RESUMO
The naked mole-rat (NMR) Heterocephalus glaber (from the Greek/latin words á¼τερος, heteros = divergent, κεφαλή, kephale = head and glabra = hairless) was first described by Rüppell (Fig. 1) and belongs to the Hystricognath (from the Greek words á½στριξ, hystrix = porcupine and γνάθος, gnathos = jaw) as a suborder of rodents. NMR are characterized by the highest longevity among rodents and reveal a profound cancer resistance. Details of its skin-specific protective and resistance mechanisms against aging and carcinogenesis have so far not been adequately characterized. Recently, our knowledge of NMR skin biology was complemented and expanded by published data using state-of-the art histological and molecular techniques. Here we review and integrate novel published data regarding skin morphology and histology of the aging NMR and the underlying mechanisms at the cellular and molecular level. We relate this data to the longevity of the NMR and its resistance to neoplastic transformation and discuss further open questions to understand its extraordinary longevity. In addition, we will address the exposome, defined as "the total of all non-genetic, endogenous and exogenous environmental influences" on the skin, respiratory tract, stomach, and intestine. Finally, we will discuss in perspective further intriguing possibilities arising from the interaction of skin with other organs.
Assuntos
Neoplasias , Resiliência Psicológica , Animais , Envelhecimento/patologia , Longevidade , Ratos-ToupeiraRESUMO
Fibroblasts residing in the connective tissues constitute the stem cell niche, particularly in organs such as skin. Although the effect of fibroblasts on stem cell niches and organ aging is an emerging concept, the underlying mechanisms are largely unresolved. We report a mechanism of redox-dependent activation of transcription factor JunB, which, through concomitant upregulation of p16INK4A and repression of insulin growth factor-1 (IGF-1), initiates the installment of fibroblast senescence. Fibroblast senescence profoundly disrupts the metabolic and structural niche, and its essential interactions with different stem cells thus enforces depletion of stem cells pools and skin tissue decline. In fact, silencing of JunB in a fibroblast-niche-specific manner-by reinstatement of IGF-1 and p16 levels-restores skin stem cell pools and overall skin tissue integrity. Here, we report a role of JunB in the control of connective tissue niche and identified targets to combat skin aging and associated pathologies.
Assuntos
Comunicação Celular , Fibroblastos/metabolismo , Envelhecimento da Pele , Pele/metabolismo , Nicho de Células-Tronco , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Senescência Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos Knockout , Pele/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Fatores de Transcrição/genéticaRESUMO
We here address the question whether the unique capacity of mesenchymal stem cells to re-establish tissue homeostasis depends on their potential to sense pathogen-associated molecular pattern and, in consequence, mount an adaptive response in the interest of tissue repair. After injection of MSCs primed with the bacterial wall component LPS into murine wounds, an unexpected acceleration of healing occurs, clearly exceeding that of non-primed MSCs. This correlates with a fundamental reprogramming of the transcriptome in LPS-treated MSCs as deduced from RNAseq analysis and its validation. A network of genes mediating the adaptive response through the Toll-like receptor 4 (TLR4) pathway responsible for neutrophil and macrophage recruitment and their activation profoundly contributes to enhanced wound healing. In fact, injection of LPS-primed MSCs silenced for TLR4 fails to accelerate wound healing. These unprecedented findings hold substantial promise to refine current MSC-based therapies for difficult-to-treat wounds.
Assuntos
Células-Tronco Mesenquimais , Receptor 4 Toll-Like , Animais , Macrófagos , Camundongos , Transdução de Sinais , Pele , Receptor 4 Toll-Like/genética , Cicatrização/genéticaRESUMO
Treatments on neoplastic diseases and cancer using genotoxic drugs often cause long-term health problems related to premature aging. The underlying mechanism is poorly understood. Based on the study of a long-lasting senescence-like growth arrest (10-12 weeks) of human dermal fibroblasts induced by psoralen plus UVA (PUVA) treatment, we here revealed that slowly repaired bulky DNA damages can serve as a "molecular scar" leading to reduced cell proliferation through persistent endogenous production of reactive oxygen species (ROS) that caused accelerated telomere erosion. The elevated levels of ROS were the results of mitochondrial dysfunction and the activation of NADPH oxidase (NOX). A combined inhibition of DNA-PK and PARP1 could suppress the level of ROS. Together with a reduced expression level of BRCA1 as well as the upregulation of PP2A and 53BP1, these data suggest that the NHEJ repair of DNA double-strand breaks may be the initial trigger of metabolic changes leading to ROS production. Further study showed that stimulation of the pentose phosphate pathway played an important role for NOX activation, and ROS could be efficiently suppressed by modulating the NADP/NADPH ratio. Interestingly, feeding cells with ribose-5-phosphate, a precursor for nucleotide biosynthesis that produced through the PPP, could evidently suppress the ROS level and prevent the cell enlargement related to mitochondrial biogenesis. Taken together, these results revealed an important signaling pathway between DNA damage repair and the cell metabolism, which contributed to the premature aging effects of PUVA, and may be generally applicable for a large category of chemotherapeutic reagents including many cancer drugs.
Assuntos
Senescência Celular/fisiologia , Dano ao DNA/fisiologia , Estresse Oxidativo/fisiologia , Células Cultivadas , Senescência Celular/genética , Dano ao DNA/genética , Reparo do DNA/genética , Reparo do DNA/fisiologia , Humanos , NADP/genética , NADP/metabolismo , Oxirredução , Estresse Oxidativo/genética , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ribosemonofosfatos/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismoRESUMO
Mutations in the CD18 gene encoding the common ß-chain of ß2 integrins result in impaired wound healing in humans and mice suffering from leukocyte adhesion deficiency syndrome type 1 (LAD1). Transplantation of adipose tissue-derived mesenchymal stem cells (MSCs) restores normal healing of CD18-/- wounds by restoring the decreased TGF-ß1 concentrations. TGF-ß1 released from MSCs leads to enhanced myofibroblast differentiation, wound contraction, and vessel formation. We uncover that MSCs are equipped with a sensing mechanism for TGF-ß1 concentrations at wound sites. Low TGF-ß1 concentrations as occurring in CD18-/- wounds induce TGF-ß1 release from MSCs, whereas high TGF-ß1 concentrations suppress TGF-ß1 production. This regulation depends on TGF-ß receptor sensing and is relayed to microRNA-21 (miR-21), which subsequently suppresses the translation of Smad7, the negative regulator of TGF-ß1 signaling. Inactivation of TGF-ß receptor, or overexpression or silencing of miR-21 or Smad7, abrogates TGF-ß1 sensing, and thus prevents the adaptive MSC responses required for tissue repair.
Assuntos
Síndrome da Aderência Leucocítica Deficitária , Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Camundongos , Fator de Crescimento Transformador beta1/genética , Cicatrização/genéticaRESUMO
In this study, we report the beneficial effects of a newly identified dermal cell subpopulation expressing the ATP-binding cassette subfamily B member 5 (ABCB5) for the therapy of nonhealing wounds. Local administration of dermal ABCB5+ -derived mesenchymal stem cells (MSCs) attenuated macrophage-dominated inflammation and thereby accelerated healing of full-thickness excisional wounds in the iron-overload mouse model mimicking the nonhealing state of human venous leg ulcers. The observed beneficial effects were due to interleukin-1 receptor antagonist (IL-1RA) secreted by ABCB5+ -derived MSCs, which dampened inflammation and shifted the prevalence of unrestrained proinflammatory M1 macrophages toward repair promoting anti-inflammatory M2 macrophages at the wound site. The beneficial anti-inflammatory effect of IL-1RA released from ABCB5+ -derived MSCs on human wound macrophages was conserved in humanized NOD-scid IL2rγ null mice. In conclusion, human dermal ABCB5+ cells represent a novel, easily accessible, and marker-enriched source of MSCs, which holds substantial promise to successfully treat chronic nonhealing wounds in humans. Stem Cells 2019;37:1057-1074.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Derme/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Sobrecarga de Ferro/metabolismo , Úlcera da Perna/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cicatrização , Animais , Linhagem Celular , Derme/patologia , Modelos Animais de Doenças , Feminino , Humanos , Sobrecarga de Ferro/patologia , Úlcera da Perna/patologia , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCIDRESUMO
Chronic wounds pose a stern challenge to health care systems with growing incidence especially in the aged population. In the presence of increased iron concentrations, recruitment of monocytes from the circulation and activation towards ROS and RNS releasing M1 macrophages together with the persistence of senescent fibroblasts at the wound site are significantly enhanced. This unrestrained activation of pro-inflammatory macrophages and senescent fibroblasts has increasingly been acknowledged as main driver causing non-healing wounds. In a metaphor, macrophages act like stage directors of wound healing, resident fibroblasts constitute main actors and increased iron concentrations are decisive parts of the libretto, and - if dysregulated - are responsible for the development of non-healing wounds. This review will focus on recent cellular and molecular findings from chronic venous leg ulcers and diabetic non-healing wounds both constituting the most common pathologies often resulting in limb amputations of patients. This not only causes tremendous suffering and loss of life quality, but is also associated with an increase in mortality and a major socio-economic burden. Despite recent advances, the underlying molecular mechanisms are not completely understood. Overwhelming evidence shows that reactive oxygen species and the transition metal and trace element iron at pathological concentrations are crucially involved in a complex interplay between cells of different histogenetic origin and their extracellular niche environment. This interplay depends on a variety of cellular, non-cellular biochemical and cell biological mechanisms. Here, we will highlight recent progress in the field of iron-dependent regulation of macrophages and fibroblasts and related pathologies linked to non-healing chronic wounds.
Assuntos
Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cicatrização , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Macrófagos/metabolismo , Macrófagos/patologiaRESUMO
Cells and tissues are exposed to stress from numerous sources. Senescence is a protective mechanism that prevents malignant tissue changes and constitutes a fundamental mechanism of aging. It can be accompanied by a senescence associated secretory phenotype (SASP) that causes chronic inflammation. We present a Boolean network model-based gene regulatory network of the SASP, incorporating published gene interaction data. The simulation results describe current biological knowledge. The model predicts different in-silico knockouts that prevent key SASP-mediators, IL-6 and IL-8, from getting activated upon DNA damage. The NF-κB Essential Modulator (NEMO) was the most promising in-silico knockout candidate and we were able to show its importance in the inhibition of IL-6 and IL-8 following DNA-damage in murine dermal fibroblasts in-vitro. We strengthen the speculated regulator function of the NF-κB signaling pathway in the onset and maintenance of the SASP using in-silico and in-vitro approaches. We were able to mechanistically show, that DNA damage mediated SASP triggering of IL-6 and IL-8 is mainly relayed through NF-κB, giving access to possible therapy targets for SASP-accompanied diseases.
Assuntos
Senescência Celular/fisiologia , Dano ao DNA/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Biologia Computacional , Simulação por Computador , Fibroblastos , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Interleucina-8/antagonistas & inibidores , Interleucina-8/metabolismo , CamundongosRESUMO
Histone modifying enzymes, such as histone deacetylases (HDACs) and polycomb repressive complex (PRC) components, have been implicated in regulating tumor growth, epithelial-mesenchymal transition, tumor stem cell maintenance, or repression of tumor suppressor genes - and may be promising targets for combination therapies of melanoma and other cancers. According to recent findings, the histone H2A deubiquitinase 2A-DUB/Mysm1 interacts with the p53-axis in hematopoiesis and tissue differentiation in mice, in part by modulating DNA-damage responses in stem cell and progenitor compartments. Based on the identification of alterations in skin pigmentation and melanocyte specification in Mysm1-deficient mice, we hypothesized that MYSM1 may be involved in melanoma formation. In human melanoma samples, expression of MYSM1 was increased compared with normal skin melanocytes and nevi and co-localized with melanocyte markers such as Melan-A and c-KIT. Similarly, in melanoma cell lines A375 and SK-MEL-28 and in murine skin, expression of the deubiquitinase was detectable at the mRNA and protein level that was inducible by growth factor signals and UVB exposure, respectively. Upon stable silencing of MYSM1 in A375 and SK-MEL-28 melanoma cells by lentivirally-mediated shRNA expression, survival and proliferation were significantly reduced in five MYSM1 shRNA cell lines analyzed compared with control cells. In addition, MYSM1-silenced melanoma cells proliferated less well in softagar assays. In context with our finding that MYSM1 bound to the c-MET promoter region in close vicinity to PAX3 in melanoma cells, our data indicate that MYSM1 is an epigenetic regulator of melanoma growth and potentially promising new target for tumor therapy.
RESUMO
Increased concentrations of reactive oxygen species (ROS) originating from dysfunctional mitochondria contribute to diverse aging-related degenerative disorders. But so far little is known about the impact of distinct ROS on metabolism and fate of stromal precursor cells. Here, we demonstrate that an increase in superoxide anion radicals due to superoxide dismutase 2 (Sod2) deficiency in stromal precursor cells suppress osteogenic and adipogenic differentiation through fundamental changes in the global metabolite landscape. Our data identify impairment of the pyruvate and l-glutamine metabolism causing toxic accumulation of alpha-ketoglutarate in the Sod2-deficient and intrinsically aged stromal precursor cells as a major cause for their reduced lineage differentiation. Alpha-ketoglutarate accumulation led to enhanced nucleocytoplasmic vacuolation and chromatin condensation-mediated cell death in Sod2-deficient stromal precursor cells as a consequence of DNA damage, Hif-1α instability, and reduced histone H3 (Lys27) acetylation. These findings hold promise for prevention and treatment of mitochondrial disorders commonly associated with aged individuals. Stem Cells 2017;35:1704-1718.
Assuntos
Envelhecimento/metabolismo , Cromatina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Superóxido Dismutase/genética , Adipócitos/metabolismo , Adipócitos/patologia , Envelhecimento/patologia , Animais , Animais Recém-Nascidos , Morte Celular , Diferenciação Celular/genética , Condrócitos/metabolismo , Condrócitos/patologia , Cromatina/patologia , Regulação da Expressão Gênica , Glutamina/metabolismo , Histonas/genética , Histonas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Mesenquimais/patologia , Metaboloma , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Cultura Primária de Células , Ácido Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Pele/patologia , Superóxido Dismutase/deficiênciaRESUMO
The elderly constitute the age group most susceptible to wound healing disorders and chronic wounds, the most prevalent being venous leg ulcers, pressure ulcers, and diabetic foot ulcers. However, other age-associated diseases should also be taken into consideration in the diagnostic workup of chronic wounds, and not be underestimated. A better understanding of the pathomechanisms involved in the wound healing process is of key importance in combatting the difficulties associated with the treatment of chronic wounds. In recent decades, considerable progress has been made in the development of pioneering therapeutic strategies for chronic wounds. In this context, the use of growth factors and cytokines, tissue engineering, and cell therapy - including stem cells - have proven very promising. Nevertheless, prior to their introduction into routine clinical practice, large controlled clinical trials are required to assess the safety of these techniques.
Assuntos
Avaliação Geriátrica/métodos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Transplante de Células-Tronco Mesenquimais/métodos , Úlcera Cutânea/diagnóstico , Úlcera Cutânea/terapia , Cicatrização , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Terapia Combinada/métodos , Medicina Baseada em Evidências , Feminino , Humanos , Masculino , Úlcera Cutânea/imunologia , Resultado do TratamentoRESUMO
UVA-1 is a known promotor of skin ageing. Cytokines like IL-1α, Il-1ß or TNF-α, VEGF and IL-6 orchestrate UV effects, and IL-6 is furthermore an effector of UVA-induced photoageing. We investigated how fractionated UVA-1 doses influence the cytokine milieu and especially the IL-6 levels in the skin in vivo. In a study with 35 participants, we exposed previously unirradiated human skin to three UVA-1 irradiation regimes. Cytokine levels in interstitial skin fluid were measured up to 48 hours postexposure and compared to unirradiated control skin fluid. Our results show that IL-6 levels increased significantly after UVA-1 exposure at selected time points. The other candidates IL-1α, Il-1ß or TNF-α and VEGF show no significant response after UVA-1 exposure in vivo. UVA-1 thus raises selectively IL-6 levels in vivo, a fact that underlines its role in photoageing and has potential implications for its modulatory effect on photoageing pathology.
Assuntos
Interleucina-6/metabolismo , Pele/efeitos da radiação , Adolescente , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Pele/metabolismo , Envelhecimento da Pele , Raios Ultravioleta , Adulto JovemRESUMO
Aging is associated with a rising incidence of cutaneous squamous cell carcinoma (cSCC), an aggressive skin cancer with the potential for local invasion and metastasis. Acquisition of a senescence-associated secretory phenotype (SASP) in dermal fibroblasts has been postulated to promote skin cancer progression in elderly individuals. The underlying molecular mechanisms are largely unexplored. We show that Chemerin, a previously unreported SASP factor released from senescent human dermal fibroblasts, promotes cSCC cell migration, a key feature driving tumor progression. Whereas the Chemerin abundance is downregulated in malignant cSCC cells, increased Chemerin transcripts and protein concentrations are detected in replicative senescent fibroblasts in vitro and in the fibroblast of skin sections from old donors, indicating that a Chemerin gradient is built up in the dermis of elderly. Using Transwell® migration assays, we show that Chemerin enhances the chemotaxis of different cSCC cell lines. Notably, the Chemerin receptor CCRL2 is remarkably upregulated in cSCC cell lines and human patient biopsies. Silencing Chemerin in senescent fibroblasts or the CCRL2 and GPR1 receptors in the SCL-1 cSCC cell line abrogates the Chemerin-mediated chemotaxis. Chemerin triggers the MAPK cascade via JNK and ERK1 activation, whereby the inhibition impairs the SASP- or Chemerin-mediated cSCC cell migration.Taken together, we uncover a key role for Chemerin, as a major factor in the secretome of senescent fibroblasts, promoting cSCC cell migration and possibly progression, relaying its signals through CCRL2 and GPR1 receptors with subsequent MAPK activation. These findings might have implications for targeted therapeutic interventions in elderly patients.
Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Escamosas/metabolismo , Senescência Celular , Quimiocinas/metabolismo , Quimiotaxia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Comunicação Parácrina , Neoplasias Cutâneas/metabolismo , Idoso de 80 Anos ou mais , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Quimiocinas/genética , Técnicas de Cocultura , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Invasividade Neoplásica , Interferência de RNA , Receptores CCR/genética , Receptores CCR/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , TransfecçãoRESUMO
Mesenchymal stem cells (MSCs) are crucial for tissue homeostasis and regeneration. Though of prime interest, their potentially protective role on neutrophil-induced tissue damage, associated with high morbidity and mortality, has not been explored in sufficient detail. Here we report the therapeutic skill of MSCs to suppress unrestrained neutrophil activation and to attenuate severe tissue damage in a murine immune-complex mediated vasculitis model of unbalanced neutrophil activation. MSC-mediated neutrophil suppression was due to intercellular adhesion molecule 1-dependent engulfment of neutrophils by MSCs, decreasing overall neutrophil numbers. Similar to MSCs in their endogenous niche of murine and human vasculitis, therapeutically injected MSCs via upregulation of the extracellular superoxide dismutase (SOD3), reduced superoxide anion concentrations and consequently prevented neutrophil death, neutrophil extracellular trap formation and spillage of matrix degrading neutrophil elastase, gelatinase and myeloperoxidase. SOD3-silenced MSCs did not exert tissue protective effects. Thus, MSCs hold substantial therapeutic promise to counteract tissue damage in conditions with unrestrained neutrophil activation. Stem Cells 2016;34:2393-2406.
Assuntos
Células-Tronco Mesenquimais/metabolismo , Neutrófilos/metabolismo , Especificidade de Órgãos , Animais , Complexo Antígeno-Anticorpo/metabolismo , Morte Celular , Armadilhas Extracelulares/metabolismo , Hemorragia/patologia , Humanos , Camundongos , Modelos Biológicos , Ativação de Neutrófilo , Estresse Oxidativo , Peptídeo Hidrolases/metabolismo , Peroxidase/metabolismo , Superóxido Dismutase , Vasculite/patologiaRESUMO
The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions (O2â-) in mitochondria, either by chemical inhibition of complex I or by genetic silencing of O2â--dismutating mitochondrial Sod2. The O2â--dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced O2â- led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated O2â--induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with O2â-, PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies.
Assuntos
Envelhecimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Superóxidos/metabolismo , Envelhecimento/genética , Animais , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , PTEN Fosfo-Hidrolase/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismoRESUMO
Proper activation of macrophages (Mφ) in the inflammatory phase of acute wound healing is essential for physiological tissue repair. However, there is a strong indication that robust Mφ inflammatory responses may be causal for the fibrotic response always accompanying adult wound healing. Using a complementary approach of in vitro and in vivo studies, we here addressed the question of whether mesenchymal stem cells (MSCs)-due to their anti-inflammatory properties-would control Mφ activation and tissue fibrosis in a murine model of full-thickness skin wounds. We have shown that the tumor necrosis factor-α (TNF-α)-stimulated protein 6 (TSG-6) released from MSCs in co-culture with activated Mφ or following injection into wound margins suppressed the release of TNF-α from activated Mφ and concomitantly induced a switch from a high to an anti-fibrotic low transforming growth factor-ß1 (TGF-ß1)/TGF-ß3 ratio. This study provides insight into what we believe to be a previously undescribed multifaceted role of MSC-released TSG-6 in wound healing. MSC-released TSG-6 was identified to improve wound healing by limiting Mφ activation, inflammation, and fibrosis. TSG-6 and MSC-based therapies may thus qualify as promising strategies to enhance tissue repair and to prevent excessive tissue fibrosis.
Assuntos
Moléculas de Adesão Celular/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Pele/lesões , Cicatrização/fisiologia , Animais , Moléculas de Adesão Celular/genética , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Fibrose/prevenção & controle , Humanos , Injeções Intradérmicas , Macrófagos/patologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Pele/patologiaRESUMO
Mesenchymal stem cells (MSCs) have properties which make them promising for the treatment of chronic non-healing wounds. A major so far unmet challenge is the efficient, safe and painless delivery of MSCs to skin wounds. Recently, a surface carrier of medical-grade silicone coated by plasma polymerisation with a thin layer of acrylic acid (ppAAc) was developed, and shown to successfully deliver MSCs to deepithelialised human dermis in vitro. Here we studied the potential of the ppAAc carrier to deliver human adipose tissue derived MSCs (AT-MSCs) to murine full-thickness excisional skin wounds in vivo. Further we investigate the mechanism of action of MSCs in accelerating wound healing in these wounds. AT-MSCs cultured on ppAAc carriers for 4 days or longer fully retained their cell surface marker expression profile, colony-forming-, differentiation- and immunosuppressive potential. Importantly, AT-MSCs delivered to murine wounds by ppAAc carriers significantly accelerated wound healing, similar to AT-MSCs delivered by intradermal injection. More than 80% of AT-MSCs were transferred from carriers to wounds in 3 days. AT-MSCs were detectable in wounds for at least 5 days after wounding. Carrier delivered AT-MSCs were demonstrated to have the capacity to down-modulate TNF-α-dependent inflammation, increase anti-inflammatory M2 macrophage numbers, and induce TGF-ß(1)-dependent angiogenesis, myofibroblast differentiation and granulation tissue formation, thereby enhancing overall tissue repair.
Assuntos
Tecido Adiposo/citologia , Células-Tronco Mesenquimais/citologia , Cicatrização/fisiologia , Adipogenia/fisiologia , Animais , Western Blotting , Proliferação de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Macrófagos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Uncontrolled macrophage activation is now considered to be a critical event in the pathogenesis of chronic inflammatory diseases such as atherosclerosis, multiple sclerosis, and chronic venous leg ulcers. However, it is still unclear which environmental cues induce persistent activation of macrophages in vivo and how macrophage-derived effector molecules maintain chronic inflammation and affect resident fibroblasts essential for tissue homeostasis and repair. We used a complementary approach studying human subjects with chronic venous leg ulcers, a model disease for macrophage-driven chronic inflammation, while establishing a mouse model closely reflecting its pathogenesis. Here, we have shown that iron overloading of macrophages--as was found to occur in human chronic venous leg ulcers and the mouse model--induced a macrophage population in situ with an unrestrained proinflammatory M1 activation state. Via enhanced TNF-α and hydroxyl radical release, this macrophage population perpetuated inflammation and induced a p16(INK4a)-dependent senescence program in resident fibroblasts, eventually leading to impaired wound healing. This study provides insight into the role of what we believe to be a previously undescribed iron-induced macrophage population in vivo. Targeting this population may hold promise for the development of novel therapies for chronic inflammatory diseases such as chronic venous leg ulcers.
Assuntos
Ferro/metabolismo , Macrófagos/citologia , Cicatrização , Animais , Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/metabolismo , Humanos , Radical Hidroxila/metabolismo , Inflamação , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Fenótipo , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The free radical theory of aging postulates that the production of mitochondrial reactive oxygen species is the major determinant of aging and lifespan. Its role in aging of the connective tissue has not yet been established, even though the incidence of aging-related disorders in connective tissue-rich organs is high, causing major disability in the elderly. We have now addressed this question experimentally by creating mice with conditional deficiency of the mitochondrial manganese superoxide dismutase in fibroblasts and other mesenchyme-derived cells of connective tissues in all organs. Here, we have shown for the first time that the connective tissue-specific lack of superoxide anion detoxification in the mitochondria results in reduced lifespan and premature onset of aging-related phenotypes such as weight loss, skin atrophy, kyphosis (curvature of the spine), osteoporosis and muscle degeneration in mutant mice. Increase in p16(INK4a) , a robust in vivo marker for fibroblast aging, may contribute to the observed phenotype. This novel model is particularly suited to decipher the underlying mechanisms and to develop hopefully novel connective tissue-specific anti-aging strategies.
Assuntos
Envelhecimento/fisiologia , Tecido Conjuntivo/enzimologia , Longevidade/fisiologia , Mitocôndrias/enzimologia , Fenótipo , Superóxido Dismutase/deficiência , Animais , Biomarcadores/metabolismo , Osso e Ossos/patologia , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Cifose , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/patologia , Espécies Reativas de Oxigênio/metabolismo , Pele/patologia , Superóxido Dismutase/genética , Superóxidos/metabolismoRESUMO
We aimed to clarify the role of matrix metalloproteinases (MMP) as a possible link between neurodegeneration and skin pathology in ALS by determination of gelatinase MMP-2 and MMP-9 in spinal cord and skin of transgenic SOD1((G93A)) mice. To elucidate mechanisms influencing MMPs, markers of oxidative damage (malondialdehyde (MDA), 3-nitrotyrosine (3-NT) and 8-hydroxy-2'-deoxyguanosine (8OH2'dG)) as well as cytokines (tumor necrosis factor alpha (TNF-alpha) and interleukin 1ss (IL-1ss)) were determined. We measured MMP-9, MMP-2, 3-NT, TNF-alpha, and IL-1ss using ELISA, MDA using High Performance Liquid Chromatography (HPLC) and 8OH2'dG using HPLC with electrochemical detection (HPLC-ECD) in SOD1 and WT. MMP-9 was elevated in spinal cord and skin of SOD1 at 90 days (p=0.009, p<0.001) and 120 days (p<0.01, p=0.04). MMP-2 was elevated in the spinal cord at 90 days (p=0.01) and in the skin at 120 days (p=0.039). We observed a correlation of MMP-9 in spinal cord and skin of SOD1 (p=0.04). MDA was elevated in the spinal cord of SOD1 at 90 and 120 days (p=0.00006, p=0.01) and 8OH2'dG at 90 days (p=0.048). IL-1ss was elevated in the spinal cord of SOD1 at 120 days (p=0.02). Our data confirms that gelatinase MMPs are a common factor linking neurodegeneration and skin changes in ALS. It suggests that oxidative stress and microglial-derived cytokines contribute to the elevation of gelatinase MMPs especially in later stages of disease. Our data raises the question whether the skin may function as a biomarker for specific aspects of disease pathology in ALS.