Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1764, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409121

RESUMO

Analyzing immune cell interactions in the bone marrow is vital for understanding hematopoiesis and bone homeostasis. Three-dimensional analysis of the complete, intact bone marrow within the cortex of whole long bones remains a challenge, especially at subcellular resolution. We present a method that stabilizes the marrow and provides subcellular resolution of fluorescent signals throughout the murine femur, enabling identification and spatial characterization of hematopoietic and stromal cell subsets. By combining a pre-processing algorithm for stripe artifact removal with a machine-learning approach, we demonstrate reliable cell segmentation down to the deepest bone marrow regions. This reveals age-related changes in the marrow. It highlights the interaction between CX3CR1+ cells and the vascular system in homeostasis, in contrast to other myeloid cell types, and reveals their spatial characteristics after injury. The broad applicability of this method will contribute to a better understanding of bone marrow biology.


Assuntos
Células da Medula Óssea , Medula Óssea , Camundongos , Animais , Células da Medula Óssea/metabolismo , Células-Tronco Hematopoéticas , Hematopoese , Células Estromais
2.
Nat Microbiol ; 8(7): 1252-1266, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349587

RESUMO

Herpes simplex encephalitis is a life-threatening disease of the central nervous system caused by herpes simplex viruses (HSVs). Following standard of care with antiviral acyclovir treatment, most patients still experience various neurological sequelae. Here we characterize HSV-1 infection of human brain organoids by combining single-cell RNA sequencing, electrophysiology and immunostaining. We observed strong perturbations of tissue integrity, neuronal function and cellular transcriptomes. Under acyclovir treatment viral replication was stopped, but did not prevent HSV-1-driven defects such as damage of neuronal processes and neuroepithelium. Unbiased analysis of pathways deregulated upon infection revealed tumour necrosis factor activation as a potential causal factor. Combination of anti-inflammatory drugs such as necrostatin-1 or bardoxolone methyl with antiviral treatment prevented the damages caused by infection, indicating that tuning the inflammatory response in acute infection may improve current therapeutic strategies.


Assuntos
Encefalite Viral , Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/genética , Herpes Simples/complicações , Herpes Simples/tratamento farmacológico , Aciclovir/farmacologia , Aciclovir/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Encefalite Viral/tratamento farmacológico , Organoides
3.
Neuron ; 111(14): 2184-2200.e7, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37192624

RESUMO

Vagal sensory neurons monitor mechanical and chemical stimuli in the gastrointestinal tract. Major efforts are underway to assign physiological functions to the many distinct subtypes of vagal sensory neurons. Here, we use genetically guided anatomical tracing, optogenetics, and electrophysiology to identify and characterize vagal sensory neuron subtypes expressing Prox2 and Runx3 in mice. We show that three of these neuronal subtypes innervate the esophagus and stomach in regionalized patterns, where they form intraganglionic laminar endings. Electrophysiological analysis revealed that they are low-threshold mechanoreceptors but possess different adaptation properties. Lastly, genetic ablation of Prox2 and Runx3 neurons demonstrated their essential roles for esophageal peristalsis in freely behaving mice. Our work defines the identity and function of the vagal neurons that provide mechanosensory feedback from the esophagus to the brain and could lead to better understanding and treatment of esophageal motility disorders.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core , Esôfago , Motilidade Gastrointestinal , Proteínas de Homeodomínio , Células Receptoras Sensoriais , Nervo Vago , Animais , Camundongos , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Esôfago/inervação , Esôfago/metabolismo , Esôfago/fisiologia , Motilidade Gastrointestinal/genética , Motilidade Gastrointestinal/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mecanorreceptores/fisiologia , Neurônios Aferentes/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Estômago/inervação , Estômago/metabolismo , Estômago/fisiologia , Nervo Vago/fisiologia
4.
Science ; 377(6606): eabo1984, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926050

RESUMO

Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Análise de Célula Única , Transcriptoma , Displasia Arritmogênica Ventricular Direita/genética , Atlas como Assunto , Cardiomiopatia Dilatada/genética , Núcleo Celular/genética , Insuficiência Cardíaca/genética , Ventrículos do Coração , Humanos , RNA-Seq
5.
J Cell Sci ; 135(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34918745

RESUMO

Condensin is a multi-subunit structural maintenance of chromosomes (SMC) complex that binds to and compacts chromosomes. Here, we addressed the regulation of condensin binding dynamics using Caenorhabditis elegans condensin DC, which represses X chromosomes in hermaphrodites for dosage compensation. We established fluorescence recovery after photobleaching (FRAP) using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes DPY-27 binding to X chromosomes. Next, we performed FRAP in the background of several chromatin modifier mutants that cause varying degrees of X chromosome derepression. The greatest effect was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of condensin DC reduced from ∼30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Hi-C sequencing data from the dpy-21 null mutant showed little change compared to wild-type data, uncoupling Hi-C-measured long-range DNA contacts from transcriptional repression of the X chromosomes. Taken together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression.


Assuntos
Proteínas de Caenorhabditis elegans , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA , Histona Desmetilases , Histonas/genética , Lisina , Complexos Multiproteicos , Cromossomo X/metabolismo
6.
Elife ; 72018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652249

RESUMO

Newly-formed synaptic vesicles (SVs) are rapidly acidified by vacuolar adenosine triphosphatases (vATPases), generating a proton electrochemical gradient that drives neurotransmitter loading. Clathrin-mediated endocytosis is needed for the formation of new SVs, yet it is unclear when endocytosed vesicles acidify and refill at the synapse. Here, we isolated clathrin-coated vesicles (CCVs) from mouse brain to measure their acidification directly at the single vesicle level. We observed that the ATP-induced acidification of CCVs was strikingly reduced in comparison to SVs. Remarkably, when the coat was removed from CCVs, uncoated vesicles regained ATP-dependent acidification, demonstrating that CCVs contain the functional vATPase, yet its function is inhibited by the clathrin coat. Considering the known structures of the vATPase and clathrin coat, we propose a model in which the formation of the coat surrounds the vATPase and blocks its activity. Such inhibition is likely fundamental for the proper timing of SV refilling.


Assuntos
Trifosfato de Adenosina/metabolismo , Vesículas Revestidas por Clatrina/enzimologia , Vesículas Revestidas por Clatrina/metabolismo , Clatrina/metabolismo , Vesículas Sinápticas/enzimologia , Vesículas Sinápticas/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Hidrólise , Camundongos
7.
Methods Mol Biol ; 1538: 261-275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27943196

RESUMO

In this chapter, we introduce the combined use of FRET-based biosensors and synaptic markers as an effective tool for studying intracellular signaling pathways in small synaptic terminals of neuronal cells. The approach is based on the unmixing of excitation/emission spectral fingerprints of a FRET donor and acceptor pair, as well as a lipophilic styryl dye, FM1-43, loaded into presynaptic terminals. The destaining of FM1-43 during evoked release provides a map to guide the sampling of fluorescence for FRET analysis. In the example presented here, we measure the temporal dynamics of cAMP at the presynaptic terminal using an intramolecular CFP/YFP-based FRET sensor. However, this methodology can be applied to investigate the spatial and temporal regulation of a variety of signaling processes, as well as dynamic changes in protein-protein interaction.


Assuntos
Técnicas Biossensoriais , Imagem Molecular/métodos , Neurônios/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Animais , Biomarcadores , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Genes Reporter , Processamento de Imagem Assistida por Computador , Ratos
8.
J Physiol ; 592(22): 4863-75, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25194050

RESUMO

Significantly more Ca(2+) influx is required for eliciting release of neurotransmitter during whole cell patch clamp recording in the Calyx of Held, when gluconate with 3 mm free ATP is used as pipette filling solution, as compared to a methanesulfonate-based solution with excess Mg(2+). This reduction in efficiency of Ca(2+) in eliciting release is due to low-affinity Ca(2+) binding of both gluconate and ATP(2-) anions. To study these effects we developed a simple fluorimeteric titration procedure, which reports the dissociation constant, KD, of a given Ca(2+) indicator dye, multiplied by 1 plus the sum of Ca(2+) binding ratios of any anions, which act as low-affinity Ca(2+) ligands. For solutions without Ca(2+) binding anions we find KD values for Fura2FF ranging from 11.5 ± 1.7 to 15.6 ± 7.47 µm depending on the dominant anion used. For Fura6F and KCl-based solutions we find KD = 17.8 ± 1.3 µm. For solutions with gluconate as the main anion and for solutions that contain nucleotides, such as ATP and GTP, we find much higher values for the product. Assuming that the KD of the indicator dye is equal to that of KCl-based solutions we calculate the summed Ca(2+) binding ratios and find a value of 3.55 for a solution containing 100 mm potassium gluconate and 4 mm ATP. Gluconate contributes a value of 1.75 to this number, while the contribution of ATP depends strongly on the presence of Mg(2+) and varies from 0.8 (with excess Mg(2+)) to 13.8 (in the presence of 3 mm free ATP). Methanesulfonate has negligible Ca(2+) binding capacity. These results explain the reduced efficiency of Ca(2+) influx in the presence of gluconate or nucleotides, as these anions are expected to intercept Ca(2+) ions at short distance.


Assuntos
Trifosfato de Adenosina/farmacologia , Cálcio/farmacologia , Fluorometria/métodos , Gluconatos/farmacologia , Guanosina Trifosfato/farmacologia , Sinapses/metabolismo , Algoritmos , Animais , Soluções Tampão , Células Cultivadas , Feminino , Corantes Fluorescentes/farmacocinética , Magnésio/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Titulometria/métodos
9.
PLoS One ; 8(4): e61096, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613792

RESUMO

We have developed a novel method for multi-color spectral FRET analysis which is used to study a system of three independent FRET-based molecular sensors composed of the combinations of only three fluorescent proteins. This method is made possible by a novel routine for computing the 3-D excitation/emission spectral fingerprint of FRET from reference measurements of the donor and acceptor alone. By unmixing the 3D spectrum of the FRET sample, the total relative concentrations of the fluorophores and their scaled FRET efficiencies are directly measured, from which apparent FRET efficiencies can be computed. If the FRET sample is composed of intramolecular FRET sensors it is possible to determine the total relative concentration of the sensors and then estimate absolute FRET efficiency of each sensor. Using multiple tandem constructs with fixed FRET efficiency as well as FRET-based calcium sensors with novel fluorescent protein combinations we demonstrate that the computed FRET efficiencies are accurate and changes in these quantities occur without crosstalk. We provide an example of this method's potential by demonstrating simultaneous imaging of spatially colocalized changes in [Ca(2+)], [cAMP], and PKA activity.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Cálcio/análise , AMP Cíclico/análise , Proteínas Quinases Dependentes de AMP Cíclico/análise
10.
J Cell Sci ; 125(Pt 10): 2486-99, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22357950

RESUMO

Serotonin receptors 5-HT(1A) and 5-HT(7) are highly coexpressed in brain regions implicated in depression. However, their functional interaction has not been established. In the present study we show that 5-HT(1A) and 5-HT(7) receptors form heterodimers both in vitro and in vivo. Foerster resonance energy transfer-based assays revealed that, in addition to heterodimers, homodimers composed either of 5-HT(1A) or 5-HT(7) receptors together with monomers coexist in cells. The highest affinity for complex formation was obtained for the 5-HT(7)-5-HT(7) homodimers, followed by the 5-HT(7)-5-HT(1A) heterodimers and 5-HT(1A)-5-HT(1A) homodimers. Functionally, heterodimerization decreases 5-HT(1A)-receptor-mediated activation of G(i) protein without affecting 5-HT(7)-receptor-mediated signalling. Moreover, heterodimerization markedly decreases the ability of the 5-HT(1A) receptor to activate G-protein-gated inwardly rectifying potassium channels in a heterologous system. The inhibitory effect on such channels was also preserved in hippocampal neurons, demonstrating a physiological relevance of heteromerization in vivo. In addition, heterodimerization is crucially involved in initiation of the serotonin-mediated 5-HT(1A) receptor internalization and also enhances the ability of the 5-HT(1A) receptor to activate the mitogen-activated protein kinases. Finally, we found that production of 5-HT(7) receptors in the hippocampus continuously decreases during postnatal development, indicating that the relative concentration of 5-HT(1A)-5-HT(7) heterodimers and, consequently, their functional importance undergoes pronounced developmental changes.


Assuntos
Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Transdução de Sinais , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Dimerização , Camundongos , Neurônios/metabolismo , Ligação Proteica , Transporte Proteico , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/genética , Receptores de Serotonina/química , Receptores de Serotonina/genética
11.
Biophys J ; 99(7): 2344-54, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20923670

RESUMO

Molecular sensors based on intramolecular Förster resonance energy transfer (FRET) have become versatile tools to monitor regulatory molecules in living tissue. However, their use is often compromised by low signal strength and excessive noise. We analyzed signal/noise (SNR) aspects of spectral FRET analysis methods, with the following conclusions: The most commonly used method (measurement of the emission ratio after a single short wavelength excitation) is optimal in terms of signal/noise, if only relative changes of this uncalibrated ratio are of interest. In the case that quantitative data on FRET efficiencies are required, these can be calculated from the emission ratio and some calibration parameters, but at reduced SNR. Lux-FRET, a recently described method for spectral analysis of FRET data, allows one to do so in three different ways, each based on a ratio of two out of three measured fluorescence signals (the donor and acceptor signal during a short-wavelength excitation and the acceptor signal during long wavelength excitation). Lux-FRET also allows for calculation of the total abundance of donor and acceptor fluorophores. The SNR for all these quantities is lower than that of the plain emission ratio due to unfavorable error propagation. However, if ligand concentration is calculated either from lux-FRET values or else, after its calibration, from the emission ratio, SNR for both analysis modes is very similar. Likewise, SNR values are similar, if the noise of these quantities is related to the expected dynamic range. We demonstrate these relationships based on data from an Epac-based cAMP sensor and discuss how the SNR changes with the FRET efficiency and the number of photons collected.


Assuntos
Técnicas Biossensoriais/instrumentação , Transferência Ressonante de Energia de Fluorescência/instrumentação , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Fotodegradação , Fótons , Fatores de Tempo
12.
Glycoconj J ; 26(6): 749-56, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18853255

RESUMO

In the present study we analyze the oligomerization of the 5-HT1A receptor within living cells at the sub-cellular level. Using a 2-excitation Förster Resonance Energy Transfer (FRET) method combined with spectral microscopy we are able to estimate the efficiency of energy transfer based on donor quenching as well as acceptor sensitization between CFP-and YFP-tagged 5-HT1A receptors at the plasma membrane. Through the analysis of the level of apparent FRET efficiency over the various relative amounts of donor and acceptor, as well as over a range of total surface expressions of the receptor, we verify the specific interaction of these receptors. Furthermore we study the role of acylation in this interaction through measurements of a palmitoylation-deficient 5-HT(1A) receptor mutant. Palmitoylation increases the tendency of a receptor to localize in lipid rich microdomains of the plasma membrane. This increases the effective surface density of the receptor and provides for a higher level of stochastic interaction.


Assuntos
Membrana Celular/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Animais , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Lipoilação/genética , Camundongos , Multimerização Proteica
13.
Biochim Biophys Acta ; 1783(8): 1503-16, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18381076

RESUMO

In the present study we analyzed the oligomerization state of the serotonin 5-HT1A receptor and studied oligomerization dynamics in living cells. We also investigated the role of receptor palmitoylation in this process. Biochemical analysis performed in neuroblastoma N1E-115 cells demonstrated that both palmitoylated and non-palmitoylated 5-HT1A receptors form homo-oligomers and that the prevalent receptor species at the plasma membrane are dimers. A combination of an acceptor-photobleaching FRET approach with fluorescence lifetime measurements verified the interaction of CFP- and YFP-labeled wild-type as well as acylation-deficient 5-HT1A receptors at the plasma membrane of living cells. Using a novel FRET technique based on the spectral analysis we also confirmed the specific nature of receptor oligomerization. The analysis of oligomerization dynamics revealed that apparent FRET efficiency measured for wild-type oligomers significantly decreased in response to agonist stimulation, and our combined results suggest that this decrease was mediated by accumulation of FRET-negative complexes rather than by dissociation of oligomers to monomers. In contrast, the agonist-mediated decrease of FRET signal was completely abolished in oligomers composed by non-palmitoylated receptor mutants, demonstrating the importance of palmitoylation in modulation of the structure of oligomers.


Assuntos
Receptor 5-HT1A de Serotonina/química , Animais , Linhagem Celular Tumoral , Dimerização , Transferência Ressonante de Energia de Fluorescência , Lipoilação , Microdomínios da Membrana/química , Camundongos , Fotodegradação , Conformação Proteica , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA