Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 17(5): e3000243, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31107871

RESUMO

We report a systematic review and meta-analysis of research using animal models of chemotherapy-induced peripheral neuropathy (CIPN). We systematically searched 5 online databases in September 2012 and updated the search in November 2015 using machine learning and text mining to reduce the screening for inclusion workload and improve accuracy. For each comparison, we calculated a standardised mean difference (SMD) effect size, and then combined effects in a random-effects meta-analysis. We assessed the impact of study design factors and reporting of measures to reduce risks of bias. We present power analyses for the most frequently reported behavioural tests; 337 publications were included. Most studies (84%) used male animals only. The most frequently reported outcome measure was evoked limb withdrawal in response to mechanical monofilaments. There was modest reporting of measures to reduce risks of bias. The number of animals required to obtain 80% power with a significance level of 0.05 varied substantially across behavioural tests. In this comprehensive summary of the use of animal models of CIPN, we have identified areas in which the value of preclinical CIPN studies might be increased. Using both sexes of animals in the modelling of CIPN, ensuring that outcome measures align with those most relevant in the clinic, and the animal's pain contextualised ethology will likely improve external validity. Measures to reduce risk of bias should be employed to increase the internal validity of studies. Different outcome measures have different statistical power, and this can refine our approaches in the modelling of CIPN.


Assuntos
Antineoplásicos/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Criação de Animais Domésticos , Animais , Antineoplásicos/administração & dosagem , Comportamento Animal , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Avaliação de Resultados em Cuidados de Saúde , Viés de Publicação , Publicações , Fatores de Risco
2.
Pain ; 154(9): 1613-1621, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23707287

RESUMO

Sleep disturbances are highly prevalent in chronic pain patients. Understanding their relationship has become an important research topic since poor sleep and pain are assumed to closely interact. To date, human experimental studies exploring the impact of sleep disruption/deprivation on pain perception have yielded conflicting results. This inconsistency may be due to the large heterogeneity of study populations and study protocols previously used. In addition, none of the previous studies investigated the entire spectrum of nociceptive modalities. To address these shortcomings, a standardized comprehensive quantitative sensory protocol was used in order to compare the somatosensory profile of 14 healthy subjects (6 female, 8 male, 23.5 ± 4.1 year; mean ± SD) after a night of total sleep deprivation (TSD) and a night of habitual sleep in a cross-over design. One night of TSD significantly increased the level of sleepiness (P<0.001) and resulted in higher scores of the State Anxiety Inventory (P<0.01). In addition to previously reported hyperalgesia to heat (P<0.05) and blunt pressure (P<0.05), study participants developed hyperalgesia to cold (P<0.01) and increased mechanical pain sensitivity to pinprick stimuli (P<0.05) but no changes in temporal summation. Paradoxical heat sensations or dynamic mechanical allodynia were absent. TSD selectively modulated nociception, since detection thresholds of non-nociceptive modalities remained unchanged. Our findings show that a single night of TSD is able to induce generalized hyperalgesia and to increase State Anxiety scores. In the future, TSD may serve as a translational pain model to elucidate the pathomechanisms underlying the hyperalgesic effect of sleep disturbances.


Assuntos
Percepção da Dor/fisiologia , Limiar da Dor/fisiologia , Dor/epidemiologia , Privação do Sono/epidemiologia , Privação do Sono/fisiopatologia , Adulto , Ansiedade/etiologia , Ansiedade/psicologia , Estudos Cross-Over , Feminino , Humanos , Hiperalgesia/fisiopatologia , Hiperalgesia/psicologia , Masculino , Dor/etiologia , Dor/psicologia , Medição da Dor , Estimulação Física , Adulto Jovem
3.
Glia ; 58(14): 1710-26, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20629190

RESUMO

Microglia respond rapidly to injury, increasing their synthesis and release of inflammatory mediators, many of which contribute to the maintenance of persistent pain following CNS or PNS injury. We have recently shown that the lysosomal cysteine protease Cathepsin S (CatS) expressed by spinal microglia is vital for the full expression of neuropathic pain. Here we evaluated the mechanisms by which CatS release occurs from primary microglia in culture. Stimulation of microglia with lipopolysaccharide (LPS) or adenosine tri-phosphate (ATP) alone was insufficient to induce release of enzymatically active CatS in extracellular media. However, following priming with LPS, ATP at 1 mM but not 50 µM resulted in significant release of CatS in the media and maturation of CatS protein in cell extracts. The enzymatic activity measured in media at neutral pH was specific for CatS as it was completely prevented by the CatS inhibitor LHVS. ATP-induced release of CatS required potassium efflux and both extracellular calcium influx and mobilization of intracellular calcium. Pharmacological modulation of ATP-induced release of CatS enzymatic activity revealed that this was dependent on activation of the P2X7 receptor and intracellular phospholipase C and phospholipase A(2). In addition, ATP-induced CatS release involved p38 mitogen activated protein kinase (MAPK) phosphorylation, but not ERK and PI3K signalling pathways. Thus, as high concentration of extracellular ATP promotes release of active CatS from microglia via P2X7 receptor activation, we suggest that the inhibition of CatS release is one of the mechanisms responsible for P2X7 antagonist efficacy in neuropathic pain.


Assuntos
Catepsinas/metabolismo , Microglia/enzimologia , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/etiologia , Receptores Purinérgicos P2X7/fisiologia , Animais , Animais Recém-Nascidos , Catepsinas/antagonistas & inibidores , Células Cultivadas , Técnicas de Cocultura , Microglia/efeitos dos fármacos , Neuralgia/enzimologia , Neuralgia/etiologia , Ratos , Ratos Wistar , Receptores Purinérgicos P2X7/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
4.
Pflugers Arch ; 459(5): 737-50, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20101408

RESUMO

TRPV1 is a member of the transient receptor potential (TRP) family of cation channels. It is expressed in sensory neurons of the dorsal root and trigeminal ganglia as well as in a wide range of non-neuronal tissues. The channel proteins serve as polymodal receptors for various potentially harmful stimuli to prevent tissue damage by mediating unpleasant or painful sensations. Using Ca imaging and voltage-clamp recordings, we found that low millimolar doses of Ni2+ (NiSO4) are able to induce non-specific cation currents in a capsaicin-sensitive population of cultured mouse trigeminal ganglion neurons. In addition, we show that NiSO4 elicits intracellular Ca2+ transients and membrane currents in HEK293 and CHO cells heterologously expressing rat TRPV1. The use of voltage ramps from -100 to +100 mV revealed a strong outward rectification of these currents. Application of NiSO4 to the cytoplasmic face of inside-out membrane patches did not induce any currents. However, delivering NiSO4 to the extracellular face during outside-out recordings, we observed a significant increase in open probability paralleled by a decrease in channel conductance. When combined with other TRPV1 agonists, NiSO4 produces a bimodal effect on TRPV1 activity, depending on the strength and concentration of the second stimulus. Outwardly directed currents induced by low doses of capsaicin and nearly neutral pH values ( approximately pH = 7.0-6.5) were augmented by low doses of NiSO4. In contrast, responses to stronger stimuli were reduced by NiSO4. Moreover, we were able to identify amino acids involved in the effect of NiSO4 on TRPV1.


Assuntos
Níquel/farmacologia , Canais de Cátion TRPV/metabolismo , Animais , Capsaicina/análogos & derivados , Linhagem Celular , Cricetinae , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Rutênio Vermelho , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética , Temperatura , Gânglio Trigeminal/metabolismo
5.
Pain ; 141(1-2): 135-42, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19059721

RESUMO

Inflammatory diseases associated with pain are often difficult to treat in the clinic due to insufficient understanding of the nociceptive pathways involved. Recently, there has been considerable interest in the role of reactive oxygen species (ROS) in inflammatory disease, but little is known of the role of hydrogen peroxide (H(2)O(2)) in hyperalgesia. In the present study, intraplantar injection of H(2)O(2)-induced a significant dose- and time-dependent mechanical and thermal hyperalgesia in the mouse hind paw, with increased c-fos activity observed in the dorsal horn of the spinal cord. H(2)O(2) also induced significant nociceptive behavior such as increased paw licking and decreased body liftings. H(2)O(2) levels were significantly raised in the carrageenan-induced hind paw inflammation model, showing that this ROS is produced endogenously in a model of inflammation. Moreover, superoxide dismutase and catalase significantly reduced carrageenan-induced mechanical and thermal hyperalgesia, providing evidence of a functionally significant endogenous role. Thermal, but not mechanical, hyperalgesia in response to H(2)O(2) (i.pl.) was longer lasting in TRPV1 wild type mice compared to TRPV1 knockouts. It is unlikely that downstream lipid peroxidation was increased by H(2)O(2). In conclusion, we demonstrate a notable effect of H(2)O(2) in mediating inflammatory hyperalgesia, thus highlighting H(2)O(2) removal as a novel therapeutic target for anti-hyperalgesic drugs in the clinic.


Assuntos
Peróxido de Hidrogênio/metabolismo , Hiperalgesia/tratamento farmacológico , Inflamação/complicações , Oxidantes/metabolismo , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Canais de Cátion TRPV/metabolismo , Análise de Variância , Animais , Carragenina , Modelos Animais de Doenças , Edema/etiologia , Edema/patologia , Feminino , Peróxido de Hidrogênio/efeitos adversos , Hiperalgesia/etiologia , Hiperalgesia/genética , Hiperalgesia/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia , Oxidantes/efeitos adversos , Medição da Dor/métodos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tempo de Reação/efeitos dos fármacos , Medula Espinal/metabolismo , Canais de Cátion TRPV/deficiência , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA