Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Biophys J ; 121(23): 4452-4466, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36335429

RESUMO

Number and brightness (N&B) analysis is a fluorescence spectroscopy technique to quantify oligomerization of the mobile fraction of proteins. Accurate results, however, rely on a good knowledge of nonfluorescent states of the fluorescent labels, especially of fluorescent proteins, which are widely used in biology. Fluorescent proteins have been characterized for confocal, but not camera-based, N&B, which allows, in principle, faster measurements over larger areas. Here, we calibrate camera-based N&B implemented on a total internal reflection fluorescence microscope for various fluorescent proteins by determining their propensity to be fluorescent. We then apply camera-based N&B in live CHO-K1 cells to determine the oligomerization state of the epidermal growth factor receptor (EGFR), a transmembrane receptor tyrosine kinase that is a crucial regulator of cell proliferation and survival with implications in many cancers. EGFR oligomerization in resting cells and its regulation by the plasma membrane microenvironment are still under debate. Therefore, we investigate the effects of extrinsic factors, including membrane organization, cytoskeletal structure, and ligand stimulation, and intrinsic factors, including mutations in various EGFR domains, on the receptor's oligomerization. Our results demonstrate that EGFR oligomerization increases with removal of cholesterol or sphingolipids or the disruption of GM3-EGFR interactions, indicating raft association. However, oligomerization is not significantly influenced by the cytoskeleton. Mutations in either I706/V948 residues or E685/E687/E690 residues in the kinase and juxtamembrane domains, respectively, lead to a decrease in oligomerization, indicating their necessity for EGFR dimerization. Finally, EGFR phosphorylation is oligomerization dependent, involving the extracellular domain (550-580 residues). Coupled with biochemical investigations, camera-based N&B indicates that EGFR oligomerization and phosphorylation are the outcomes of several molecular interactions involving the lipid content and structure of the cell membrane and multiple residues in the kinase, juxtamembrane, and extracellular domains.


Assuntos
Receptores ErbB
2.
J Biol Chem ; 298(11): 102570, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209827

RESUMO

Dengue virus (DENV) is a flavivirus causing an estimated 390 million infections per year around the world. Despite the immense global health and economic impact of this virus, its true receptor(s) for internalization into live cells has not yet been identified, and no successful antivirals or treatments have been isolated to this date. This study aims to improve our understanding of virus entry routes by exploring the sialic acid-based cell surface molecule GM1a and its role in DENV infection. We studied the interaction of the virus with GM1a using fluorescence correlation spectroscopy, fluorescence crosscorrelation spectroscopy, imaging fluorescence correlation spectroscopy, amide hydrogen/deuterium exchange mass spectrometry, and isothermal titration calorimetry. Additionally, we explored the effect of this interaction on infectivity and movement of the virus during infection was explored using plaque assay and fluorescence-based imaging and single particle tracking. GM1a was deemed to interact with DENV at domain I (DI) and domain II (DII) of the E protein of the protein coat at quaternary contacts of a fully assembled virus, leading to a 10-fold and 7-fold increase in infectivity for DENV1 and DENV2 in mammalian cell systems, respectively. We determined that the interaction of the virus with GM1a triggers a speeding up of virus movement on live cell surfaces, possibly resulting from a reduction in rigidity of cellular rafts during infection. Collectively, our results suggest that GM1a functions as a coreceptor/attachment factor for DENV during infection in mammalian systems.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Animais , Humanos , Vírus da Dengue/metabolismo , Proteínas do Envelope Viral/metabolismo , Gangliosídeos/metabolismo , Flavivirus/metabolismo , Mamíferos/metabolismo
3.
Front Cell Dev Biol ; 9: 671218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124053

RESUMO

Wnt proteins are a family of hydrophobic cysteine-rich secreted glycoproteins that regulate a gamut of physiological processes involved in embryonic development and tissue homeostasis. Wnt ligands are post-translationally lipidated in the endoplasmic reticulum (ER), a step essential for its membrane targeting, association with lipid domains, secretion and interaction with receptors. However, at which residue(s) Wnts are lipidated remains an open question. Initially it was proposed that Wnts are lipid-modified at their conserved cysteine and serine residues (C77 and S209 in mWnt3a), and mutations in either residue impedes its secretion and activity. Conversely, some studies suggested that serine is the only lipidated residue in Wnts, and substitution of serine with alanine leads to retention of Wnts in the ER. In this work, we investigate whether in zebrafish neural tissues Wnt3 is lipidated at one or both conserved residues. To this end, we substitute the homologous cysteine and serine residues of zebrafish Wnt3 with alanine (C80A and S212A) and investigate their influence on Wnt3 membrane organization, secretion, interaction and signaling activity. Collectively, our results indicate that Wnt3 is lipid modified at its C80 and S212 residues. Further, we find that lipid addition at either C80 or S212 is sufficient for its secretion and membrane organization, while the lipid modification at S212 is indispensable for receptor interaction and signaling.

4.
Nat Commun ; 12(1): 1748, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741958

RESUMO

Super-resolution microscopy and single molecule fluorescence spectroscopy require mutually exclusive experimental strategies optimizing either temporal or spatial resolution. To achieve both, we implement a GPU-supported, camera-based measurement strategy that highly resolves spatial structures (~100 nm), temporal dynamics (~2 ms), and molecular brightness from the exact same data set. Simultaneous super-resolution of spatial and temporal details leads to an improved precision in estimating the diffusion coefficient of the actin binding polypeptide Lifeact and corrects structural artefacts. Multi-parametric analysis of epidermal growth factor receptor (EGFR) and Lifeact suggests that the domain partitioning of EGFR is primarily determined by EGFR-membrane interactions, possibly sub-resolution clustering and inter-EGFR interactions but is largely independent of EGFR-actin interactions. These results demonstrate that pixel-wise cross-correlation of parameters obtained from different techniques on the same data set enables robust physicochemical parameter estimation and provides biological knowledge that cannot be obtained from sequential measurements.


Assuntos
Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Actinas/metabolismo , Animais , Células CHO , Membrana Celular , Cricetulus , Difusão , Receptores ErbB/metabolismo , Fluorescência , Humanos , Espectrometria de Fluorescência/métodos
5.
mBio ; 11(5)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994320

RESUMO

Estrogen, a major female sex steroid hormone, has been shown to promote the selection of mucoid Pseudomonas aeruginosa in the airways of patients with chronic respiratory diseases, including cystic fibrosis. This results in long-term persistence, poorer clinical outcomes, and limited therapeutic options. In this study, we demonstrate that at physiological concentrations, sex steroids, including testosterone and estriol, induce membrane stress responses in P. aeruginosa This is characterized by increased virulence and consequent inflammation and release of proinflammatory outer membrane vesicles promoting in vivo persistence of the bacteria. The steroid-induced P. aeruginosa response correlates with the molecular polarity of the hormones and membrane fluidic properties of the bacteria. This novel mechanism of interaction between sex steroids and P. aeruginosa explicates the reported increased disease severity observed in females with cystic fibrosis and provides evidence for the therapeutic potential of the modulation of sex steroids to achieve better clinical outcomes in patients with hormone-responsive strains.IMPORTANCE Molecular mechanisms by which sex steroids interact with P. aeruginosa to modulate its virulence have yet to be reported. Our work provides the first characterization of a steroid-induced membrane stress mechanism promoting P. aeruginosa virulence, which includes the release of proinflammatory outer membrane vesicles, resulting in inflammation, host tissue damage, and reduced bacterial clearance. We further demonstrate that at nanomolar (physiological) concentrations, male and female sex steroids promote virulence in clinical strains of P. aeruginosa based on their dynamic membrane fluidic properties. This work provides, for the first-time, mechanistic insight to better understand and predict the P. aeruginosa related response to sex steroids and explain the interindividual patient variability observed in respiratory diseases such as cystic fibrosis that are complicated by gender differences and chronic P. aeruginosa infection.


Assuntos
Membrana Externa Bacteriana/efeitos dos fármacos , Fibrose Cística/complicações , Hormônios Esteroides Gonadais/metabolismo , Pseudomonas aeruginosa/patogenicidade , Estresse Fisiológico/efeitos dos fármacos , Alginatos/metabolismo , Animais , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Estradiol/química , Estradiol/farmacologia , Feminino , Hormônios Esteroides Gonadais/farmacologia , Humanos , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pseudomonas aeruginosa/genética , Fatores Sexuais , Testosterona/química , Testosterona/farmacologia , Virulência
6.
Biophys J ; 117(9): 1615-1625, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31590891

RESUMO

How nuclear proteins diffuse and find their targets remains a key question in the transcription field. Dynamic proteins in the nucleus are classically subdiffusive and undergo anomalous diffusion, yet the underlying physical mechanisms are still debated. In this study, we explore the contribution of interactions to the generation of anomalous diffusion by the means of fluorescence spectroscopy and simulation. Using interaction-deficient mutants, our study indicates that HEXIM1 interactions with both 7SK RNA and positive transcription elongation factor b are critical for HEXIM1 subdiffusion and thus provides evidence of the effects of protein-RNA interaction on molecular diffusion. Numerical simulations allowed us to establish that the proportions of distinct oligomeric HEXIM1 subpopulations define the apparent anomaly parameter of the whole population. Slight changes in the proportions of these oligomers can lead to significant shifts in the diffusive features and recapitulate the modifications observed in cells with the various interaction-deficient mutants. By combining simulations and experiments, our work opens new prospects in which the anomaly α coefficient in diffusion becomes a helpful tool to infer alterations in molecular interactions.


Assuntos
Núcleo Celular/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Difusão , Humanos , Modelos Moleculares , Ligação Proteica , RNA Longo não Codificante/genética , Espectrometria de Fluorescência
7.
Structure ; 27(4): 618-630.e4, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30686666

RESUMO

Dengue is a mosquito-borne virus with dire health and economic impacts. Dengue is responsible for an estimated 390 million infections per year, with dengue 2 (DENV2) being the most virulent strain among the four serotypes. Interestingly, it is also in strains of this serotype that temperature-dependent large-scale morphological changes, termed "breathing," have been observed. Although the structure of these morphologies has been solved to 3.5-Å resolution, the dynamics of the viral envelope are unknown. Here, we combine fluorescence and mass spectrometry with molecular dynamics simulations to provide insights into DENV2 (NGC strain) structural dynamics in comparison with DENV1 (PVP 159). We observe hitherto unseen conformational changes and structural dynamics of the DENV2 envelope that are influenced by both temperature and divalent cations. Our results show that for DENV2 and DENV1 the intrinsic dynamics, but not the specific morphologies, are correlated with viral infectivity.


Assuntos
Cálcio/química , Vírus da Dengue/patogenicidade , Vírus da Dengue/ultraestrutura , Magnésio/química , Proteínas do Envelope Viral/química , Aedes , Animais , Sítios de Ligação , Cálcio/metabolismo , Cátions Bivalentes , Linhagem Celular , Vírus da Dengue/classificação , Vírus da Dengue/genética , Fibroblastos/virologia , Expressão Gênica , Cinética , Magnésio/metabolismo , Mesocricetus , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes , Sorogrupo , Temperatura , Termodinâmica , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura , Virulência
8.
J Chem Theory Comput ; 14(7): 3920-3932, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29874075

RESUMO

During host cell infection by flaviviruses such as dengue and Zika, acidic pH within the endosome triggers a conformational change in the envelope protein on the outer surface of the virion. This results in exposure of the ∼15 residue fusion peptide (FP) region, freeing it to induce fusion between the viral and endosomal membranes. A better understanding of the conformational dynamics of the FP in the presence of membranes, and the basis for its selectivity for anionic lipid species present within the endosome, would facilitate its therapeutic targeting with antiviral drugs and antibodies. In this work, multiscale modeling, simulations, and free energy calculations (including a total of ∼75 µs of atomic-resolution sampling), combined with imaging total internal reflection fluorescence correlation spectroscopy experiments, were employed to investigate the mechanisms of interaction of FP variants with lipid bilayers. Wild-type FPs (in the presence or absence of a fluorescein isothiocyanate tag) were shown to possess a funneled conformational landscape governing their exit from solvent and penetration into the lipid phase and to exhibit an electrostatically favored >2-fold affinity for membranes containing anionic species over purely zwitterionic ones. Conversely, the landscape was abolished in a nonfunctional point mutant, leading to a 2-fold drop in host membrane affinity. Collectively, our data reveal how the highly conserved flavivirus FP has evolved to funnel its conformational space toward a maximally fusogenic state anchored within the endosomal membrane. Therapeutically targeting the accessible ensemble of FP conformations may represent a new, rational strategy for blocking viral infection.


Assuntos
Infecções por Flavivirus/metabolismo , Flavivirus/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Sequência de Aminoácidos , Flavivirus/química , Infecções por Flavivirus/virologia , Interações Hospedeiro-Patógeno , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/química , Conformação Proteica , Termodinâmica , Proteínas Virais de Fusão/química
9.
Biochem J ; 475(6): 1075-1089, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29487166

RESUMO

Oct4 and Sox2 regulate the expression of target genes such as Nanog, Fgf4, and Utf1, by binding to their respective regulatory motifs. Their functional cooperation is reflected in their ability to heterodimerize on adjacent cis regulatory motifs, the composite Sox/Oct motif. Given that Oct4 and Sox2 regulate many developmental genes, a quantitative analysis of their synergistic action on different Sox/Oct motifs would yield valuable insights into the mechanisms of early embryonic development. In the present study, we measured binding affinities of Oct4 and Sox2 to different Sox/Oct motifs using fluorescence correlation spectroscopy. We found that the synergistic binding interaction is driven mainly by the level of Sox2 in the case of the Fgf4 Sox/Oct motif. Taking into account Sox2 expression levels fluctuate more than Oct4, our finding provides an explanation on how Sox2 controls the segregation of the epiblast and primitive endoderm populations within the inner cell mass of the developing rodent blastocyst.


Assuntos
Blastocisto/metabolismo , Fatores de Transcrição SOXB1/genética , Animais , Células CHO , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Cricetinae , Cricetulus , Embrião de Mamíferos , Endoderma/embriologia , Endoderma/metabolismo , Feminino , Fator 4 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Gravidez , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/genética
10.
PLoS One ; 13(3): e0192572, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29509805

RESUMO

Kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. Here, we measured the co-migration between protein pairs of the constitutive centromere associated network (CCAN) and hMis12 complexes by fluorescence cross-correlation spectroscopy (FCCS) in the nucleoplasm outside centromeres in living human interphase cells. FCCS is a method that can tell if in living cells two differently fluorescently labelled molecules migrate independently, or co-migrate and thus are part of one and the same soluble complex. We also determined the apparent dissociation constants (Kd) of the hetero-dimers CENP-T/W and CENP-S/X. We measured co-migration between CENP-K and CENP-T as well as between CENP-M and CENP-T but not between CENP-T/W and CENP-S/X. Furthermore, CENP-C co-migrated with CENP-H, and CENP-K with CENP-N as well as with CENP-L. Thus, in the nucleoplasm outside centromeres, a large fraction of the CENP-H/I/K/M proteins interact with CENP-C, CENP-N/L and CENP-T/W but not with CENP-S/X. Our FCCS analysis of the Mis12 complex showed that hMis12, Nsl1, Dsn1 and Nnf1 also form a complex outside centromeres of which at least hMis12 associated with the CENP-C/H/I/K/M/T/W/N/L complex.


Assuntos
Centrômero/metabolismo , Interfase , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Centrômero/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
FEBS J ; 284(15): 2513-2526, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28626941

RESUMO

While the cytosolic events of Wnt/ß-catenin signaling (canonical Wnt signaling) pathway have been widely studied, only little is known about the molecular mechanisms involved in Wnt binding to its receptors at the plasma membrane. Here, we reveal the influence of the immediate plasma membrane environment on the canonical Wnt-receptor interaction. While the receptors are distributed both in ordered and disordered environments, Wnt binding to its receptors selectively occurs in more ordered membrane environments which appear to cointernalize with the Wnt-receptor complex. Moreover, Wnt/ß-catenin signaling is significantly reduced when the membrane order is disturbed by specific inhibitors of certain lipids that prefer to localize at the ordered environments. Similarly, a reduction in Wnt signaling activity is observed in Niemann-Pick Type C disease cells where trafficking of ordered membrane lipid components to the plasma membrane is genetically impaired. We thus conclude that ordered plasma membrane environments are essential for binding of canonical Wnts to their receptor complexes and downstream signaling activity.


Assuntos
Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Microdomínios da Membrana/metabolismo , Receptores Wnt/agonistas , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Proteína Wnt3/metabolismo , Proteína Wnt3A/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Células CHO , Linhagem Celular Tumoral , Células Cultivadas , Cricetulus , Proteínas do Citoesqueleto/genética , Embrião não Mamífero/metabolismo , Genes Reporter , Células HEK293 , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/agonistas , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/patologia , Receptores Wnt/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Wnt/genética , Proteína Wnt3/genética , Proteína Wnt3A/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
12.
J Biol Chem ; 292(27): 11262-11279, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28495884

RESUMO

The F1F0 -ATP (F-ATP) synthase is essential for growth of Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). In addition to their synthase function most F-ATP synthases possess an ATP-hydrolase activity, which is coupled to proton-pumping activity. However, the mycobacterial enzyme lacks this reverse activity, but the reason for this deficiency is unclear. Here, we report that a Mycobacterium-specific, 36-amino acid long C-terminal domain in the nucleotide-binding subunit α (Mtα) of F-ATP synthase suppresses its ATPase activity and determined the mechanism of suppression. First, we employed vesicles to show that in intact membrane-embedded mycobacterial F-ATP synthases deletion of the C-terminal domain enabled ATPase and proton-pumping activity. We then generated a heterologous F-ATP synthase model system, which demonstrated that transfer of the mycobacterial C-terminal domain to a standard F-ATP synthase α subunit suppresses ATPase activity. Single-molecule rotation assays indicated that the introduction of this Mycobacterium-specific domain decreased the angular velocity of the power-stroke after ATP binding. Solution X-ray scattering data and NMR results revealed the solution shape of Mtα and the 3D structure of the subunit α C-terminal peptide 521PDEHVEALDEDKLAKEAVKV540 of M. tubercolosis (Mtα(521-540)), respectively. Together with cross-linking studies, the solution structural data lead to a model, in which Mtα(521-540) comes in close proximity with subunit γ residues 104-109, whose interaction may influence the rotation of the camshaft-like subunit γ. Finally, we propose that the unique segment Mtα(514-549), which is accessible at the C terminus of mycobacterial subunit α, is a promising drug epitope.


Assuntos
Adaptação Fisiológica , Proteínas de Bactérias/química , Evolução Molecular , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Peptídeos/química , ATPases Translocadoras de Prótons/química , Proteínas de Bactérias/genética , Mycobacterium tuberculosis/genética , Ressonância Magnética Nuclear Biomolecular , Peptídeos/genética , ATPases Translocadoras de Prótons/genética , Difração de Raios X
13.
Nat Commun ; 8: 14339, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186093

RESUMO

Dengue virus serotype 2 (DENV2) alone undergoes structural expansion at 37 °C (associated with host entry), despite high sequence and structural homology among the four known serotypes. The basis for this differential expansion across strains and serotypes is unknown and necessitates mapping of the dynamics of dengue whole viral particles to describe their coordinated motions and conformational changes when exposed to host-like environments. Here we capture the dynamics of intact viral particles of two serotypes, DENV1 and DENV2, by amide hydrogen/deuterium exchange mass spectrometry (HDXMS) and time resolved Förster Resonance Energy Transfer. Our results show temperature-dependent dynamics hotspots on DENV2 and DENV1 particles with DENV1 showing expansion at 40 °C but not at 37 °C. HDXMS measurement of virion dynamics in solution offers a powerful approach to identify potential epitopes, map virus-antibody complex structure and dynamics, and test effects of multiple host-specific perturbations on viruses and virus-antibody complexes.


Assuntos
Vírus da Dengue/química , Conformação Molecular , Temperatura , Vírion/química , Sequência de Aminoácidos , Anticorpos Antivirais/imunologia , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Medição da Troca de Deutério , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Conformação Proteica , Sorogrupo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Vírion/genética , Vírion/fisiologia
14.
Biochim Biophys Acta Biomembr ; 1859(9 Pt A): 1483-1492, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27998689

RESUMO

The action and interaction of membrane receptor proteins take place within the plasma membrane. The plasma membrane, however, is not a passive matrix. It rather takes an active role and regulates receptor distribution and function by its composition and the interaction of its lipid components with embedded and surrounding proteins. Furthermore, it is not a homogenous fluid but contains lipid and protein domains of various sizes and characteristic lifetimes which are important in regulating receptor function and signaling. The precise lateral organization of the plasma membrane, the differences between the inner and outer leaflet, and the influence of the cytoskeleton are still debated. Furthermore, there is a lack of comparisons of the organization and dynamics of the plasma membrane of different cell types. Therefore, we used four different specific membrane markers to test the lateral organization, the differences between the inner and outer membrane leaflet, and the influence of the cytoskeleton of up to five different cell lines, including Chinese hamster ovary (CHO-K1), Human cervical carcinoma (HeLa), neuroblastoma (SH-SY5Y), fibroblast (WI-38) and rat basophilic leukemia (RBL-2H3) cells by Imaging Total Internal Reflection (ITIR)-Fluorescence Correlation Spectroscopy (FCS). We measure diffusion in the temperature range of 298-310K to measure the Arrhenius activation energy (EArr) of diffusion and apply the FCS diffusion law to obtain information on the spatial organization of the probe molecules on the various cell membranes. Our results show clear differences of the FCS diffusion law and EArr for the different probes in dependence of their localization. These differences are similar in the outer and inner leaflet of the membrane. However, these values can differ significantly between different cell lines raising the question how molecular plasma membrane events measured in different cell lines can be compared. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Células CHO , Membrana Celular/genética , Cricetinae , Cricetulus , Citoesqueleto/genética , Fibroblastos/metabolismo , Células HeLa , Humanos , Bicamadas Lipídicas/química , Microdomínios da Membrana/genética , Ratos , Espectrometria de Fluorescência
15.
Biophys J ; 111(10): 2241-2254, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851946

RESUMO

The epidermal growth factor receptor (EGFR) is a prototypical receptor tyrosine kinase involved in cell growth and proliferation and associated with various cancers. It is commonly assumed that after activation by binding of epidermal growth factor to the extracellular domain it dimerizes, followed by autophosphorylation of tyrosine residues at the intracellular domain. However, its oligomerization state before activation is controversial. In the absence of ligands, EGFR has been found in various, inconsistent amounts of monomeric, inactive dimeric, and oligomeric forms. In addition, evidence suggests that the active conformation is not a simple dimer but contains higher oligomers. As experiments in the past have been conducted at different conditions, we investigate here the influence of cell lines (HEK293, COS-7, and CHO-K1), temperature (room temperature and 37°C), and membrane localization on the quantitation of preformed dimers using SW-FCCS, DC-FCCS, quasi PIE-FCCS, and imaging FCCS. While measurement modality, temperature, and localization on upper or lower membranes have only a limited influence on the dimerization amount observed, the cell line and location to periphery versus center of the cell can change dimerization results significantly. The observed dimerization amount is strongly dependent on the expression level of endogenous EGFR in a cell line and shows a strong cell-to-cell variability even within the same cell line. In addition, using imaging FCCS, we find that dimers have a tendency to be found at the periphery of cells compared to central positions.


Assuntos
Receptores ErbB/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/química , Humanos , Multimerização Proteica , Estrutura Quaternária de Proteína , Espectrometria de Fluorescência , Tiazolidinas/farmacologia
16.
Biophys J ; 111(2): 418-429, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27463143

RESUMO

Wnt3 is a morphogen that activates the Wnt signaling pathway and regulates a multitude of biological processes ranging from cell proliferation and cell fate specification to differentiation over embryonic induction to neural patterning. Recent studies have shown that the palmitoylation of Wnt3 by Porcupine, a membrane-bound O-acyltransferase, plays a significant role in the intracellular membrane trafficking of Wnt3 and subsequently, its secretion in live zebrafish embryos, where chemical inhibition of Porcupine reduced the membrane-bound and secreted fractions of Wnt3 and eventually led to defective brain development. However, the membrane distribution of Wnt3 in cells remains not fully understood. Here, we determine the membrane organization of functionally active Wnt3-EGFP in cerebellar cells of live transgenic zebrafish embryos and the role of palmitoylation in its organization using single plane illumination microscopy-fluorescence correlation spectroscopy (SPIM-FCS), a multiplexed modality of FCS, which generates maps of molecular dynamics, concentration, and interaction of biomolecules. The FCS diffusion law was applied to SPIM-FCS data to study the subresolution membrane organization of Wnt3. We find that at the plasma membrane in vivo, Wnt3 is associated with cholesterol-dependent domains. This association reduces with increasing concentrations of Porcupine inhibitor (C59), confirming the importance of palmitoylation of Wnt3 for its association with cholesterol-dependent domains. Reduction of membrane cholesterol also results in a decrease of Wnt3 association with cholesterol-dependent domains in live zebrafish. This demonstrates for the first time, to our knowledge, in live vertebrate embryos that Wnt3 is associated with cholesterol-dependent domains.


Assuntos
Microdomínios da Membrana/metabolismo , Microscopia , Espectrometria de Fluorescência , Proteína Wnt3/metabolismo , Animais , Benzenoacetamidas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Difusão , Relação Dose-Resposta a Droga , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microdomínios da Membrana/efeitos dos fármacos , Ácido Palmítico/metabolismo , Piridinas/farmacologia , Peixe-Zebra
17.
Biophys J ; 109(9): 1925-36, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26536269

RESUMO

The spatial arrangement of the epidermal growth factor receptor (EGFR) on the cellular plasma membrane is one of the prime factors that control its downstream signaling pathways and related functions. However, the molecular organization, which spans the scale from nanometers to micrometer-size clusters, has not been resolved in detail, mainly due to a lack of techniques with the required spatiotemporal resolution. Therefore, we used imaging total internal reflection-fluorescence correlation spectroscopy to investigate EGFR dynamics on live CHO-K1 plasma membranes in resting and ligand-bound states. In combination with the fluorescence correlation spectroscopy diffusion law, this provides information on the subresolution organization of EGFR on cell membranes. We found that overall EGFR organization is sensitive to both cholesterol and the actin cytoskeleton. EGFR in the resting state is partly trapped in cholesterol-containing domains, whereas another fraction exhibits cholesterol independent trapping on the membrane. Disruption of the cytoskeleton leads to a broader range of EGFR diffusion coefficients and a reduction of hop diffusion. In the ligand-bound state we found a dose-dependent behavior. At 10 ng/mL EGF the EGFR is endocytosed and recycled to the membrane, whereas diffusion and organization do not change significantly. At 100 ng/mL EGF the EGFR forms clusters, which are subsequently internalized, whereas outside the clusters diffusivity increases and the organization of the receptor remains unchanged. After disruption of cholesterol-containing domains or actin cytoskeleton, EGF induces microscopic EGFR clusters on the membrane and endocytosis is inhibited.


Assuntos
Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células CHO , Colesterol/metabolismo , Cricetulus , Difusão , Endocitose/fisiologia , Humanos , Células Jurkat , Bicamadas Lipídicas/química , Ligação Proteica
18.
Development ; 142(21): 3721-33, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26395493

RESUMO

The boundaries of brain regions are associated with the tissue-specific secretion of ligands from different signaling pathways. The dynamics of these ligands in vivo and the impact of its disruption remain largely unknown. Using light and fluorescence microscopy for the overall imaging of the specimen and fluorescence correlation spectroscopy (FCS) to determine Wnt3 dynamics, we demonstrated that Wnt3 regulates cerebellum development during embryogenesis using zebrafish wnt3 transgenics with either tissue-specific expression of an EGFP reporter or a functionally active fusion protein, Wnt3EGFP. The results suggest a state of dynamic equilibrium of Wnt3EGFP mobility in polarized neuroepithelial-like progenitors in the dorsal midline and cerebellar progenitors on the lateral side. Wnt3EGFP is secreted from the cerebellum as shown by measurements of its mobility in the ventricular cavity. The importance of Wnt secretion in brain patterning was validated with the Porcn inhibitor Wnt-C59 (C59), which, when applied early, reduced membrane-bound and secreted fractions of Wnt3EGFP and led to a malformed brain characterized by the absence of epithalamus, optic tectum and cerebellum. Likewise, interference with Wnt secretion later on during cerebellar development negatively impacted cerebellar growth and patterning. Our work, supported by quantitative analysis of protein dynamics in vivo, highlights the importance of membrane-localized and secreted Wnt3 during cerebellum development.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Proteínas de Drosophila/genética , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Wnt/genética , Via de Sinalização Wnt , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
20.
Biomacromolecules ; 15(6): 2119-27, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24809225

RESUMO

Mitochondria are key organelles organizing cellular metabolic flux. Therefore, a targeted drug delivery to mitochondria promises the advancement of medicine in fields that are associated with mitochondrial dysfunction. However, successful mitochondrial drug delivery is limited by complex transport steps across organelle membranes and fast drug efflux in cases of multidrug resistance. Strategies to deliver small-molecular-weight drugs to mitochondria are very limited, while the use of complex polymeric carriers is limited by a lack of clinical feasibility. We show here that clinically established macromolecules such as a sucrose copolymer (Ficoll 70/400 kDa) and polyglucose (dextran 70/500 kDa) are micropinocytosed swiftly by mesenchymal stem cells and subsequently routed to mitochondria. The intracellular level of Ficoll appears to decrease over time, suggesting that it does not persist within cells. After coupling to polysucrose, the low-molecular-weight photodynamic drug Rose Bengal reached mitochondria and thus exhibited an increased destructive potential after laser excitation. These findings support new opportunities to deliver already clinically approved drugs to mitochondria.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Glucose/metabolismo , Mitocôndrias/metabolismo , Pinocitose/fisiologia , Polímeros/metabolismo , Sacarose/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Glucose/administração & dosagem , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/efeitos dos fármacos , Pinocitose/efeitos dos fármacos , Polímeros/administração & dosagem , Sacarose/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA