 receptors in targeted patient populations, the focus of further development has shifted toward combination therapies. However, the current drug-development approach of exploiting a vast number of possible combination targets and dosing regimens has proven to be challenging and is arguably inefficient. In particular, the unprecedented number of clinical trials testing different combinations may no longer be sustainable by the population of available patients. Further development in IO requires a step change in selection and validation of candidate therapies to decrease development attrition rate and limit the number of clinical trials. Quantitative systems pharmacology (QSP) proposes to tackle this challenge through mechanistic modeling and simulation. Compounds' pharmacokinetics, target binding, and mechanisms of action as well as existing knowledge on the underlying tumor and immune system biology are described by quantitative, dynamic models aiming to predict clinical results for novel combinations. Here, we review the current QSP approaches, the legacy of mathematical models available to quantitative clinical pharmacologists describing interaction between tumor and immune system, and the recent development of IO QSP platform models. We argue that QSP and virtual patients can be integrated as a new tool in existing IO drug development approaches to increase the efficiency and effectiveness of the search for novel combination therapies.


Assuntos
Alergia e Imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desenvolvimento de Medicamentos , Inibidores de Checkpoint Imunológico/uso terapêutico , Oncologia , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Biologia de Sistemas , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Simulação por Computador , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/farmacocinética , Modelos Imunológicos , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/metabolismo , Microambiente Tumoral
3.
Immunotherapy ; 13(2): 125-141, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33172323

RESUMO

Aim: We report results of a first-in-human study of pasotuxizumab, a PSMA bispecific T-cell engager (BiTE®) immune therapy mediating T-cell killing of tumor cells in patients with advanced castration-resistant prostate cancer. Patients & methods: We assessed once-daily subcutaneous (SC) pasotuxizumab. All SC patients developed antidrug antibodies; therefore, continuous intravenous (cIV) infusion was assessed. Results: A total of 47 patients received pasotuxizumab (SC: n = 31, 0.5-172 µg/d; cIV: n = 16, 5-80 µg/d). The SC maximum tolerated dose was 172.0 µg/d. A sponsor change stopped the cIV cohort early; maximum tolerated dose was not determined. PSA responders occurred (>50% PSA decline: SC, n = 9; cIV, n = 3), including two long-term responders. Conclusion: Data support pasotuxizumab safety in advanced castration-resistant prostate cancer and represent evidence of BiTE monotherapy efficacy in solid tumors. Clinical trial registration: NCT01723475 (ClinicalTrials.gov).


Assuntos
Anticorpos Biespecíficos , Antineoplásicos Imunológicos , Neoplasias de Próstata Resistentes à Castração , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacocinética , Anticorpos Biespecíficos/uso terapêutico , Antígenos de Superfície/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/sangue , Complexo CD3/imunologia , Glutamato Carboxipeptidase II/imunologia , Imunoterapia , Infusões Intravenosas , Injeções Subcutâneas , Dose Máxima Tolerável , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/terapia , Resultado do Tratamento
4.
Target Oncol ; 14(5): 591-601, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31502117

RESUMO

BACKGROUND: Fibroblast growth factor receptor (FGFR) 2 is overexpressed in several tumor types, including triple-negative breast cancer and gastric cancer, both of which have a high unmet medical need. Aprutumab ixadotin (BAY 1187982) is the first antibody-drug conjugate (ADC) to target FGFR2 and the first to use a novel auristatin-based payload. OBJECTIVE: This first-in-human trial was conducted to determine the safety, tolerability, and maximum tolerated dose (MTD) of aprutumab ixadotin in patients with advanced solid tumors from cancer indications known to be FGFR2-positive. PATIENTS AND METHODS: In this open-label, multicenter, phase I dose-escalation trial (NCT02368951), patients with advanced solid tumors received escalating doses of aprutumab ixadotin (starting at 0.1 mg/kg body weight), administered intravenously on day 1 of every 21-day cycle. Primary endpoints included safety, tolerability, and the MTD of aprutumab ixadotin; secondary endpoints were pharmacokinetic evaluation and tumor response to aprutumab ixadotin. RESULTS: Twenty patients received aprutumab ixadotin across five cohorts, at doses of 0.1-1.3 mg/kg. The most common grade ≥ 3 drug-related adverse events were anemia, aspartate aminotransferase increase, proteinuria, and thrombocytopenia. Dose-limiting toxicities were thrombocytopenia, proteinuria, and corneal epithelial microcysts, and were only seen in the two highest dosing cohorts. The MTD was determined to be 0.2 mg/kg due to lack of quantitative data following discontinuations at 0.4 and 0.8 mg/kg doses. One patient had stable disease; no responses were reported. CONCLUSIONS: Aprutumab ixadotin was poorly tolerated, with an MTD found to be below the therapeutic threshold estimated preclinically; therefore, the trial was terminated early. CLINICALTRIALS. GOV IDENTIFIER: NCT02368951.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Colangiocarcinoma/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Imunoconjugados/uso terapêutico , Oligopeptídeos/uso terapêutico , Adulto , Idoso , Término Precoce de Ensaios Clínicos , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/imunologia , Falha de Tratamento , Adulto Jovem
5.
Gastric Cancer ; 21(3): 401-412, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28852882

RESUMO

BACKGROUND: Fibroblast growth factor receptor (FGFR2) has been proposed as a target in gastric cancer. However, appropriate methods to select patients for anti-FGFR2 therapies have not yet been established. METHODS: We used in situ techniques to investigate FGFR2 mRNA expression and gene amplification in a large cohort of 1036 Japanese gastric cancer patients. FGFR2 mRNA expression was determined by RNAscope. FGFR2 gene amplification was determined by dual-color in situ hybridization (DISH). RESULTS: We successfully analyzed 578 and 718 samples by DISH and RNAscope, respectively; 2% (12/578) showed strong FGFR2 gene amplification (FGFR2:CEN10 >10); moderate FGFR2 gene amplification (FGFR2:CEN10 <10; ≥2) was detected in 8% (47/578); and high FGFR2 mRNA expression of score 4 (>10 dots/cell and >10% of positive cells with dot clusters under a 20× objective) was seen in 4% (29/718). For 468 samples, both mRNA and DISH data were available. FGFR2 mRNA expression levels were associated with gene amplification; FGFR2 mRNA levels were highest in the highly amplified samples (n = 12). All highly amplified samples showed very strong FGFR2 mRNA expression (dense clusters of the signal visible under a 1× objective). Patients with very strong FGFR2 mRNA expression showed more homogeneous FGFR2 mRNA expression compared to patients with lower FGFGR2 mRNA expression. Gastric cancer patients with tumors that had an FGFR2 mRNA expression score of 4 had shorter RFS compared with score 0-3 patients. CONCLUSION: RNAscope and DISH are suitable methods to evaluate FGFR2 status in gastric cancer. Formalin-fixed paraffin-embedded (FFPE) tissue slides allowed evaluation of the intratumor heterogeneity of these FGFR2 biomarkers.


Assuntos
Adenocarcinoma/genética , Hibridização In Situ/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Neoplasias Gástricas/genética , Estudos de Coortes , Dosagem de Genes , Humanos , RNA Mensageiro/análise
6.
Cancer Res ; 76(21): 6331-6339, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27543601

RESUMO

The fibroblast growth factor receptor FGFR2 is overexpressed in a variety of solid tumors, including breast, gastric, and ovarian tumors, where it offers a potential therapeutic target. In this study, we present evidence of the preclinical efficacy of BAY 1187982, a novel antibody-drug conjugate (ADC). It consists of a fully human FGFR2 monoclonal antibody (mAb BAY 1179470), which binds to the FGFR2 isoforms FGFR2-IIIb and FGFR2-IIIc, conjugated through a noncleavable linker to a novel derivative of the microtubule-disrupting cytotoxic drug auristatin (FGFR2-ADC). In FGFR2-expressing cancer cell lines, this FGFR2-ADC exhibited potency in the low nanomolar to subnanomolar range and was more than 100-fold selective against FGFR2-negative cell lines. High expression levels of FGFR2 in cells correlated with efficient internalization, efficacy, and cytotoxic effects in vitro Pharmacokinetic analyses in mice bearing FGFR2-positive NCI-H716 tumors indicated that the toxophore metabolite of FGFR2-ADC was enriched more than 30-fold in tumors compared with healthy tissues. Efficacy studies demonstrated that FGFR2-ADC treatment leads to a significant tumor growth inhibition or tumor regression of cell line-based or patient-derived xenograft models of human gastric or breast cancer. Furthermore, FGFR2 amplification or mRNA overexpression predicted high efficacy in both of these types of in vivo model systems. Taken together, our results strongly support the clinical evaluation of BAY 1187982 in cancer patients and a phase I study (NCT02368951) has been initiated. Cancer Res; 76(21); 6331-9. ©2016 AACR.


Assuntos
Aminobenzoatos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/análise , Animais , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA