Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38682273

RESUMO

Neurulation is a highly synchronized biomechanical process leading to the formation of the brain and spinal cord, and its failure leads to neural tube defects (NTDs). Although we are rapidly learning the genetic mechanisms underlying NTDs, the biomechanical aspects are largely unknown. To understand the correlation between NTDs and tissue stiffness during neural tube closure (NTC), we imaged an NTD murine model using optical coherence tomography (OCT), Brillouin microscopy and confocal fluorescence microscopy. Here, we associate structural information from OCT with local stiffness from the Brillouin signal of embryos undergoing neurulation. The stiffness of neuroepithelial tissues in Mthfd1l null embryos was significantly lower than that of wild-type embryos. Additionally, exogenous formate supplementation improved tissue stiffness and gross embryonic morphology in nullizygous and heterozygous embryos. Our results demonstrate the significance of proper tissue stiffness in normal NTC and pave the way for future studies on the mechanobiology of normal and abnormal embryonic development.


Assuntos
Tubo Neural , Neurulação , Tomografia de Coerência Óptica , Animais , Feminino , Camundongos , Fenômenos Biomecânicos , Embrião de Mamíferos/metabolismo , Formiato-Tetra-Hidrofolato Ligase/genética , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Formiatos/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Camundongos Knockout , Microscopia Confocal , Mutação/genética , Tubo Neural/metabolismo , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Neurulação/genética , Tomografia de Coerência Óptica/métodos
2.
AIDS ; 38(4): 439-446, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37382903

RESUMO

OBJECTIVES: In 2018, the Botswana Tsepamo Study reported a nine-fold increased risk of neural tube defects in infants whose mothers were treated with dolutegravir (DTG) from the time of conception. As maternal folate supplementation and status is a well known modifier of neural tube defect (NTD) risk, we sought to evaluate birth outcomes in mice fed normal and low folic acid diets treated with DTG during pregnancy. DESIGN: DTG was evaluated for developmental toxicity using pregnant mice fed normal or low folic acid diet. METHODS: CD-1 mice were provided diet with normal (3 mg/kg) or low (0.3 mg/kg) folic acid. They were treated with water, a human therapeutic-equivalent dose, or supratherapeutic dose of DTG from mouse embryonic day E6.5 to E12.5. Pregnant dams were sacrificed at term (E18.5) and fetuses were inspected for gross, internal, and skeletal defects. RESULTS: Fetuses with exencephaly, an NTD, were present in both therapeutic human equivalent and supratherapeutic exposures in dams fed low folic acid diet. Cleft palates were also found under both folate conditions. CONCLUSIONS: Recommended dietary folic acid levels during mouse pregnancy ameliorate developmental defects that arise from DTG exposure. Since low folate status in mice exposed to DTG increases the risk for NTDs, it is possible that DTG exposures in people living with HIV with low folate status during pregnancy may explain, at least in part, the elevated NTD risk signal observed in Botswana. Based on these results, future studies should consider folate status as a modifier for DTG-associated NTD risk.


Assuntos
Infecções por HIV , Defeitos do Tubo Neural , Oxazinas , Piperazinas , Piridonas , Humanos , Gravidez , Feminino , Animais , Camundongos , Ácido Fólico/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/complicações , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/efeitos adversos
3.
FASEB J ; 38(1): e23346, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095297

RESUMO

Folate deficiency contribute to neural tube defects (NTDs) which could be rescued by folate supplementation. However, the underlying mechanisms are still not fully understood. Besides, there is considerable controversy concerning the forms of folate used for supplementation. To address this controversy, we prepared culture medium with different forms of folate, folic acid (FA), and 5-methyltetrahydrofolate (5mTHF), at concentrations of 5 µM, 500 nM, 50 nM, and folate free, respectively. Mouse embryonic fibroblasts (MEFs) were treated with different folates continuously for three passages, and cell proliferation and F-actin were monitored. We determined that compared to 5mTHF, FA showed stronger effects on promoting cell proliferation and F-actin formation. We also found that FOLR1 protein level was positively regulated by folate concentration and the non-canonical Wnt/planar cell polarity (PCP) pathway signaling was significantly enriched among different folate conditions in RNA-sequencing analyses. We demonstrated for the first time that FOLR1 could promote the transcription of Vangl2, one of PCP core genes. The transcription of Vangl2 was down-regulated under folate-deficient condition, which resulted in a decrease in PCP activity and F-actin formation. In summary, we identified a distinct advantage of FA in cell proliferation and F-actin formation over 5mTHF, as well as demonstrating that FOLR1 could promote transcription of Vangl2 and provide a new mechanism by which folate deficiency can contribute to the etiology of NTDs.


Assuntos
Deficiência de Ácido Fólico , Defeitos do Tubo Neural , Animais , Camundongos , Ácido Fólico/metabolismo , Actinas/metabolismo , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Polaridade Celular/genética , Fibroblastos/metabolismo , Via de Sinalização Wnt , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Deficiência de Ácido Fólico/metabolismo
4.
Hum Mutat ; 43(12): 2021-2032, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054333

RESUMO

Neural tube defects (NTDs) are congenital malformations resulting from abnormal embryonic development of the brain, spine, or spinal column. The genetic etiology of human NTDs remains poorly understood despite intensive investigation. CIC, homolog of the Capicua transcription repressor, has been reported to interact with ataxin-1 (ATXN1) and participate in the pathogenesis of spinocerebellar ataxia type 1. Our previous study demonstrated that CIC loss of function (LoF) variants contributed to the cerebral folate deficiency syndrome by downregulating folate receptor 1 (FOLR1) expression. Given the importance of folate transport in neural tube formation, we hypothesized that CIC variants could contribute to increased risk for NTDs by depressing embryonic folate concentrations. In this study, we examined CIC variants from whole-genome sequencing (WGS) data of 140 isolated spina bifida cases and identified eight missense variants of CIC gene. We tested the pathogenicity of the observed variants through multiple in vitro experiments. We determined that CIC variants decreased the FOLR1 protein level and planar cell polarity (PCP) pathway signaling in a human cell line (HeLa). In a murine cell line (NIH3T3), CIC loss of function variants downregulated PCP signaling. Taken together, this study provides evidence supporting CIC as a risk gene for human NTD.


Assuntos
Defeitos do Tubo Neural , Proteínas Repressoras , Disrafismo Espinal , Animais , Feminino , Humanos , Camundongos , Gravidez , Receptor 1 de Folato/genética , Ácido Fólico , Mutação de Sentido Incorreto , Defeitos do Tubo Neural/genética , Células NIH 3T3 , Disrafismo Espinal/genética , Células HeLa , Proteínas Repressoras/genética
5.
Front Cell Dev Biol ; 10: 832492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265619

RESUMO

Valproic acid (VPA, valproate, Depakote) is a commonly used anti-seizure medication (ASM) in the treatment of epilepsy and a variety of other neurological disorders. While VPA and other ASMs are efficacious for management of seizures, they also increase the risk for adverse pregnancy outcomes, including neural tube defects (NTDs). Thus, the utility of these drugs during pregnancy and in women of childbearing potential presents a continuing public health challenge. Elucidating the underlying genetic or metabolic risk factors for VPA-affected pregnancies may lead to development of non-teratogenic ASMs, novel prevention strategies, or more targeted methods for managing epileptic pregnancies. To address this challenge, we performed unbiased, whole embryo metabolomic screening of E8.5 mouse embryos from two inbred strains with differential susceptibility to VPA-induced NTDs. We identified metabolites of differential abundance between the two strains, both in response to VPA exposure and in the vehicle controls. Notable enriched pathways included lipid metabolism, carnitine metabolism, and several amino acid pathways, especially cysteine and methionine metabolism. There also was increased abundance of ω-oxidation products of VPA in the more NTD-sensitive strain, suggesting differential metabolism of the drug. Finally, we found significantly reduced levels of hypotaurine in the susceptible strain regardless of VPA status. Based on this information, we hypothesized that maternal supplementation with L-carnitine (400 mg/kg), coenzyme A (200 mg/kg), or hypotaurine (350 mg/kg) would reduce VPA-induced NTDs in the sensitive strain and found that administration of hypotaurine prior to VPA exposure significantly reduced the occurrence of NTDs by close to one-third compared to controls. L-carnitine and coenzyme A reduced resorption rates but did not significantly reduce NTD risk in the sensitive strain. These results suggest that genetic variants or environmental exposures influencing embryonic hypotaurine status may be factors in determining risk for adverse pregnancy outcomes when managing the health care needs of pregnant women exposed to VPA or other ASMs.

6.
J Med Genet ; 58(7): 484-494, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32820034

RESUMO

Background Cerebral folate deficiency (CFD) syndrome is characterised by a low concentration of 5-methyltetrahydrofolate in cerebrospinal fluid, while folate levels in plasma and red blood cells are in the low normal range. Mutations in several folate pathway genes, including FOLR1 (folate receptor alpha, FRα), DHFR (dihydrofolate reductase) and PCFT (proton coupled folate transporter) have been previously identified in patients with CFD. Methods In an effort to identify causal mutations for CFD, we performed whole exome sequencing analysis on eight CFD trios and identified eight de novo mutations in seven trios. Results Notably, we found a de novo stop gain mutation in the capicua (CIC) gene. Using 48 sporadic CFD samples as a validation cohort, we identified three additional rare variants in CIC that are putatively deleterious mutations. Functional analysis indicates that CIC binds to an octameric sequence in the promoter regions of folate transport genes: FOLR1, PCFT and reduced folate carrier (Slc19A1; RFC1). The CIC nonsense variant (p.R353X) downregulated FOLR1 expression in HeLa cells as well as in the induced pluripotent stem cell (iPSCs) derived from the original CFD proband. Folate binding assay demonstrated that the p.R353X variant decreased cellular binding of folic acid in cells. Conclusion This study indicates that CIC loss of function variants can contribute to the genetic aetiology of CFD through regulating FOLR1 expression. Our study described the first mutations in a non-folate pathway gene that can contribute to the aetiology of CFD.


Assuntos
Cérebro/metabolismo , Receptor 1 de Folato/genética , Deficiência de Ácido Fólico/líquido cefalorraquidiano , Mutação com Perda de Função , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Proteínas Repressoras/genética , Tetra-Hidrofolatos/líquido cefalorraquidiano , Células Cultivadas , Regulação para Baixo , Feminino , Receptor 1 de Folato/deficiência , Deficiência de Ácido Fólico/genética , Células HEK293 , Humanos , Masculino , Doenças do Sistema Nervoso/genética , Distrofias Neuroaxonais , Linhagem , Análise de Sequência de DNA
7.
Hum Mol Genet ; 29(18): 3132-3144, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32969478

RESUMO

Neural tube defects (NTDs) are a group of severe congenital malformations caused by a failure of neural tube closure during early embryonic development. Although extensively investigated, the genetic etiology of NTDs remains poorly understood. FKBP8 is critical for proper mammalian neural tube closure. Fkbp8-/- mouse embryos showed posterior NTDs consistent with a diagnosis of spina bifida (SB). To date, no publication has reported any association between FKBP8 and human NTDs. Using Sanger sequencing on genomic DNA samples from 472 SB and 565 control samples, we identified five rare (MAF ≤ 0.001) deleterious variants in SB patients, while no rare deleterious variant was identified in the controls (P = 0.0191). p.Glu140* affected FKBP8 localization to the mitochondria and created a truncated form of the FKBP8 protein, thus impairing its interaction with BCL2 and ultimately leading to an increase in cellular apoptosis. p.Ser3Leu, p.Lys315Asn and p.Ala292Ser variants decreased FKBP8 protein level. p.Lys315Asn further increased the cellular apoptosis. RNA sequencing on anterior and posterior tissues isolated from Fkbp8-/- and wildtype mice at E9.5 and E10.5 showed that Fkbp8-/- embryos have an abnormal expression profile within tissues harvested at posterior sites, thus leading to a posterior NTD. Moreover, we found that Fkbp8 knockout mouse embryos have abnormal expression of Wnt3a and Nkx2.9 during the early stage of neural tube development, perhaps also contributing to caudal specific NTDs. These findings provide evidence that functional variants of FKBP8 are risk factors for SB, which may involve a novel mechanism by which Fkbp8 mutations specifically cause SB in mice.


Assuntos
Proteínas de Homeodomínio/genética , Disrafismo Espinal/genética , Proteínas de Ligação a Tacrolimo/genética , Fatores de Transcrição/genética , Proteína Wnt3A/genética , Animais , Apoptose/genética , Feminino , Predisposição Genética para Doença , Humanos , Recém-Nascido , Masculino , Camundongos , Camundongos Knockout , Malformações do Sistema Nervoso , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Fatores de Risco , Disrafismo Espinal/patologia
8.
J Pediatr Surg ; 55(3): 475-481, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31301886

RESUMO

BACKGROUND/PURPOSE: In 2004, a heritable occurrence of spina bifida was reported in sheep on a farm in the United States. We maintained and characterized the spina bifida phenotype in this flock to assess its potential as an alternative surgical model. METHODS: A breeding strategy was developed in which the sheep were crossed to maintain or increase the occurrence of spina bifida. Measurements and observations were recorded regarding lesion size, birthweight, ambulatory capacity, or urological function, and necropsies were performed on spina bifida afflicted lambs in conjunction with magnetic resonance imaging to determine the character of the spina bifida defects and assess the presence of Chiari-like malformations or hydrocephalus. RESULTS: The defects were observed to be more prevalent in ram lambs, and the rate of spina bifida per litter could be increased through backcrossing or by selection of a productive ewe breed. The lambs displayed a range of ambulatory and urological deficits which could be used to evaluate new fetal repair methodologies. Finally, affected lambs were shown to demonstrate severe Chiari malformations and hydrocephalus. CONCLUSIONS: We have determined that use of these sheep as a natural source for spina bifida fetuses is feasible and could supplement the deficits of current sheep models for myelomeningocele repair. LEVEL OF EVIDENCE: Level IV.


Assuntos
Modelos Animais de Doenças , Fetoscopia , Meningomielocele , Disrafismo Espinal , Animais , Feminino , Meningomielocele/genética , Meningomielocele/patologia , Meningomielocele/cirurgia , Gravidez , Ovinos , Disrafismo Espinal/patologia , Disrafismo Espinal/cirurgia
9.
Dev Dyn ; 248(10): 900-917, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31361376

RESUMO

BACKGROUND: Abnormalities in maternal folate and carbohydrate metabolism have both been shown to induce neural tube defects (NTDs) in humans and animal models. Nevertheless, how these two factors might interact in the development of NTDs remains unclear. RESULTS: In specific mouse models and embryo culture systems, we assessed the effects of combining maternal diabetes with mutations in genes involved in folate transport and metabolism (methylenetetrahydrofolate reductase [Mthfr] and folic acid receptor 1 [Folr1]). When maternal hyperglycemia is combined with alterations in folic acid metabolism, there appears to be an increase in the incidence of congenital malformations in the offspring, with NTDs representing the majority of the malformations detected. CONCLUSIONS: The teratogenic effects of diabetes during pregnancy are exacerbated when combined with altered embryonic folate metabolism.


Assuntos
Diabetes Mellitus/genética , Ácido Fólico/metabolismo , Mutação , Defeitos do Tubo Neural/etiologia , Animais , Modelos Animais de Doenças , Técnicas de Cultura Embrionária , Feminino , Receptor 1 de Folato/genética , Ácido Fólico/genética , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Camundongos , Gravidez , Teratogênese
10.
Hum Mol Genet ; 28(2): 200-208, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30256984

RESUMO

Spina bifida (SB) is a complex disorder of failed neural tube closure during the first month of human gestation, with a suspected etiology involving multiple gene and environmental interactions. GPR161 is a ciliary G-protein coupled receptor that regulates Sonic Hedgehog (Shh) signaling. Gpr161 null and hypomorphic mutations cause neural tube defects (NTDs) in mouse models. Herein we show that several genes involved in Shh and Wnt signaling were differentially expressed in the Gpr161 null embryos using RNA-seq analysis. To determine whether there exists an association between GPR161 and SB in humans, we performed direct Sanger sequencing on the GPR161 gene in a cohort of 384 SB patients and 190 healthy controls. We identified six rare variants of GPR161 in six SB cases, of which two of the variants were novel and did not exist in any databases. Both of these variants were predicted to be damaging by SIFT and/or PolyPhen analysis. The novel GPR161 rare variants mislocalized to the primary cilia, dysregulated Shh and Wnt signaling and inhibited cell proliferation in vitro. Our results demonstrate that GPR161 mutations cause NTDs via dysregulation of Shh and Wnt signaling in mice, and novel rare variants of GPR161 can be risk factors for SB in humans.


Assuntos
Mutação , Receptores Acoplados a Proteínas G/genética , Disrafismo Espinal/genética , Animais , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Genes Dominantes , Proteínas Hedgehog/metabolismo , Humanos , Recém-Nascido , Camundongos , Camundongos Knockout , Células NIH 3T3 , Defeitos do Tubo Neural/genética , Fenótipo , Fatores de Risco , Transdução de Sinais , Disrafismo Espinal/embriologia , Proteínas Wnt/metabolismo
11.
Birth Defects Res ; 111(14): 1013-1023, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30325584

RESUMO

OBJECTIVES: The anticonvulsant valproic acid (VPA) has a known teratogenic effect capable of inducing major congenital malformations and developmental disorders. A comparative teratogenicity study of VPA and its analog valnoctamide (VCD), which is a new generation candidate antiepileptic drug, was carried out using Swiss Vancouver (SWV) mice. METHODS: Pregnant SWV dams were treated with either a single intraperitoneal injection of VPA (1.8 and 2.7 mmol/kg), VCD (1.8 and 2.7 mmol/kg), or vehicle on E8:12 (gestational day:hour). The numbers of implantation and resorption, viable and dead fetuses, and the presence of gross fetal visceral and skeletal abnormalities were determined (E18). Real-time Polymerase chain reaction (RT-PCR) arrays were used to analyze the expression of 84 genes related to the processes of neurogenesis and neural stem cell differentiation. RESULTS: Significant decreases in pregnancy weight gain and the number of live fetuses were observed when VPA was administered at the high dose, whereas the percentage of exencephalic fetuses was significantly increased in VPA treated compared with an equivalent VCD dosage group. There was a dose-related increase in visceral defects in the VPA-exposed fetuses. Missing skull bones and fused vertebrae in fetuses occurred at the high dose of VPA. Three genes (Mtap2, Bmp8b, and Stat3) were significantly upregulated and one (Heyl) was downregulated in samples from VPA-treated dams. CONCLUSIONS: The study demonstrates that the teratogenicity of VPA was significantly greater than that of an equimolar dose of VCD. Four genes (Mtap2, Bmp8b, Stat3, and Heyl) represent candidate target genes for the underlying teratogenic mechanism responsible for VPA-induced malformations.


Assuntos
Amidas/efeitos adversos , Teratogênese/efeitos dos fármacos , Ácido Valproico/efeitos adversos , Anormalidades Induzidas por Medicamentos/etiologia , Anormalidades Induzidas por Medicamentos/fisiopatologia , Amidas/farmacologia , Animais , Anticonvulsivantes/efeitos adversos , Feminino , Morte Fetal , Feto/efeitos dos fármacos , Camundongos , Defeitos do Tubo Neural/induzido quimicamente , Gravidez , Teratogênicos/metabolismo , Teratoma/etiologia , Ácido Valproico/análogos & derivados , Ácido Valproico/farmacologia
12.
Proc Natl Acad Sci U S A ; 115(18): 4690-4695, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666258

RESUMO

Periconceptional folic acid (FA) supplementation significantly reduces the prevalence of neural tube defects (NTDs). Unfortunately, some NTDs are FA resistant, and as such, NTDs remain a global public health concern. Previous studies have identified SLC25A32 as a mitochondrial folate transporter (MFT), which is capable of transferring tetrahydrofolate (THF) from cellular cytoplasm to the mitochondria in vitro. Herein, we show that gene trap inactivation of Slc25a32 (Mft) in mice induces NTDs that are folate (5-methyltetrahydrofolate, 5-mTHF) resistant yet are preventable by formate supplementation. Slc25a32gt/gt embryos die in utero with 100% penetrant cranial NTDs. 5-mTHF supplementation failed to promote normal neural tube closure (NTC) in mutant embryos, while formate supplementation enabled the majority (78%) of knockout embryos to complete NTC. A parallel genetic study in human subjects with NTDs identified biallelic loss of function SLC25A32 variants in a cranial NTD case. These data demonstrate that the loss of functional Slc25a32 results in cranial NTDs in mice and has also been observed in a human NTD patient.


Assuntos
Formiatos/farmacologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Defeitos do Tubo Neural , Tubo Neural , Animais , Transporte Biológico Ativo/genética , Humanos , Camundongos , Camundongos Transgênicos , Tubo Neural/embriologia , Tubo Neural/patologia , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Defeitos do Tubo Neural/prevenção & controle
13.
Neurochem Res ; 42(7): 1972-1982, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28275953

RESUMO

Epilepsy is one of the most common neurological diseases, with between 34 and 76 per 100,000 people developing epilepsy annually. Epilepsy therapy for the past 100+ years is based on the use of antiepileptic drugs (AEDs). Despite the availability of more than twenty old and new AEDs, approximately 30% of patients with epilepsy are not seizure-free with the existing medications. In addition, the clinical use of the existing AEDs is restricted by their side-effects, including the teratogenicity associated with valproic acid that restricts its use in women of child-bearing age. Thus, there is an unmet clinical need to develop new, effective AEDs. In the present study, a novel class of carbamates incorporating phenethyl or branched aliphatic chains with 6-9 carbons in their side-chain, and 4-benzenesulfonamide-carbamate moieties were synthesized and evaluated for their anticonvulsant activity, teratogenicity and carbonic anhydrase (CA) inhibition. Three of the ten newly synthesized carbamates showed anticonvulsant activity in the maximal-electroshock (MES) and 6 Hz tests in rodents. In mice, 3-methyl-2-propylpentyl(4-sulfamoylphenyl)carbamate(1), 3-methyl-pentan-2-yl-(4-sulfamoylphenyl)carbamate (9) and 3-methylpentyl, (4-sulfamoylphenyl)carbamate (10) had ED50 values of 136, 31 and 14 mg/kg (MES) and 74, 53, and 80 mg/kg (6 Hz), respectively. Compound (10) had rat-MES-ED50 = 13 mg/kg and ED50 of 59 mg/kg at the mouse-corneal-kindling test. These potent carbamates (1,9,10) induced neural tube defects only at doses markedly exceeding their anticonvuslnat-ED50 values. None of these compounds were potent inhibitors of CA IV, but inhibited CA isoforms I, II and VII. The anticonvulsant properties of these compounds and particularly compound 10 make them potential candidates for further evaluation and development as new AEDs.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbamatos/uso terapêutico , Anidrases Carbônicas/uso terapêutico , Ácidos Carboxílicos/uso terapêutico , Convulsões/tratamento farmacológico , Sulfanilamidas/uso terapêutico , Animais , Anticonvulsivantes/química , Anticonvulsivantes/toxicidade , Carbamatos/química , Carbamatos/toxicidade , Anidrases Carbônicas/química , Anidrases Carbônicas/toxicidade , Ácidos Carboxílicos/química , Ácidos Carboxílicos/toxicidade , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/fisiologia , Masculino , Camundongos , Defeitos do Tubo Neural/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Relação Estrutura-Atividade , Sulfanilamida , Sulfanilamidas/química , Sulfanilamidas/toxicidade , Teratogênicos/química , Teratogênicos/toxicidade
14.
Birth Defects Res ; 109(2): 106-119, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-27860192

RESUMO

BACKGROUND: Valproic acid (VPA) is prescribed therapeutically for multiple conditions, including epilepsy. When taken during pregnancy, VPA is teratogenic, increasing the risk of several birth and developmental defects including neural tube defects (NTDs). The mechanism by which VPA causes NTDs remains controversial and how VPA interacts with folic acid (FA), a vitamin commonly recommended for the prevention of NTDs, remains uncertain. We sought to address both questions by applying untargeted metabolite profiling analysis to neural tube closure (NTC) stage mouse embryos. METHODS: Pregnant SWV dams on either a 2 ppm or 10 ppm FA supplemented diet were injected with a single dose of VPA on gestational day E8.5. On day E9.5, the mouse embryos were collected and evaluated for NTC status. Liquid chromatography coupled to mass spectrometry metabolomics analysis was performed to compare metabolite profiles of NTD-affected VPA-exposed whole mouse embryos with profiles from embryos that underwent normal NTC from control dams. RESULTS: NTDs were observed in all embryos from VPA-treated dams and penetrance was not diminished by dietary FA supplementation. The most profound metabolic perturbations were found in the 10ppm FA VPA-exposed mouse embryos, compared with the other three treatment groups. Affected metabolites included amino acids, nucleobases and related phosphorylated nucleotides, lipids, and carnitines. CONCLUSION: Maternal VPA treatment markedly perturbed purine and pyrimidine metabolism in E9.5 embryos. In combination with a high FA diet, VPA treatment resulted in gross metabolic changes, likely caused by a multiplicity of mechanisms, including an apparent disruption of mitochondrial beta-oxidation. Birth Defects Research 109:106-119, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Suplementos Nutricionais , Ácido Fólico/administração & dosagem , Defeitos do Tubo Neural/metabolismo , Neurulação/efeitos dos fármacos , Teratogênicos/toxicidade , Ácido Valproico/toxicidade , Aminoácidos/metabolismo , Animais , Carnitina/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Lipídeos/análise , Masculino , Metaboloma , Camundongos , Tubo Neural/anormalidades , Tubo Neural/efeitos dos fármacos , Tubo Neural/metabolismo , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/patologia , Penetrância , Gravidez , Purinas/metabolismo , Pirimidinas/metabolismo
15.
Epilepsia ; 55(12): 1944-52, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25442425

RESUMO

OBJECTIVE: 2-Ethyl-3-methylbutyl-carbamate (EMC) and 2-isopropylpentyl-carbamate (IPC) are among the most potent anticonvulsant carbamate derivatives of valproic acid. EMC and IPC are chiral compounds. Consequently, the aim of the current study was to comparatively evaluate the pharmacokinetic (PK) and pharmacodynamic (PD anticonvulsant activity) profile of EMC and IPC individual enantiomers. METHODS: The anticonvulsant activity of EMC and IPC individual enantiomers was evaluated in several anticonvulsant rodent models including maximal electroshock (MES), 6 Hz psychomotor, subcutaneous (pentylenetetrazole) (scMet), and the pilocarpine-induced and soman-induced status epilepticus (SE). The PK-PD relationship of EMC and IPC individual enantiomers was evaluated following intraperitoneal administration (50 mg/kg) to rats. Induction of neural tube defects (NTDs) was evaluated in a mouse strain that was highly susceptible to teratogen-induced NTDs. RESULTS: In mice and rats, (2S)-EMC exhibited anticonvulsant activity similar to that of racemic EMC in the MES and scMet tests, whereas in the 6 Hz test, racemic EMC was more potent than its two individual enantiomers. Racemic EMC exhibited a potent activity in the soman-induced SE model when administered 5 and 20 min after seizure onset with median effective dose (ED50 ) values of 33 and 48 mg/kg, respectively. (2R)-IPC and (2S)-IPC exhibited ED50 values similar to those of racemic IPC in the mouse and rat MES and scMet models. (2R)-IPC had similar ED50 values on the 6 Hz tests. Racemic IPC had an ED50 value of 107 mg/kg in the pilocarpine-induced SE model when given 30 min after seizure onset. Racemic EMC and IPC and their enantiomers had similar clearance (3.8-5.5 L/h/kg) and short half-life (<1 h). EMC and its enantiomers did not cause NTDs at doses 3-10 times higher than their anticonvulsant ED50 values. SIGNIFICANCE: EMC and IPC did not exhibit enantioselective PK, a fact that may contribute to their nonenantioselective activity in any of the anticonvulsant models. The nonsignificant difference between racemic EMC and racemic IPC and their enantiomers, suggests that their wide spectrum of anticonvulsant activity is likely to be caused by multiple mechanisms of action.


Assuntos
Anticonvulsivantes/química , Anticonvulsivantes/farmacocinética , Carbamatos/química , Carbamatos/farmacocinética , Epilepsia/tratamento farmacológico , Defeitos do Tubo Neural/induzido quimicamente , Animais , Anticonvulsivantes/sangue , Anticonvulsivantes/uso terapêutico , Área Sob a Curva , Carbamatos/efeitos adversos , Carbamatos/sangue , Sistema Nervoso Central/efeitos dos fármacos , Convulsivantes/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Epilepsia/sangue , Epilepsia/etiologia , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Camundongos , Pentilenotetrazol/toxicidade , Ratos , Ratos Sprague-Dawley , Soman/toxicidade , Relação Estrutura-Atividade
16.
Epilepsia ; 55(2): 353-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24313671

RESUMO

OBJECTIVE: Valnoctamide (VCD), a central nervous system (CNS)-active chiral constitutional isomer of valpromide, the corresponding amide of valproic acid (VPA), is currently undergoing phase IIb clinical trials in acute mania. VCD exhibits stereoselective pharmacokinetics (PK) in animals and humans. The current study comparatively evaluated the pharmacodynamics (PD; anticonvulsant activity and teratogenicity) and PK of the four individual stereoisomers of VCD. METHODS: The anticonvulsant activity of VCD individual stereoisomers was evaluated in several rodent anticonvulsant models including maximal electroshock, 6 Hz psychomotor, subcutaneous metrazol, and the pilocarpine-induced and soman-induced status epilepticus (SE). The PK-PD (anticonvulsant activity) relationship of VCD stereoisomers was evaluated following intraperitoneal administration (70 mg/kg) to rats. Induction of neural tube defects (NTDs) by VCD stereoisomers was evaluated in a mouse strain that was highly susceptible to teratogen-induced NTDs. RESULTS: VCD had a stereoselective PK, with (2S,3S)-VCD exhibiting the lowest clearance, and consequently a twice-higher plasma exposure than all other stereoisomers. Nervertheless, there was less stereoselectivity in VCD anticonvulsant activity and each stereoisomer had similar median effective dose (ED)50 values in most models. VCD stereoisomers (258 or 389 mg/kg) did not cause NTDs. These doses are 3-12 times higher than VCD anticonvulsant ED50 values. SIGNIFICANCE: VCD displayed stereoselective PK that did not lead to significant stereoselective activity in various anticonvulsant rodent models. If VCD exerted its broad-spectrum anticonvulsant activity using a single mechanism of action (MOA), it is likely that it would exhibit a stereoselective PD. The fact that there was no significant difference between racemic VCD and its individual stereoisomers suggests that VCD's anticonvulsant activity is due to multiple MOAs.


Assuntos
Amidas/farmacocinética , Anticonvulsivantes/farmacocinética , Estimulantes do Sistema Nervoso Central/farmacocinética , Teratogênicos/farmacocinética , Ácido Valproico/farmacocinética , Amidas/química , Amidas/toxicidade , Animais , Anticonvulsivantes/química , Anticonvulsivantes/toxicidade , Estimulantes do Sistema Nervoso Central/química , Estimulantes do Sistema Nervoso Central/toxicidade , Masculino , Camundongos , Defeitos do Tubo Neural/induzido quimicamente , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/prevenção & controle , Estereoisomerismo , Teratogênicos/química , Teratogênicos/toxicidade , Ácido Valproico/química , Ácido Valproico/toxicidade
17.
Dev Cell ; 25(6): 623-35, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23806618

RESUMO

Ciliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for a common craniofacial anomaly and identify links between two classes of human disease: FGF-hyperactivation syndromes and ciliopathies.


Assuntos
Transtornos da Motilidade Ciliar/genética , Anormalidades Craniofaciais/genética , Fator 8 de Crescimento de Fibroblasto/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndromes Orofaciodigitais/genética , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Movimento Celular/fisiologia , Transtornos da Motilidade Ciliar/patologia , Anormalidades Craniofaciais/patologia , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Fator 8 de Crescimento de Fibroblasto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Maxila/anormalidades , Camundongos , Camundongos Mutantes , Crista Neural/anormalidades , Síndromes Orofaciodigitais/patologia , Palato/anormalidades , Fenótipo , Proteína GLI1 em Dedos de Zinco
18.
FASEB J ; 27(6): 2468-75, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23430977

RESUMO

The membrane receptor (TCblR/CD320) for transcobalamin (TC)-bound cobalamin (Cbl) facilitates the cellular uptake of Cbl. A genetically modified mouse model involving ablation of the CD320 gene was generated to study the effects on cobalamin homeostasis. The nonlethal nature of this knockout and the lack of systemic cobalamin deficiency point to other mechanisms for cellular Cbl uptake in the mouse. However, severe cobalamin depletion in the central nervous system (CNS) after birth (P<0.01) indicates that TCblR is the only receptor responsible for Cbl uptake in the CNS. Metabolic Cbl deficiency in the brain was evident from the increased methylmalonic acid (P<0.01-0.04), homocysteine (P<0.01), cystathionine (P<0.01), and the decreased S-adenosylmethionine/S-adenosyl homocysteine ratio (P<0.01). The CNS pathology of Cbl deficiency seen in humans may not manifest in this mouse model; however, it does provide a model with which to evaluate metabolic pathways and genes affected.


Assuntos
Doenças do Sistema Nervoso Central/etiologia , Receptores de Superfície Celular/deficiência , Deficiência de Vitamina B 12/etiologia , Animais , Transporte Biológico Ativo , Encéfalo/metabolismo , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Receptores de Superfície Celular/genética , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/genética , Deficiência de Vitamina B 12/metabolismo
19.
J Immunol ; 190(7): 3493-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23420882

RESUMO

The complement system is involved in a range of diverse developmental processes, including cell survival, growth, differentiation, and regeneration. However, little is known about the role of complement in embryogenesis. In this study, we demonstrate a novel role for the canonical complement 5a receptor (C5aR) in the development of the mammalian neural tube under conditions of maternal dietary folic acid deficiency. Specifically, we found C5aR and C5 to be expressed throughout the period of neurulation in wild-type mice and localized the expression to the cephalic regions of the developing neural tube. C5aR was also found to be expressed in the neuroepithelium of early human embryos. Ablation of the C5ar1 gene or the administration of a specific C5aR peptide antagonist to folic acid-deficient pregnant mice resulted in a high prevalence of severe anterior neural tube defect-associated congenital malformations. These findings provide a new and compelling insight into the role of the complement system during mammalian embryonic development.


Assuntos
Deficiência de Ácido Fólico/complicações , Defeitos do Tubo Neural/etiologia , Defeitos do Tubo Neural/prevenção & controle , Receptor da Anafilatoxina C5a/metabolismo , Transdução de Sinais , Animais , Complemento C5/genética , Complemento C5/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Morfogênese/genética , Tubo Neural/embriologia , Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Neurulação/genética , Gravidez , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor da Anafilatoxina C5a/genética
20.
Birth Defects Res A Clin Mol Teratol ; 94(10): 782-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23024056

RESUMO

BACKGROUND: Spina bifida is one of the most common of all human structural birth defects. Despite considerable effort over several decades, the causes and mechanisms underlying this malformation remain poorly characterized. METHODS: To better understand the pathogenesis of this abnormality, we conducted a microarray study using Mouse Whole Genome Bioarrays which have ~36,000 gene targets, to compare gene expression profiles between two mouse models; CXL-Splotch and FKBP8(Gt(neo)) which express a similar spina bifida phenotype. We anticipated that there would be a collection of overlapping genes or shared genetic pathways at the molecular level indicative of a common mechanism underlying the pathogenesis of spina bifida during embryonic development. RESULTS: A total of 54 genes were determined to be differentially expressed (25 downregulated, 29 upregulated) in the FKBP8Gt((neo)) mouse embryos; whereas 73 genes were differentially expressed (56 downregulated, 17 upregulated) in the CXL-Splotch mouse relative to their wild-type controls. Remarkably, the only two genes that showed decreased expression in both mutants were v-ski sarcoma viral oncogene homolog (Ski), and Zic1, a transcription factor member of the zinc finger family. Confirmation analysis using quantitative real-time (qRT)-PCR indicated that only Zic1 was significantly decreased in both mutants. Gene ontology analysis revealed striking enrichment of genes associated with mesoderm and central nervous system development in the CXL-Splotch mutant embryos, whereas in the FKBP8(Gt(neo)) mutants, the genes involved in dorsal/ventral pattern formation, cell fate specification, and positive regulation of cell differentiation were most likely to be enriched. These results indicate that there are multiple pathways and gene networks perturbed in mouse embryos with shared phenotypes.


Assuntos
Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos , Disrafismo Espinal/genética , Animais , Embrião de Mamíferos , Feminino , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise em Microsséries , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/genética , Gravidez , Disrafismo Espinal/patologia , Proteínas de Ligação a Tacrolimo/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA